

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH30920-WE01

Title:

Mathematical Biology V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

Figure 1: Plots associated with population models defined in question1

(i):
$$\frac{du}{dt} = u(1/2 - u^2 + v),$$
 (ii): $\frac{du}{dt} = u(1 - v),$
 $\frac{dv}{dt} = -v + uv$ (ii): $\frac{du}{dt} = v(u - 1)$
(iii): $\frac{du}{dt} = u(u^2 - 1/2 + v),$ (iv): $\frac{du}{dt} = a - u - u^2 v,$
 $\frac{dv}{dt} = -v + uv$ (iv): $\frac{dv}{dt} = b + u^2 v,$

State the physically valid equilibria in each of the models labelled (i)-(iv), you can assume a, b > 0 for (iv). Match these population models to exactly one of the solution sets (u(t), v(t)) shown in Figure 1. You must give a reason for each match.

CONTINUED

je number		Exam code
3 of 9		MATH30920-WE01
	I	1

Q2 Collapsing microtubules. Consider a model of a microtubule embedded in a cellular matrix as an Euler beam of length L, density ρ , and bending resistivity B, deforming under an applied load N. The microtubule is placed in a visco-elastic medium which dampens the velocity of the buckling by resisting its deformation. Modelling the medium as having a viscoelastic "spring" component with constant β , and a purely elastic component with spring constant μ which resists bending, the modified beam equation for the deflection d, as a function of arclength s and time t, takes the form

$$B\frac{\partial^4 d}{\partial s^4} + N\frac{\partial^2 d}{\partial s^2} + \mu d + \beta \frac{\partial d}{\partial t} + \rho \frac{\partial^2 d}{\partial t^2} = 0,$$

with B, ρ, N, β and μ positive constants.

(a) Show, using a linear stability analysis, that the homogeneous equilibrium d(s,t) = 0, $\forall s$ is unstable under a critical load N_c for a given oscillatory integer) mode n when

$$N_c = \frac{Bn^2\pi^2}{L^2} + \frac{\mu L^2}{n^2\pi^2},$$

if we assume the beam is pinned: d(0,t) = d(L,t) = 0.

(b) Describe the relationship between the critical load N_c and its length, and comment on how the physical parameters B and μ affect this relationship (you should include their physical interpretation in your answer).

Q3 A simple Turing model. Consider the following system of reaction-diffusion equations:

Exam code

MATH30920-WE01

$$\begin{split} &\frac{\partial u}{\partial t} = a - u + uv + \varepsilon \frac{\partial^2 u}{\partial x^2}, \\ &\frac{\partial v}{\partial t} = b - uv + \frac{\partial^2 v}{\partial x^2}, \end{split}$$

with a > 0, b > 0 and $u, v \ge 0$ satisfying Neumann boundary conditions on the interval $x \in [0, L]$.

- (a) Find the spatially homogeneous equilibrium and state any conditions on a, b for it to be feasible.
- (b) Show that for this equilibrium to be stable in the absence of diffusion, we must have $b > a + \sqrt{a}$.
- (c) Linearize the system around this equilibrium. What form do solutions to the linear system take? You do not need to solve the linearized equations.
- (d) Explain why $\varepsilon < 1$ is necessary for this system to exhibit Turing instability.

Q4 Hyper-diffusive survival Consider a population which grows according to

$$\frac{\partial u}{\partial t} = \nabla^2 u - D\nabla^4 u + u(1-u), \tag{1}$$

on a square 2D domain $(x, y) \in \Omega = [0, L] \times [0, L]$ satisfying generalized Dirichlet conditions of the form:

$$u = 0 = \nabla^2 u$$
 for $x \in \partial \Omega$.

Assume that D > 0.

- (a) Find the spatially homogeneous equilibrium of this model and state its stability in the spatially homogeneous case.
- (b) State the eigenfunctions and eigenvalues of the Helmholtz equation:

$$\nabla^2 w(x,y) = -\rho w(x,y)$$

on the domain Ω . Explain why these eigenfunctions can still be used to solve the linearized version of (1).

(c) Use a linear stability analysis to show that the population will die out for all $L < L_c = \pi^2 (1 + \sqrt{1 + 4D^2})$, but will persist for $L > L_c$.

Page number 6 of 9

SECTION B

Q5 A predator prey model. Consider the following modified variant of the Lotka-Volterra system for population densities \bar{u}, \bar{v} on a one dimensional domain $x \in [0, \bar{L}]$:

$$\frac{\partial \bar{u}}{\partial \bar{t}} = D_1 \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} + a \bar{u} e^{-\bar{u}} - b \bar{u} \bar{v},$$

$$\frac{\partial \bar{v}}{\partial \bar{t}} = D_2 \frac{\partial^2 \bar{v}}{\partial \bar{x}^2} - c \bar{v} e^{-\bar{v}} + d \bar{u} \bar{v},$$
(2)

where D_1, D_2, a, b, c, d are positive constants.

(a) Show that (2) can be written in the following non-dimensionalised form:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u e^{-\beta_1 u} - uv,$$

$$\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} - \gamma v e^{-\beta_2 v} + uv.$$
(3)

State the physical interpretation of the constants D, γ and state the scaled length L of the system.

(b) Using a phase diagram (or otherwise) compare the modified growth model

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u\mathrm{e}^{-u},\tag{4}$$

to standard exponential growth.

(c) Now consider the following purely temporal version of this system

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u\mathrm{e}^{-u} - uv,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = -v\mathrm{e}^{-v} + uv.$$

Draw a phase diagram for this system featuring the equilibria, nullclines and some indicative trajectories.

Q6 Travelling waves with advection. Consider the following reaction-advectiondiffusion equation for a population density u(x, t)

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + k u \frac{\partial u}{\partial x},\tag{5}$$

Exam code

MATH30920-WE01

where D, k are positive constants.

- (a) State the assumptions on the flux J and advective velocity required for this equation to fit the general advection-diffusion form.
- (b) Show that travelling wave solutions to this equation in the form u(z), z = x ct must satisfy the following equation

$$D\frac{\mathrm{d}^2 u}{\mathrm{d}z^2} + (c+ku)\frac{\mathrm{d}u}{\mathrm{d}z} = 0.$$
 (6)

(c) Show by integrating that (6) can be written as:

$$\frac{\mathrm{d}u}{\mathrm{d}z} = -a(u-u_1)(u-u_2). \tag{7}$$

where $u_2 > u_1$. State the values of a, u_1, u_2 in terms of c, k, D.

(d) State the appropriate boundary conditions for a travelling wave which transitions between the system's two equilibria u_1, u_2 (assuming they are real). Next solve for u(z) by integrating (7) ensuring the solution satisfies these boundary conditions.

Q7 A discrete Allee model. Consider the discrete-time model:

$$u_n = u_{n-1} + ru_{n-1}(1 - u_{n-1})(u_{n-1} - A),$$
(8)

where 0 < A < 1 and r > 0. Also consider the continuous-time analogue:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = ru(1-u)(u-A). \tag{9}$$

- (a) Find all feasible equilibria of both models, and compute their stability in terms of r and A.
- (b) Draw cobweb diagrams to illustrate what happens to initial conditions $u_0 \in (0, A)$ and $u_0 \in (A, 1)$ in the case of stable equilibria for equation (8).
- (c) What unphysical behaviour does the discrete-time model exhibit for 2 > rA > 1? What about for rA > 2? Illustrate the first of these with a cobweb diagram.
- (d) For a fixed value of A, for what values of r does the model (8) behave qualitatively the same way as equation (9)? Besides unphysical behaviour, what else can happen in the discrete-time model which cannot happen in the continuous-time one?

Exam code MATH30920-WE01

Q8 Chasing resources for patterns Consider a resource-consumer model of the form,

$$\begin{split} &\frac{\partial r}{\partial t} = D_r \nabla^2 r + 1 - r - \frac{acr}{1+r}, \\ &\frac{\partial c}{\partial t} = D_c \nabla^2 c - c + \frac{acr}{1+r}, \end{split}$$

where all parameters are positive and we assume that the spatial domain has no-flux boundary conditions. Here r represents the density of a resource population, and c a consumer.

- (a) What do all of the terms in the system represent? In particular, what does the denominator on the interaction term mean?
- (b) Find both spatially homogeneous equilibria. Classify their feasibility and stability in the absence of diffusion in terms of the parameter a.
- (c) Show that neither equilibrium can undergo a Turing instability.
- (d) Now consider the following variant of the model,

$$\begin{split} &\frac{\partial r}{\partial t} = \nabla^2 r + 1 - r - \frac{acr}{1+r}, \\ &\frac{\partial c}{\partial t} = \nabla^2 c + \gamma \nabla \cdot (p \nabla r) - c + \frac{acr}{1+r}, \end{split}$$

with $\gamma > 0$, and the cross-diffusion Turing instability conditions derived in lectures,

$$d_1G_v + d_4F_u - d_2G_u - d_3F_v > 0,$$

$$(d_1G_v + d_4F_u - d_2G_u - d_3F_v)^2 - 4(d_1d_2 - d_2d_3)(F_uG_v - F_vG_u) > 0.$$

Argue why there must exist a $\gamma_c > 0$ such that this system has Turing instabilities for $\gamma > \gamma_c$. Note: You do not need to compute γ_c exactly but you must show that it exists.

(e) What is the interpretation of the term involving γ , noting that $\gamma > 0$?