

EXAMINATION PAPER

Examination Session: May/June Year: 2024

Exam Code:

MATH3421-WE01

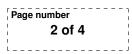
Title:

Bayesian Computation and Modelling III

Time:	2 hours			
Additional Material provided:	Formula sheet			
Materials Permitted:				
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.		

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.				

Revision:



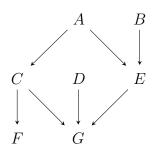
SECTION A

- **Q1** Consider a trivariate target density $\pi(\underline{\theta}) = \pi(\theta_1, \theta_2, \theta_3)$ and a deterministic scan Gibbs sampling algorithm for sampling from this target.
 - 1.1 Briefly describe the main steps of the deterministic scan Gibbs sampler at iteration j for this target.
 - **1.2** Write down the form of the transition density $p(\underline{\phi}|\underline{\theta})$ of the resulting Markov chain, giving your answer in terms of full conditional densities of the form $\pi(\cdot|\cdot, \cdot)$.
 - 1.3 Briefly explain the importance of updating all components.
 - 1.4 Suppose that

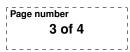
$$\pi(\theta_1, \theta_2, \theta_3) \propto \theta_3^{3/2} \exp\left\{-\frac{1}{2} \left[\theta_1^2 + \theta_2^2 - 2\theta_2 + \theta_3(8 - 4\theta_1 - 4\theta_2 + 2\theta_1\theta_2 + \theta_1^2 + \theta_2^2)\right]\right\},\$$
$$\theta_1, \theta_2 \in \mathbb{R}, \ \theta_3 > 0.$$

Derive and identify all full conditional distributions for this trivariate target.

Q2 Consider the following directed acyclic graph that encodes the conditional independence relationships between seven variables.



- 2.1 Which of the variables are exogenous and which are endogenous?
- **2.2** Write down two sets of variables that would each D-separate B and G on their own.
- **2.3** A researcher has prior beliefs about A. They believe that the mean value is around 3 and that the standard deviation is around 1. If they further believe that the distribution is right-skewed and bounded between 0 and 10, give a suitable prior distribution for A.
- **2.4** The researcher finds out that D, E, F and G are going to be studied in each of three independent regions and that, within each region, there will be ten independent observations of both F and G. Redraw the directed acyclic graph to accommodate this information.

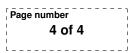


SECTION B

- **Q3** Consider a hidden Markov model (HMM) for data y_0, \ldots, y_T generated via a hidden Markov chain X_0, \ldots, X_T with a transition density of $p(x_t|x_{t-1})$ $(t = 1, \ldots, T)$ and initial density $p(x_0)$. Denote the data likelihood by $p(y_t|x_t)$ $(t = 0, \ldots, T)$.
 - **3.1** Derive an expression for $p(x_t, y_t|y_{0:t-1})$ given $p(x_{t-1}|y_{0:t-1})$. Be sure to give the full expressions for terms before they are simplified through the special structure of the hidden Markov model.
 - **3.2** Use Bayes Theorem to derive the full, normalised expression for $p(x_t|y_{0:t})$ from $p(x_t, y_t|y_{0:t-1})$. **Hint:** first write $p(x_t|y_{0:t})$ as $p(x_t|y_{0:t-1}, y_t)$.
 - **3.3** A bootstrap particle filter is applied to this HMM resulting in a weighted sample at time t, $\{(x_t^{(k)}, \tilde{w}_t^{(k)})\}_{k=1}^N$.
 - (a) Write down the density that the weighted samples are an approximation to.
 - (b) The samples $\{x_t^{(k)}\}_{k=1}^N$ are resampled (with replacement) with probabilities equal to their weights. Denote the resulting unweighted samples by $\{\tilde{x}_t^{(k)}\}_{k=1}^N$. Write down the density that these unweighted samples are an approximation to.
 - (c) For each sample $\tilde{x}_t^{(k)}$ from (b), a new sample $x_{t+1}^{(k)}$ is generated from the transition density $p(x_{t+1}|\tilde{x}_t^{(k)})$. Write down the density that these new unweighted samples are an approximation to.
 - (d) Using the samples from (c), the following quantity is constructed:

$$\frac{\sum_{k=1}^{N} p\left(y_{t+1} \left| x_{t+1}^{(k)} \right) x_{t+1}^{(k)} \right)}{\sum_{k=1}^{N} p\left(y_{t+1} \left| x_{t+1}^{(k)} \right)}.$$

What is this quantity estimating?



Q4 We have the following model of a relationship between observed x_i and y_i :

$$\begin{aligned} \widetilde{y}_i &= \alpha + \beta \widetilde{x}_i, \\ y_i &= \widetilde{y}_i + \epsilon_{yi}, \\ x_i &= \widetilde{x}_i + \epsilon_{xi}, \\ \epsilon_{yi} &| \sigma_y^2 \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_y^2), \\ \epsilon_{xi} &| \sigma_x^2 \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_x^2), \end{aligned}$$

Exam code

MATH3421-WE01

for $i = 1, \ldots, n$ and with $\epsilon_{xi} \perp \epsilon_{yj}$ for all i and j.

- **4.1** Write down the joint likelihood function for the model parameters, α , β , σ_x^2 and σ_y^2 , with respect to *n* observed (x_i, y_i) -pairs.
- 4.2 Which of the parameters are not identifiable? Give one suggestion of how this issue can be resolved.
- **4.3** We will only receive a value for the y_i if it is greater than three. Write down the likelihood when we have *n* observed and complete (x_i, y_i) -pairs and *m* observed (x_i, y_i) -pairs with the y_i value missing due to their value being less than three.
- **4.4** In performing a Bayesian analysis of this model, we will utilise a folded distribution for the prior for α . Let $f(\alpha)$ be a probability density function that is positive for all $\alpha \in \mathbb{R}$. A folded version of $f(\alpha)$ at boundary $a, g(\alpha)$ say, is

$$g(\alpha) = \begin{cases} f(\alpha) + f(2a - \alpha) & \alpha > a, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that $g(\alpha)$ is a proper density function.
- (b) Suggest a suitable proposal distribution for α if a Metropolis-Hastings sampler was to be employed when utilising a folded prior. Give your reasoning.
- **4.5** For this model, an expert believes a priori that there is a dependency between α and β . Outline a strategy for eliciting beliefs about the two parameters from a single expert.