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SECTION A

Q1 Find a travelling wave solution to the KdV equation

ut + 6uux + uxxx = 0

with boundary conditions u, ux, uxx → 0 as x → ±∞. You can use the indefinite
integral ∫

df

f
√

1− f
= −2 arcsech(

√
f) + const

without proof.

Q2 The Marchenko equation is the equation

K(x, z; t) + F (x+ z; t) +

∫ x

−∞
dy K(x, y; t)F (y + z; t) = 0

for the unknown K(x, z; t), and with t a real parameter. If F (x; t) = 1
2
ex/2−t, find a

solution K(x, z; t) of the Marchenko equation of the form

K(x, z; t) = g(x, t)ez/2 .

Using

u(x, t) = −2
∂

∂x
K(x, x; t) ,

show that
u(x, t) = a sech2(bx+ ct)

for values of the constants a, b, c that you should find.

Q3 The motion of a rigid body freely rotating about its centre of mass in the absence
of gravity is described by the equation of motion d

dt
` = `×ω, where ` = (`1, `2, `3)

is the angular momentum and ω = (ω1, ω2, ω3) is the angular velocity of the rigid
body.

3.1 Show that this equation of motion can be written in the Lax form d
dt
L = [M,L]

where

L =

 0 `3 −`2
−`3 0 `1
`2 −`1 0

 , M = c

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


for a value of the constant c that you should find.

3.2 Use the Lax form of the equation to show that tr(L), tr(L2) and tr(L3) are
conserved, and find these quantities explicitly.

ED01/2024
University of Durham Copyright

CONTINUED



3 of 4
Page number

MATH41420-WE01
Exam code

SECTION B

Q4 4.1 If u(x, t) is any solution of the KdV equation considered in Q1, show that
ũ(x, t) = u(x + at, t) + b is a solution to the same equation, provided the
constants a and b are related to each other in a way that you should determine.
Using this fact and your answer to Q1, or otherwise, find a travelling wave
solution of the KdV equation with modified boundary conditions u → C, ux,
uxx → 0 as x→ ±∞, where C is a constant (with the same value at +∞ and
−∞).

4.2 We now seek a travelling wave solution to the mKdV equation

wt − 6w2wx + wxxx = 0

with kink-like boundary conditions w → −D as x → −∞, w → +D as x →
+∞, and wx, wxx → 0 as x→ ±∞, where D is a nonzero constant.

(i) Show that the velocity v of the travelling wave must be equal to kD2,
where k is a constant you should find.

(ii) Find the travelling wave. You can use the indefinite integral∫
df

1− f 2
= arctanh(f) + const

without proof.

4.3 Show that the Miura transformation u = −w2 − wx of the solution you found
in part 4.2(ii) is equal either to a constant, or to one of the solutions you found
in part 4.1, depending on the sign of D.

Q5 5.1 A field u(x, t) is defined on the infinite line −∞ < x <∞. Its energy is given
by

E[u] =

∫ ∞

−∞

1
2
u2

t + 1
2
u2

x + 1
2
(u2 − 1)2 dx

and it satisfies the ‘kink’ boundary conditions ut, ux → 0 as x→ ±∞, u→ −1
as x→ −∞, u→ +1 as x→ +∞.

Use the Bogomol’nyi argument to show that E[u] ≥ K, where K is a positive
constant which you should determine, and find all solutions u which saturate
this bound. The indefinite integral given in Q4 can be used without proof.

5.2 The field u(x, t) is now confined to the interval 0 ≤ x ≤ a, where a is a positive
constant, and the boundary conditions u(0, t) = 0, u(a, t) = 1

2
are imposed.

The energy has the same form as in part 6.1, but with the integral now running
from 0 to a:

E[u] =

∫ a

0

1
2
u2

t + 1
2
u2

x + 1
2
(u2 − 1)2 dx .

Adapt your argument from part 5.1 to show that this energy satisfies E[u] ≥
K ′, where K ′ is another positive constant which you should determine. For
what value of a is it possible for this bound to be saturated?
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Q6 Consider the functional

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx)

of a field u which satisfies the boundary conditions u, ux, uxx → 0 as |x| → ∞.

6.1 Derive an expression for the functional derivative δF [u]/δu in terms of the
partial derivatives of f(u, ux, uxx).

6.2 Find a functional F [u] of the above form such that the equation

ut =
∂

∂x

δF [u]

δu

is the same as the partial differential equation

ut + uxxxxx + 20uxuxx + 10ux + 10uuxxx + 30u2ux = 0 .

Q7 7.1 Let M = d
dx

+ 1
x
. Show that

MM † = − d2

dx2
, M †M = − d2

dx2
+

2

x2
.

Describe how the eigenfunction ψ of the equation

M †Mψ = Eψ

can be related to the eigenfunction χ of the equation

MM †χ = Eχ ,

and use this relation to find ψ explicitly when E = k2 > 0.

7.2 Use the previous results to find the reflection and transmission coefficients R(k)
and T (k) for the scattering problem with the potential

V (x) =

{
2(x+ 1)−2 , x ≥ 0

0 , x < 0
.

SECTION C

Q8 A stationary breather solution of the sine-Gordon equation on the real line has the
form

tan
u(x, t)

4
= cotϕ · sin(sinϕ · t)

cosh(cosϕ · x)
,

where ϕ is a constant angle with 0 < ϕ < π/2. What is the period τ of this
solution? Show that when ϕ � 1, τ ∼ A/ϕ, while xmax ∼ B logϕ, where xmax is
the maximal spatial size of the breather, and A and B are constants you should
find. (For the purpose of this question we define xmax to be the value of x > 0 for
which tan(u/4) = 1 when t = τ/4 and the oscillatory factor in the numerator is at
its maximum.)
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