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SECTION A

Q1 The population model game.
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Figure 1: Plots associated with population models defined in question1

(i) :

du

dt
= u(1/2− u2 + v),

dv

dt
= −v + uv

(ii) :

du

dt
= u(1− v),

dv

dt
= v(u− 1)

(iii) :

du

dt
= u(u2 − 1/2 + v),

dv

dt
= −v + uv

(iv) :

du

dt
= a− u− u2v,

dv

dt
= b+ u2v,

State the physically valid equilibria in each of the models labelled (i)-(iv), you can
assume a, b > 0 for (iv). Match these population models to exactly one of the
solution sets (u(t), v(t)) shown in Figure 1. You must give a reason for each match.
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Q2 Collapsing microtubules. Consider a model of a microtubule embedded in a
cellular matrix as an Euler beam of length L, density ρ, and bending resistivity B,
deforming under an applied load N . The microtubule is placed in a visco-elastic
medium which dampens the velocity of the buckling by resisting its deformation.
Modelling the medium as having a viscoelastic “spring” component with constant
β, and a purely elastic component with spring constant µ which resists bending, the
modified beam equation for the deflection d, as a function of arclength s and time
t, takes the form

B
∂4d

∂s4
+N

∂2d

∂s2
+ µd+ β

∂d

∂t
+ ρ

∂2d

∂t2
= 0,

with B, ρ,N, β and µ positive constants.

(a) Show, using a linear stability analysis, that the homogeneous equilibrium
d(s, t) = 0, ∀s is unstable under a critical load Nc for a given oscillatory integer)
mode n when

Nc =
Bn2π2

L2
+
µL2

n2π2
,

if we assume the beam is pinned: d(0, t) = d(L, t) = 0.

(b) Describe the relationship between the critical load Nc and its length, and com-
ment on how the physical parameters B and µ affect this relationship (you
should include their physical interpretation in your answer).
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Q3 A simple Turing model. Consider the following system of reaction-diffusion
equations:

∂u

∂t
= a− u+ uv + ε

∂2u

∂x2
,

∂v

∂t
= b− uv +

∂2v

∂x2
,

with a > 0, b > 0 and u, v ≥ 0 satisfying Neumann boundary conditions on the
interval x ∈ [0, L].

(a) Find the spatially homogeneous equilibrium and state any conditions on a, b
for it to be feasible.

(b) Show that for this equilibrium to be stable in the absence of diffusion, we must
have b > a+

√
a.

(c) Linearize the system around this equilibrium. What form do solutions to the
linear system take? You do not need to solve the linearized equations.

(d) Explain why ε < 1 is necessary for this system to exhibit Turing instability.
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Q4 Hyper-diffusive survival Consider a population which grows according to

∂u

∂t
= ∇2u−D∇4u+ u(1− u), (1)

on a square 2D domain (x, y) ∈ Ω = [0, L] × [0, L] satisfying generalized Dirichlet
conditions of the form:

u = 0 = ∇2u for x ∈ ∂Ω.

Assume that D > 0.

(a) Find the spatially homogeneous equilibrium of this model and state its stability
in the spatially homogeneous case.

(b) State the eigenfunctions and eigenvalues of the Helmholtz equation:

∇2w(x, y) = −ρw(x, y)

on the domain Ω. Explain why these eigenfunctions can still be used to solve
the linearized version of (1).

(c) Use a linear stability analysis to show that the population will die out for all
L < Lc = π2(1 +

√
1 + 4D2), but will persist for L > Lc.
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SECTION B

Q5 A predator prey model. Consider the following modified variant of the Lotka-
Volterra system for population densities ū, v̄ on a one dimensional domain x ∈ [0, L̄]:

∂ū

∂t̄
= D1

∂2ū

∂x̄2
+ aūe−ū − būv̄, (2)

∂v̄

∂t̄
= D2

∂2v̄

∂x̄2
− cv̄e−v̄ + dūv̄,

where D1, D2, a, b, c, d are positive constants.

(a) Show that (2) can be written in the following non-dimensionalised form:

∂u

∂t
=
∂2u

∂x2
+ ue−β1u − uv, (3)

∂v

∂t
= D

∂2v

∂x2
− γve−β2v + uv.

State the physical interpretation of the constants D, γ and state the scaled
length L of the system.

(b) Using a phase diagram (or otherwise) compare the modified growth model

du

dt
= ue−u, (4)

to standard exponential growth.

(c) Now consider the following purely temporal version of this system

du

dt
= ue−u − uv,

dv

dt
= −ve−v + uv.

Draw a phase diagram for this system featuring the equilibria, nullclines and
some indicative trajectories.
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Q6 Travelling waves with advection. Consider the following reaction-advection-
diffusion equation for a population density u(x, t)

∂u

∂t
= D

∂2u

∂x2
+ ku

∂u

∂x
, (5)

where D, k are positive constants.

(a) State the assumptions on the flux J and advective velocity required for this
equation to fit the general advection-diffusion form.

(b) Show that travelling wave solutions to this equation in the form u(z), z = x−ct
must satisfy the following equation

D
d2u

dz2
+ (c+ ku)

du

dz
= 0. (6)

(c) Show by integrating that (6) can be written as:

du

dz
= −a(u− u1)(u− u2). (7)

where u2 > u1. State the values of a, u1, u2 in terms of c, k,D.

(d) State the appropriate boundary conditions for a travelling wave which transi-
tions between the system’s two equilibria u1, u2 (assuming they are real). Next
solve for u(z) by integrating (7) ensuring the solution satisfies these boundary
conditions.
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Q7 A discrete Allee model. Consider the discrete-time model:

un = un−1 + run−1(1− un−1)(un−1 − A), (8)

where 0 < A < 1 and r > 0. Also consider the continuous-time analogue:

du

dt
= ru(1− u)(u− A). (9)

(a) Find all feasible equilibria of both models, and compute their stability in terms
of r and A.

(b) Draw cobweb diagrams to illustrate what happens to initial conditions u0 ∈
(0, A) and u0 ∈ (A, 1) in the case of stable equilibria for equation (8).

(c) What unphysical behaviour does the discrete-time model exhibit for 2 > rA >
1? What about for rA > 2? Illustrate the first of these with a cobweb diagram.

(d) For a fixed value of A, for what values of r does the model (8) behave qualita-
tively the same way as equation (9)? Besides unphysical behaviour, what else
can happen in the discrete-time model which cannot happen in the continuous-
time one?
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Q8 Chasing resources for patterns Consider a resource-consumer model of the form,

∂r

∂t
= Dr∇2r + 1− r − acr

1 + r
,

∂c

∂t
= Dc∇2c− c+

acr

1 + r
,

where all parameters are positive and we assume that the spatial domain has no-flux
boundary conditions. Here r represents the density of a resource population, and c
a consumer.

(a) What do all of the terms in the system represent? In particular, what does the
denominator on the interaction term mean?

(b) Find both spatially homogeneous equilibria. Classify their feasibility and sta-
bility in the absence of diffusion in terms of the parameter a.

(c) Show that neither equilibrium can undergo a Turing instability.

(d) Now consider the following variant of the model,

∂r

∂t
= ∇2r + 1− r − acr

1 + r
,

∂c

∂t
= ∇2c+ γ∇ · (p∇r)− c+

acr

1 + r
,

with γ > 0, and the cross-diffusion Turing instability conditions derived in
lectures,

d1Gv + d4Fu − d2Gu − d3Fv > 0,

(d1Gv + d4Fu − d2Gu − d3Fv)
2 − 4(d1d2 − d2d3)(FuGv − FvGu) > 0.

Argue why there must exist a γc > 0 such that this system has Turing insta-
bilities for γ > γc. Note: You do not need to compute γc exactly but you must
show that it exists.

(e) What is the interpretation of the term involving γ, noting that γ > 0?
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