

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH41620-WE01

Title:

Number Theory V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions. Section A is worth 30%, Section B is worth 60%, and Section C is worth 10%. Within Sections A and B, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

- **Q1** Let $\alpha \in \mathbb{C}$ be an algebraic number.
 - (a) Give the definition of the degree deg α of α over \mathbb{Q} .
 - (b) Show that if K/\mathbb{Q} is a finite field extension and $\alpha \in K$, then $\deg \alpha \leq [K : \mathbb{Q}]$. (Explicitly mention any result from the lectures that you use.)
 - (c) Show that if $\beta \in \mathbb{C}$ is another algebraic number, then $\deg(\alpha + \beta) \leq \deg(\alpha) \deg(\beta)$.
- **Q2** Let $K = \mathbb{Q}(\theta)$ where θ is a root of the irreducible polynomial $x^3 x + 1$.
 - (a) Find the matrix T_{θ^2} of multiplication by θ^2 with respect to the basis $\{1, \theta, \theta^2\}$.
 - (b) Hence, or otherwise, show that the discriminant of $\mathbb{Z}[\theta]$ is -23. You may use the formula $\Delta_K(\mathbb{Z}[\theta]) = (-1)^{\binom{n}{2}} N_{K/\mathbb{Q}}(p'(\theta)).$
 - (c) Deduce that $\mathcal{O}_K = \mathbb{Z}[\theta]$.
- **Q3** Let $K = \mathbb{Q}(\theta)$ where θ is a root of the irreducible polynomial $x^3 x + 1$, and assume that $\mathcal{O}_K = \mathbb{Z}[\theta]$.
 - (a) Factorise the ideals (3) and (5) as products of prime ideals of \mathcal{O}_K .
 - (b) Find the norm of each prime ideal occurring in part (a).
 - (c) Show that the ideal $(7, 2 \theta)$ of \mathcal{O}_K is principal.

SECTION B

- **Q4** In this question you may use the facts from the lectures that $\mathbb{Z}[\sqrt{-2}]$ is a UFD and that if α and β are two relatively prime elements of $\mathbb{Z}[\sqrt{-2}]$ such that $\alpha\beta = \gamma^3$, for some $\gamma \in \mathbb{Z}[\sqrt{-2}]$, then $\alpha = \gamma_1^3$ and $\beta = \gamma_2^3$ for some $\gamma_1, \gamma_2 \in \mathbb{Z}[\sqrt{-2}]$.
 - (a) Let $a \in \mathbb{Z}$. Show that if $\pi \in \mathbb{Z}[\sqrt{-2}]$ is an irreducible element that divides both $a + 2\sqrt{-2}$ and $a 2\sqrt{-2}$, then

$$\pi = \pm \sqrt{-2}.$$

Conclude that $a + 2\sqrt{-2}$ and $a - 2\sqrt{-2}$ are relatively prime if a is odd.

- (b) Find all the solutions $(x, y) \in \mathbb{Z}^2$, if any, to $y^2 + 8 = x^3$ when y is odd.
- (c) Find all the solutions $(x, y) \in \mathbb{Z}^2$, if any, to $y^2 + 8 = x^3$ when y is even.
- Q5 (a) Find a factorisation of $-13 + 5\sqrt{-5}$ into irreducible elements of $\mathbb{Z}[\sqrt{-5}]$.
 - (b) It is known that $\mathbb{Z}[i]$ is a Euclidean domain with respect to the Euclidean function $\phi(a+bi) = a^2 + b^2$. Let x = 44 + 3i and y = 3 i be elements in $\mathbb{Z}[i]$ and find q and r in $\mathbb{Z}[i]$ such that x = qy + r with either r = 0 or $\phi(r) < \phi(y)$.
 - (c) Let R be a Euclidean domain with Euclidean function ϕ , as defined in the lectures. Show that $x \in R \setminus \{0\}$, is a unit if and only if $\phi(x) = \phi(1)$.

Q6 Let S be the ring $\mathbb{Z}[\sqrt{5}]$. Let J be the ideal $(2, 1 + \sqrt{5})$ in S.

- (a) Show that J is a maximal ideal of S with $(2) \subset J$.
- (b) Show that, if I is an ideal of S with

$$(2) \subsetneq I \subsetneq S,$$

then I = J.

- (c) Show that $(2) \neq IJ$ for any ideal $I \subset S$ and deduce that the ideal (2) does not have a factorisation as a product of prime ideals in S.
- **Q7** Let $K = \mathbb{Q}(\sqrt{-47})$.

(a) Find the factorisations of the ideals (2), (3), and $\left(\frac{1+\sqrt{-47}}{2}\right)$ inside \mathcal{O}_K .

(b) Find the class group of K. You may use the Minkowski bound, $B_K = \left(\frac{4}{\pi}\right)^t \frac{n!}{n^n} \sqrt{|\Delta_K|}$.

SECTION C

- **Q8** (a) Show that for any non-archimedean valuation (also called an absolute value) $|\cdot|: F \to \mathbb{R}$ on a field F and any $\alpha \in \mathbb{R}$, with $\alpha > 0$, the function $|\cdot|^{\alpha}$ is also a non-archimedean valuation.
 - (b) Compute $|7/54|_3$ and $|123/48|_3$, where $|\cdot|_3$ is the 3-adic valuation on \mathbb{Q} such that $|3|_3 = 1/3$.
 - (c) Determine the 5-adic expansion of 2/3.