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SECTION A

Q1 Let us consider the following Cauchy problem
∂tu + (u · ∇)u +∇p = 0, (t,x) ∈ (0,+∞)× R2,
∇ · u = 0, (t,x) ∈ (0,+∞)× R2,
u(0,x) = u0(x), p(0,x) = p0(x), x ∈ R2,

(1)

where the unknowns are u = (u1, u2) : (0,+∞)×R2 → R2 and p : (0,+∞)×R2 → R,
while u0 : R2 → R2 and p0 : R2 → R are given. Here, (u · ∇)u stands for the
vector field whose ith coordinate is given by

∑2
j=1 u

j∂xj
ui, while ∇· stands for the

divergence operator and ∇ stands for the gradient.

1.1 Does (1) describe a system or a scalar PDE? Justify your answer.

1.2 From the point of view of linearity, determine the type of the first PDE ap-
pearing in (1).

1.3 Suppose that for u0 and p0 smooth and compactly supported, the problem (1)
has a classical solution which is compactly supported in the x-variable. Show
that the quantity 1

2

∫
R2(u

1(t,x)2 + u2(t,x)2) dx is constant in time. [Hint:
compute the time derivative of this expression and use the PDEs.]

Q2 We consider the following Cauchy problem for the scalar unknown function u that
we aim to solve by the method of characteristics.{

5− x2
1∂x2u(x1, x2) = 0, (x1, x2) ∈ R2,

u(x1, 0) = 3, x1 ∈ R. (2)

2.1 Determine the leading vector field, the Cauchy datum and the Cauchy curve
associated to this problem.

2.2 Find all the points on the Cauchy curve which are noncharacteristic.

2.3 Write down the ODE system for the characteristics and for the solution along
the characteristics. Then solve this system.

2.4 Sketch a few characteristic curves.

2.5 Find the solution u to (2). Determine its maximal domain of definition.
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Q3 Let Ω ⊂ Rd be a bounded open set with smooth boundary, and suppose that d ≥ 2.

3.1 Suppose that u, v ∈ C2(Ω). Show that the following formula holds∫
Ω

v∆u dx +

∫
Ω

∇v · ∇u dx =

∫
∂Ω

v∂nu dS,

where ∇ stands for the gradient, ∆ stands for the Laplace operator and we
used the notation ∂nu = ∇u·n, with n being the outward pointing unit normal
vector to ∂Ω.

3.2 Suppose that u : Ω→ R is harmonic and u ∈ C2(Ω). Show that∫
∂Ω

∂nu dS = 0.

3.3 Suppose that u : Ω → R is harmonic and u ∈ C2(Ω). Show that
∫
∂Ω
u∂nu dS

is nonnegative.

3.4 Suppose that u, v : Ω→ R are both harmonic and u, v ∈ C2(Ω). Show that∫
∂Ω

(u∂nv − v∂nu) dS = 0.

Q4 Let f : Rd → R be a smooth compactly supported function. For an unknown
function u : Rd × (0,+∞)→ R we consider the following Cauchy problem.{

∂tu(x, t)−∆u(x, t) = f(x), (x, t) ∈ Rd × (0,+∞),
u(x, 0) = 0, x ∈ Rd.

(3)

For any s ≥ 0 given, for the unknown function vs : Rd × (s,+∞)→ R we consider
a second Cauchy problem{

∂tv
s(x, t)−∆vs(x, t) = 0, (x, t) ∈ Rd × (s,+∞),

vs(x, s) = f(x), x ∈ Rd,
(4)

where ∆ stands for the classical Laplace operator.

4.1 Express the solution vs to (4) in terms of the heat kernel (for which you must
give the explicit formula), f and the parameter s.

4.2 Show that if vs is a classical solution to (4), then

u(x, t) :=

∫ t

0

vs(x, t) ds

is a classical solution to (3).

4.3 Write the solution u to (3) as an expression that does not involve vs, i.e. it is
expressed via the heat kernel and f .

4.4 Prove that if f is nonnegative, then both u and vs, the solutions to (3) and
(4), are nonnegative.
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SECTION B

Q5 Let α ∈ R and set Aα = (aαij)
2
i,j=1 ∈ R2×2 to be the matrix Aα :=

(
1 α
α 1

)
. For a

given open set Ω ⊆ R2 and u ∈ C2(Ω), we define the differential operator

(Lαu)(x) := −Aα : D2u(x) = −
2∑

i,j=1

aαij∂xi
∂xj

u(x),

where D2u stands for the Hessian matrix of u.

5.1 Show that the matrix Aα is positive semi-definite if and only if |α| ≤ 1. Show
that Aα is positive definite if and only if |α| < 1.

5.2 Let Ω be open, bounded and connected with smooth boundary. Suppose that
|α| < 1 and u : Ω→ R is a classical solution to

(Lαu)(x) = 0, x ∈ Ω.

Explain why u attains both its minimum and maximum on ∂Ω.

5.3 Now we set α = 1. Find all those real numbers c1, c2 ∈ R for which the function
u : R2 → R defined as

u(x1, x2) = c1(x2
1 + x2

2)− c2x1x2

is a solution to L1u = 0.

5.4 Suppose that we are in the setting of the previous point Q5.3. Show that u
fails to satisfy either the weak minimum or the weak maximum principle (one
of the two). [Hint: choose c1, c2 such that u(x1, x2) ≥ 0 for all (x1, x2) ∈ R2.
Find a particular bounded connected domain Ω ⊂ R2, which is a sublevel set
of u, i.e. Ω := {(x1, x2) ∈ R2 : u(x1, x2) < r}, for some r > 0. Deduce the
failure of the weak minimum principle in this domain.]
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Q6 Let f : R→ R of class C2 be given. Suppose that this is strongly convex, i.e. there
exists c0 > 0 such that f ′′(x) ≥ c0 for all x ∈ R. Consider the following Cauchy
problem for the unknown u : R× (0,+∞)→ R{

∂tu(x, t) + ∂x(f(u(x, t))) = 0, (x, t) ∈ R× (0,+∞),
u(x, 0) = u0(x), x ∈ R. (5)

For ε > 0 we consider the following approximation of (5){
∂tu

ε(x, t) + ∂x(f(uε(x, t)))− ε∂2
xxu

ε(x, t) = 0, (x, t) ∈ R× (0,+∞),
uε(x, 0) = u0(x), x ∈ R. (6)

6.1 State Lax’s entropy condition for weak solutions to the Cauchy problem (5).

6.2 We look for a solution to (6) in the form

uε(x, t) := v

(
x− αt
ε

)
, (7)

for a given constant α ∈ R and some given smooth enough function v : R→ R.
Find the second order ODE that v needs to satisfy in order for the formula (7)
to give a classical solution to (6).

6.3 Let u`, ur ∈ R be given, and we are looking for a solution to the ODE for v
found in Q6.2 with the additional assumptions

lim
s→−∞

v(s) = u`; lim
s→+∞

v(s) = ur; lim
s→±∞

v′(s) = 0.

Suppose that we find such a solution v. Compute the limit lim
ε→0

uε(x, t), in the

case when x 6= αt.

6.4 Suppose that we are in the setting of Q6.3. Find an equation that α needs to
satisfy, in terms of f and u`, ur. [Hint: integrate the second oder ODE for v,
then take limits s→ ±∞].

6.5 Suppose that u0(x) =

{
u`, x < 0,
ur, x > 0.

Suppose that ur < ul. Suppose that (6)

has a classical solution in the form of (7), and v and α satisfy all the previously
set and obtained properties. Conclude that uε(x, t)→ u(x, t), as ε→ 0, almost
everywhere, where u is the unique solution to (5) which satisfies Lax’s entropy
condition.
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Q7 We consider the following Cauchy problem{
∂tu(x, t) + u(x, t)∂xu(x, t) = 0, (x, t) ∈ R× (0,+∞),
u(x, 0) = u0(x), x ∈ R. (8)

We set

u0(x) =


0, x < 0,
1, 0 < x < 1,
2, 1 < x < 2,
x, 2 < x.

We aim to construct a unique entropy solution to this Cauchy problem.

7.1 Sketch the characteristic lines associated with the Cauchy problem and discuss
about the need of shock curves and/or rarefaction waves.

7.2 Introduce the corresponding shocks and/or rarefaction waves.

7.3 Write down the candidate for the weak entropy solutions to (8).

7.4 Show that this solution is continuous everywhere if t > 0.

7.5 Show that the solution satisfies Lax’s entropy condition.

Q8 Let Ω ⊂ Rd be a bounded open set with smooth boundary. Let F : R → R be a
given smooth function which is bounded above. We consider the energy functional

E[u] :=

∫
Ω

1

2
(∆u(x))2 dx−

∫
Ω

F (u(x)) dx,

which we define on the set of scalar functions which belong to

V := {u ∈ C2(Ω) : ∇u · n = 0 and u = 0 on ∂Ω}.

Here we denoted by ∆ the Laplace operator, by ∇ the gradient operator and by n
the outward pointing unit normal vector field to ∂Ω.

8.1 Show that there exists a constant c0 > 0 such that E[u] ≥ −c0 for all u ∈ V .

8.2 Suppose that u ∈ V is a minimiser of E. Write down the first order optimality
condition, i.e. the Euler–Lagrange equation satisfied by u.

8.3 Suppose that u ∈ C4(Ω) is a minimiser of E over V . Find the PDE and
boundary conditions satisfied by u.

8.4 Suppose that F is strictly concave. Deduce that if a minimiser of E over V
exists, then it must be unique.

8.5 Show the uniqueness of minimisers of E in V , if F is the constant zero function.
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