

EXAMINATION PAPER

Examination Session: May/June Year:

2024

Exam Code:

MATH31220-WE01

Title:

Geometry of Mathematical Physics V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:

SECTION A

- **Q1** SO(3) contains the real 3×3 matrices O for which $O^T = O^{-1}$ and det O = 1.
 - **1.1** Show that SO(3) is a group.
 - **1.2** Show that acting on a vector $\mathbf{x} \in \mathbb{R}^3$ as $\mathbf{x} \to O\mathbf{x}$ leaves the inner form

$$|\mathbf{x}|^2 := \mathbf{x} \cdot \mathbf{x}$$

invariant.

1.3 Find the Lie algebra element ℓ associated with the path

$$t \mapsto \begin{pmatrix} \cos at & \sin at & 0\\ -\sin at & \cos at & 0\\ 0 & 0 & 1 \end{pmatrix} \in SO(3) .$$

Here $a \in \mathbb{R}$ and $t \in [-1, 1]$.

1.4 Compute $e^{\ell\phi}$ for $\phi \in \mathbb{R}$ and ℓ defined in the previous sub-question.

Hint:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

- **Q2** Decide if each of the following defines a representation of the respective groups, and explain your reasoning.
 - **2.1** $r_1 : S \mapsto S^2$ for $S \in U(1)$. **2.2** $r_2 : S \mapsto S^2$ for $S \in SO(n)$. **2.3** $r_3 : S \mapsto \sqrt{S}$ for $S \in U(1)$. **2.4** $r_4 : g \mapsto \det g$ for $g \in U(n)$. **2.5** $r_5 : g \mapsto (\det g)^{-1}$ for $g \in U(n)$.
- Q3 Let L_3 be the Lorentz group in three dimensions of space-time, i.e. L_3 is the set of linear maps $\{\Lambda\}$ acting on (x_0, x_1, x_2) with the property that

$$|\mathbf{x}| := -(x^0)^2 + (x^1)^2 + (x^2)^2,$$

is invariant under

$$x^{\mu} \to \Lambda^{\mu}{}_{\nu}x^{\nu}$$

- **3.1** Find the conditions that $\Lambda^{\mu}{}_{\nu}$ needs to obey to be in L_3 .
- **3.2** Work out the Lie algebra l_3 of L_3 . [Hint: l_3 is three-dimensional]
- **3.3** Is the exponential map for L_3 surjective? Explain your reasoning.

 ${\bf Q4}\,$ The field strength tensor of electromagnetism is given in terms of electric and magnetic fields by

Exam code

.

MATH31220-WE01

$$F^{\mu\nu} := \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & B_3 & -B_2 \\ -E_2 & -B_3 & 0 & B_1 \\ -E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

Write the following expressions in terms of electric and magnetic fields:

4.1 $F_{\mu\nu}$.

4.2
$$F^{\mu\nu}F_{\mu\nu}$$

4.3 $F^{\mu\nu}F^{\rho\sigma}\epsilon_{\mu\nu\rho\sigma}$.

Exam code	
MATH31220-WE01	
Î.	

SECTION B

- Q5 Consider the adjoint representation of SU(2), in which SU(2) acts on $\mathfrak{su}(2)$.
 - **5.1** Write down the adjoint action of $g \in SU(2)$ on $\gamma \in \mathfrak{su}(2)$.
 - 5.2 Let

$$g(\phi) = \begin{pmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{pmatrix} \, .$$

Show that $G := \{g(\phi) | \phi \in [0, 2\pi)\}$ is a U(1) subgroup of SU(2).

- **5.3** Explain why the adjoint representation of SU(2) also defines a representation r of G, and describe the action of this representation on $\mathfrak{su}(2)$.
- **5.4** Decompose the representation r defined in the previous sub-question into irreducible representations r_i .
- **5.5** Find the associated Lie algebra representation of each of the irreducible representations r_i found in the previous sub-question.
- **Q6** We can act with $g \in SU(n)$ on the vector space V of complex $n \times n$ matrices by letting

$$F(g): M \mapsto g^{\dagger} M g$$
,

for $M \in V$.

- **6.1** Show that this defines a representation r of SU(n).
- **6.2** Show that the set W of matrices M proportional to the identity matrix form an invariant subspace under r.
- **6.3** Check that r is a unitary representation with respect to the inner form

$$|M|^2 := \sum_{i,j} \overline{M}_{ij} M_{ij} \,.$$

- **6.4** Use the results above to find another invariant subspace $W' \in V$.
- **6.5** For n = 2, show that restricting r to W' results in an irreducible representation.

Q7 Consider a U(1) gauge theory in 3 dimensions given by the action

$$S = \int d^3x \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \,,$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

- **7.1** How many independent components does $F_{\mu\nu}$ have ?
- 7.2 Describe the gauge symmetry of the system and find the equations of motion.
- **7.3** It is possible to choose a gauge where $\partial_{\mu}A^{\mu} = 0$. Writing

$$A_{\mu} = p_{\mu} e^{ik_{\nu}x^{\nu}}$$

find the relations that need to be obeyed by p_{μ} and k_{μ} to satisfy the gauge condition and solve the equations of motion.

- 7.4 Find the residual gauge symmetry left after imposing $\partial_{\mu}A^{\mu} = 0$. In other words, are there gauge transformations which respect the condition $\partial_{\mu}A^{\mu} = 0$, and if so what are they?
- **7.5** Using the residual gauge symmetry, how many physical choices of p_{μ} remain ?
- **7.6** Let $\partial_{\mu}\phi = \epsilon_{\mu\nu\rho}F^{\nu\rho}$ for a real scalar field ϕ . Find the action for ϕ .
- **Q8** Consider a field theory with three real scalar fields ϕ_i , i = 1, 2, 3 and action

$$S_1 = \int d^4x \; \frac{1}{2} \partial_\mu \phi_i \partial^\mu \phi_i \; + \; \frac{1}{2} m^2 \phi_i \phi_i \, ,$$

where we are using summation convention both for the Lorentz index μ and the index i, and m^2 is a constant.

- **8.1** Find the equations of motion following from S_1 .
- **8.2** Show that S_1 is invariant under Lorentz transformations.
- **8.3** Show that letting $\phi_i \to O_{ij}\phi_j$, with O_{ij} the components of a matrix $O \in O(3)$, leaves S_1 invariant.

Now we introduce two more complex scalar fields χ_k , k = 1, 2, and let the action of our system be $S = S_1 + S_2$ with

$$S_2 = \int d^4x \; \partial_\mu \bar{\chi}_k \partial^\mu \chi_k + \lambda \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}^\dagger \begin{pmatrix} \phi_3 & \phi_1 - i\phi_2 \\ \phi_1 + i\phi_2 & -\phi_3 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \, .$$

- **8.4** Find the equations of motion following from *S*.
- **8.5** For $\lambda = 0$, S has a SU(2) symmetry under which (χ_1, χ_2) transform in the **2** representation. For $\lambda \neq 0$, which $G \subset SU(2) \times O(3)$ remains a symmetry of S?