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SECTION A

Q1 (a) Explain the difference between supervised and unsupervised machine learning.
Give two examples of supervised machine learning techniques and two examples
of unsupervised machine learning techniques.

(b) Ridge and lasso regression each correspond to a constrained optimisation of
least squares, with a cost function that includes a tuning parameter λ ≥ 0:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij
)2

+ λ

p∑
j=1

f(βj)

(i) Specify the form of f(βj) for ridge and for lasso regression. You may
refer to Figure 1 to ensure you have assigned the correct formula to each
regression type.

(ii) Explain the behaviour of each form of constrained optimisation when

A. λ→∞
B. λ→ 0

(c) Why is it important to normalise your feature variables Xj when using this
type of constrained optimisation?

(d) You are attempting to fit a model to a large data set with many feature vari-
ables, where you believe the vast majority of the feature variables Xj each have
an independent effect on the output variable Y . Should you use ridge or lasso
regression? Explain your answer.

Figure 1: Two-dimensional schematic representation of the constraints applied during
ridge and lasso regression.
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Q2 Consider the regression problem, with a predictive rule h : Rd → Rq which receives
inputs x = (x1, ..., xd)

> ∈ Rd and returns values in Rq. Let h (x) be modeled as a
feedforward neural network (FNN) with equation h (x) = (h1 (x) , ..., hq (x))> and

hk (x) = σ2

(
c∑
j=1

w2,k,jσ1

(
d∑
i=1

w1,j,ixi

))

for k = 1, ..., q. We consider activation functions σ1 (ξ) = ξ
1+exp(−3ξ)

and σ2 (ξ) =

ξ+
√
ξ2+4

2
for ξ ∈ R. The parameters c, d, q ∈ N+ are known while the weights {w·,·,·}

of the FNN are unknown. To learn the unknown weights {w·,·,·}, we specify the loss
function

` (w, z = (x, y)) =

q∑
k=1

(hk (x)− yk − 1)−
q∑

k=1

exp (yk − hk (x) + 1)

where z = (x, y) denotes an example, x ∈ Rd is the input vector (features), and
y = (y1, ..., yq)

> ∈ Rq is the output vector (targets).

(a) Describe the algorithm necessary to perform the forward pass of the back-
propagation procedure to compute the activations which may be denoted as
{αt,i} and outputs which may be denoted as {ot,i} at each layer t.

(b) Describe the algorithm necessary to perform the backward pass of the back-
propagation procedure in order to compute the gradient

∇w` (w, (x, y)) =

((
∂

∂w1,j,i

` (w, (x, y))

)c,d
j=1,i=1

,

(
∂

∂w2,k,j

` (w, (x, y))

)q,c
k=1,j=1

)

of the loss function ` (w, z) with respect to w for any example z = (x, y).
Clearly state the steps of the procedure as well as state the quantities

∂

∂w1,j,i

` (w, (x, y)) , and
∂

∂w2,k,j

` (w, (x, y))

for all k = 1, ..., q, j = 1, ..., c, and i = 1, ..., d.
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SECTION B

Q3 3.1 Piecewise polynomial regression defines K least-squares fits between pairs of
interior knots [ξk−1, ξk] for k = 1, . . . , K (with implicit knots at ξ0 = −∞
and ξK+1 = +∞). For a polynomial of degree d, the equation of a piecewise
polynomial regression model is

y =
d∑
j=0

βjkx
j
k, if ξk−1 < xk < ξk

To define spline regression, constraints are applied to the piecewise polynomial
model at each knot to ensure the spline model is well-behaved.

(a) State the three constraints that are applied to create cubic splines (using
either words or equations).

(b) Would applying a fourth constraint based on y′′′k improve a cubic spline
model? Why/why not?

(c) A degree d spline with knots at ξk for k = 1, . . . , K can be represented by
truncated power functions, denoted by bi for i = 1, . . . , K + d, so that

y = β0 + β1b1(x) + . . .+ βK+dbK+d(x) + ε

where ε is the residual, and the functions bi(x) are defined as:

b1(x) = x1

...

bd(x) = xd

bk+d(x) = (x− ξk)d+, k = 1, . . . , K

Define (x− ξk)d+. Include a schematic diagram for d = 1 in your answer.

3.2 A spline model is being used to predict height (in centimetres) as a function of
age (in months, between 2 and 20 years) for a sample of 5,000 observations.

(a) Explain why splines are a better technique to use than simple linear re-
gression when modelling this data set.

(b) The locations of knots are important hyperparameters that can have a
major impact on the the quality of a spline-based model. Two models are
being compared: one with knots at the 25th, 50th, and 75th percentiles of
age, and one with a single interior knot at age 14.

(i) Which model do you expect to have lower training error? Which model
do you expect to have lower test error? Why?

(ii) What is the risk associated with the model with lower training error?
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(c) R uses B-Splines in its calculations. In this representation, as well as the
interior knots ξk, the endpoints of the feature data are viewed as exterior
knots ξmin and ξmax. For a linear spline with a single interior knot at x = ξ,
this representation reduces to:

y = β0 + β1b1 + β2b2

b1 =

{
ξmax−x
ξmax−ξ if x > ξ
x−ξmin

ξ−ξmin
otherwise

b2 =

{
x−ξ

ξmax−ξ if x > ξ

0 otherwise

Figure 2 shows part of the summaries from RStudio for two different spline
models.

(i) State the estimated function of Model 1, including coefficient values
accurate to two decimal places. In this data set, ξmin = 24.5 and
ξmax = 239.5.
You may use the model output in Table 1 to sanity check your func-
tion. Note: you should not expect to replicate that level of precision
when using the approximate form of the function asked for in this
question.

(ii) Which model would be most effective at:

A. explaining the connection between age and height?

B. extrapolating the height of a 25-year-old woman?

(iii) Estimate the height of a 25-year-old woman based on your choice of
most effective model accurate to the nearest centimetre. Do you have
any concerns about the reliability of this prediction?
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Figure 2: List of coefficients for two different spline-based models representing the data
set described in Question 3.2.

Model Age: 8 years Age: 14 years Age: 17 years
Model 1 126.47 164.03 167.89

Model 2 (Male) 126.87 164.95 172.65
Model 2 (Female) 126.04 163.08 163.14

Table 1: Predicted height in centimetres (to two decimal places) for three ages, based on the
two spline models described in Question 3.2.
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Q4 Consider a learning problem (H,Z, `) with H ⊂ Rd, d > 0, and loss function
` : H×Z → R+ which is convex, β-smooth and non-negative. Let A be a learning
algorithm with output A (S) trained against training dataset S = {z1, ..., zm} of
IID samples z1, ..., zm ∼ g where g is a data generating distribution. In particular,
consider that A (S) is the Regularized Loss Minimization learning rule that outputs
a hypothesis in

min
w

{
R̂S (w) + λ ‖w‖22

}
for λ ≥ 2β

m
where R̂S (w) = 1

m

∑m
i=1 ` (w, zi) for all w ∈ H.

(a) Prove that

ES∼g

(
R̂S (A (S))

)
≤ Rg (w) + λ ‖w‖22

for all w ∈ H. Rg (·) denotes the risk function under the real data generating
distribution g.

(b) Prove that

ES∼g

(
Rg (A (S))− R̂S (A (S))

)
≤ 48β

λm
ES∼g

(
R̂S (A (S))

)
.

Hint: If needed you can use the following:
Let S(i) = {z1, ..., zi−1, z

′, zi+1, ..., zm} be a set resulting from S by replacing
its i-th element zi with an independently drawn z′ ∼ g. Then

24β` (A (S) , zi)+λm` (A (S) , zi)+24β`
(
A
(
S(i)
)
, z′
)
−λm`

(
A
(
S(i)
)
, zi
)
≥ 0

(c) Show that the learning algorithm A is on-average-replace-one-stable with rate
ε. Specify ε as a function of β, λ, m and possibly other user-specified constants
if needed. Explain how the shrinkage parameter λ, the training dataset size m,
and the smoothness parameter β affect the stability of the learning algorithm
A.

(d) Show that the expected risk is bounded as follows:

ES∼g (Rg (A (S))) ≤
(

1 +
48β

λm

)(
Rg (w) + λ ‖w‖22

)
for all w ∈ H.
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