

EXAMINATION PAPER

Examination Session: May/June Year: 2024

Exam Code:

MATH4061-WE01

Title:

Advanced Quantum Theory IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.				

Revision:

SECTION A

Q1 Consider the theory of a complex scalar field $\phi(x)$ with the following action:

$$S = \int d^4x \left(-\partial_\mu \phi \partial^\mu \phi^* - m^2 \phi^* \phi \right)$$

- (a) Write down the Euler-Lagrange equations of motion for ϕ and ϕ^* .
- (b) Use Noether's theorem to construct the conserved current j^{μ} associated with the global U(1) symmetry $\phi(x) \to e^{i\alpha}\phi(x)$.
- (c) Consider the following modified action, where g is a real constant:

$$S' = \int d^4x \left(-\partial_\mu \phi \partial^\mu \phi^* - m^2 \phi^* \phi + g(\phi^3 + (\phi^*)^3) \right)$$

Explain why the current j^{μ} constructed in the previous part is no longer conserved on-shell. Write down an equation of the form $\partial_{\mu}j^{\mu} = gf(\phi, \phi^*)$ which holds on-shell, and where $f(\phi, \phi^*)$ is a function of the fields ϕ and ϕ^* that you should determine.

Q2 Consider the theory of a free real scalar field $\phi(x)$ with the following action:

$$S = \int d^4x \left(-\frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 \right)$$

The Hamiltonian may be written in terms of the usual creation and annihilation operators $a^{\dagger}_{\bf k}$ and $a_{\bf k}$ as

$$H = \int \frac{d^3k}{(2\pi)^3} \left(\omega_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} \right) \qquad \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$$

(In this expression we have omitted a normal-ordering constant as it will not be important for this problem). Denote the vacuum state of the free theory by $|0\rangle_0$. Here and throughout **k** denotes a 3-vector (k_x, k_y, k_z) .

- (a) Which of the following states are eigenstates of the Hamiltonian? If the state is an eigenstate then compute its eigenvalue.
 - $|0\rangle_0$.
 - $a_{\mathbf{k}}^{\dagger}|0\rangle_{0}$
 - $a_{\mathbf{k}_1}^{\dagger}a_{\mathbf{k}_2}^{\dagger}|0\rangle_0$
 - $\left(a_{\mathbf{k}_1}^{\dagger} + a_{\mathbf{k}_2}^{\dagger}\right)|0\rangle_0$
- (b) Does the free quantum field theory above have a state with energy eigenvalue $H = \frac{m}{2}$? If so, write down the state in terms of appropriate creation operators acting on the vacuum. If not, explain why it does not exist.
- (c) Now consider the interacting quantum field theory with the following action:

$$S' = \int d^4x \left(-\frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \right)$$

Denote the vacuum of the interacting theory by $|0\rangle$. Is the state $a_{\mathbf{k}}^{\dagger}|0\rangle$ an eigenstate of the interacting Hamiltonian? Briefly explain your answer.

- Q3 A scalar particle of type A and mass m_A decays into 2 identical scalar particles of type B and mass m_B (the decay happens at the same spacetime point), where $m_A > m_B$. The decay process takes place in 4 spacetime dimensions.
 - (a) Use the field theory language to write a Lagrangian of the system that describes the decay process, knowing that the interaction between the two types of particles has strength g.

Hint: There can be multiple fields and sources. You should be able to determine how many fields and sources you need.

- (b) Write down an expression of the system's generating functional Z[J] in the presence of the source(s) J that couple(s) to the field(s). Define the terms that appear in your expression.
- (c) Express the system's generating functional Z[J], that describes the decay process, as a formal functional derivative acting on $Z_0[J]$, where $Z_0[J]$ is the generating functional of the free field(s). Do not expand your expression, and do not take the functional derivatives.
- (d) In an experiment, it was found that a single scalar particle of the type A discussed above simultaneously scatters with 3 identical massless scalar particles of a new type C. Write down a Lagrangian that describes this process, knowing that the strength of the interaction is λ and that the interaction happens at the same spacetime point.

- $\mathbf{Q4}$ (a) What is the difference between regularization and renormalization in field theory?
 - (b) Consider the following action of (d + 1)-dimensional scalar field theory

$$S = -\int dx^{(d+1)} \left\{ \frac{1}{2} \partial_{\mu} \phi \,\partial^{\mu} \phi + \frac{\lambda}{4!} \phi^2 \partial_{\mu} \phi \partial^{\mu} \phi \right\} \,.$$

Draw the one-loop Feynman diagram contributing to the four-point function

$$\langle 0|T\left\{\hat{\phi}(x_1)\hat{\phi}(x_2)\hat{\phi}(x_3)\hat{\phi}(x_4)\right\}|0\rangle,$$

to the second order in λ .

Then, use the momentum-space techniques and introduce a cutoff scale Λ to compute this diagram in any dimension (d + 1).

(c) What is the degree of divergence of this diagram in spacetime dimension (d+1)?

Exam code	ר - ו
MATH4061-WE01	1
l.	i.
L	

SECTION B

Q5 Consider the interacting quantum field theory with the following action for a real scalar field $\phi(x)$:

$$S = \int d^4x \left(-\frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{g}{3!} \phi^3 \right)$$

- (a) Write down the Feynman rules that are used to compute time-ordered correlation functions in this quantum field theory.
- (b) Draw all of the Feynman diagrams that contribute to the following time-ordered correlation function in the interactive theory, up to order g^2 .

$$\langle 0|T\left\{\phi(x_1)\phi(x_2)\right\}|0\rangle$$

For each diagram, write down its contribution to the two-point function. You may express your answer in terms of integrals over the position space Feynman propagator G(x, y) – you do not need to perform these integrals.

- (c) Do disconnected diagrams contribute to the correlation function above? Explain why (or why not).
- (d) Compute the invariant matrix element $i\mathcal{M}$ up to order g^2 for the 2-2 scattering of two ingoing ϕ particles with 3-momenta \mathbf{p}_1 , \mathbf{p}_2 to two outgoing ϕ particles with momenta \mathbf{k}_1 and \mathbf{k}_2 .

Q6 Consider the following theory of N scalar fields, $\phi_I(x)$, where $I, J, K \in \{1, \dots, N\}$ and N > 1:

$$S = \int d^4x \left(-\frac{1}{2} \sum_{I=1}^N \partial_\mu \phi_I \partial^\mu \phi_I - \frac{m^2}{2} \sum_{I=1}^N \phi_I^2 \right)$$

- (a) Show that the infinitesimal transformation $\delta \phi_I = \sum_{J=1}^N \epsilon_{IJ} \phi_J$ is a symmetry of the action above, where $\epsilon_{IJ} = -\epsilon_{JI}$ is a constant antisymmetric $N \times N$ matrix. How many independent Noether currents do we expect from this symmetry?
- (b) Show that the Noether currents for the above symmetry can be written as

$$j_{IJ}^{\mu} = \phi_I \partial^{\mu} \phi_J - \phi_J \partial^{\mu} \phi_I . \qquad (1)$$

Exam code

MATH4061-WE01

(c) We can write the field in terms of creation and annihilation operators $a_{\mathbf{k},I}^{\dagger}$, $a_{\mathbf{k},I}$, $a_{\mathbf{$

$$\phi_I(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k},I} e^{-i\omega_{\mathbf{k}}t + i\mathbf{k}\cdot\mathbf{x}} + a_{\mathbf{k},I}^{\dagger} e^{i\omega_{\mathbf{k}}t - i\mathbf{k}\cdot\mathbf{x}} \right)$$

where the commutation relations are

$$[a_{\mathbf{k},I}^{\dagger}, a_{\mathbf{k}',J}] = (2\pi)^{3} \delta^{(3)}(\mathbf{k} - \mathbf{k}') \delta_{IJ}$$

Write the conserved charge Q_{IJ} associated with the Noether current in Eq. (1) in terms of the creation and annihilation operators. You should express your answer in normal-ordered form.

(d) Use your answer to the previous part to compute the commutator

$$[Q_{IJ},\phi_K(x)]$$

Q7 Consider the interacting theory of two real scalar fields ϕ_1 and ϕ_2 with Lagrangian density

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi_{1}\,\partial^{\mu}\phi_{1} - \frac{1}{2}\partial_{\mu}\phi_{2}\,\partial^{\mu}\phi_{2} - \frac{1}{2}m^{2}\phi_{1}^{2} - \frac{\lambda}{4!}\phi_{1}^{4} - \kappa\phi_{1}^{2}\phi_{2}^{2}.$$

- (a) Write down an expression of the generating functional $Z[J_1, J_2]$ as a functional derivative of the free-field generating functional $Z_0[J_1, J_2]$ to a first order in the coupling constants λ and κ i.e., ignore terms of order λ^2 , κ^2 , $\lambda\kappa$, and higher. Here, J_1 and J_2 are two source currents that couple to ϕ_1 and ϕ_2 , respectively.
- (b) Carry out the functional derivatives of the interaction term using the diagrammatic technique (a cross for the external source, etc.) to find an expression of $Z[J_1, J_2]$ including terms that are first-order in λ and κ .
- (c) Determine the normalization constant \mathcal{N} . Write the answer in terms of the free position Feynman propagators.

Q8 The following Lagrangian density describes a complex scalar field Φ , two left-handed Weyl fermions ψ_1 and ψ_2 , as well as the interaction between the complex scalar and the fermions in 4 spacetime dimensions:

Exam code

MATH4061-WE01

$$\mathcal{L} = -\partial_{\mu}\Phi\partial^{\mu}\Phi^* - V(\Phi, \Phi^*) + i\partial_{\mu}\bar{\psi}_1\bar{\sigma}^{\mu}\psi_1 + i\partial_{\mu}\bar{\psi}_2\bar{\sigma}^{\mu}\psi_2 - \frac{y}{2}(\Phi\psi_1\psi_2 + \Phi^*\bar{\psi}_1\bar{\psi}_2).$$

Here, y is a real parameter and the potential $V(\Phi, \Phi^*)$ is given by

$$V(\Phi, \Phi^*) = m^2 \Phi \Phi^* + \lambda (\Phi \Phi^*)^2 \,,$$

and both m^2 and λ are real. Notice here that Φ^* is the complex conjugate of Φ .

- (a) Show that the interaction term $\Phi \psi_1 \psi_2 + \Phi^* \overline{\psi}_1 \overline{\psi}_2$ is real.
- (b) Show that the above Lagrangian density is invariant under the transformation:

$$\psi_1 \to e^{i\beta}\psi_1, \quad \psi_2 \to e^{i\beta}\psi_2, \quad \Phi \to e^{-2i\beta}\Phi,$$

where β is a constant real parameter.

- (c) Assuming $m^2 < 0$, find the minimum (or minima) of the potential $V(\Phi, \Phi^*)$. What is the fermion mass at the minimum (or minima)? **Hint:** Parametrise the complex field Φ as $\Phi = \rho e^{i\varphi}$.
- (d) Find the degree of divergence of the two-point function $\langle 0|T\{\Phi(x)\Phi^*(y)\}|0\rangle$ to the second order in y.