

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:	
May/June	2024		MATH41720-WE01	
-				
Title:				
Partial Differential Equations V				
Time:	3 hours			
Additional Material provided:				
Materials Permitted:				
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Instructions to Candidat	es: Answer all qu	uestions. Sec	etion A is worth 30%, Section B is	
	worth 60%, a	and Section C	is worth 10%. Within Sections A	
		estions carry e		
	Students mus	st use the mat	hematics specific answer book.	
			Revision:	

SECTION A

Q1 We consider the following Cauchy problem for the scalar unknown function u that we aim to solve by the method of characteristics.

$$\begin{cases}
5 - x_1^2 \partial_{x_2} u(x_1, x_2) = 0, & (x_1, x_2) \in \mathbb{R}^2, \\
u(x_1, 0) = 3, & x_1 \in \mathbb{R}.
\end{cases}$$
(1)

- 1.1 Determine the leading vector field, the Cauchy datum and the Cauchy curve associated to this problem.
- 1.2 Find all the points on the Cauchy curve which are noncharacteristic.
- 1.3 Write down the ODE system for the characteristics and for the solution along the characteristics. Then solve this system.
- 1.4 Sketch a few characteristic curves.
- **1.5** Find the solution u to (1). Determine its maximal domain of definition.
- **Q2** Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary, and suppose that $d \geq 2$.
 - **2.1** Suppose that $u, v \in C^2(\overline{\Omega})$. Show that the following formula holds

$$\int_{\Omega} v \Delta u \, d\mathbf{x} + \int_{\Omega} \nabla v \cdot \nabla u \, d\mathbf{x} = \int_{\partial \Omega} v \partial_n u \, dS,$$

where ∇ stands for the gradient, Δ stands for the Laplace operator and we used the notation $\partial_n u = \nabla u \cdot \boldsymbol{n}$, with \boldsymbol{n} being the outward pointing unit normal vector to $\partial \Omega$.

2.2 Suppose that $u:\Omega\to\mathbb{R}$ is harmonic and $u\in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega} \partial_n u \, \mathrm{d}S = 0.$$

- **2.3** Suppose that $u: \Omega \to \mathbb{R}$ is harmonic and $u \in C^2(\overline{\Omega})$. Show that $\int_{\partial \Omega} u \partial_n u \, dS$ is nonnegative.
- **2.4** Suppose that $u, v : \Omega \to \mathbb{R}$ are both harmonic and $u, v \in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega} (u\partial_n v - v\partial_n u) \, dS = 0.$$

Q3 Let $f: \mathbb{R}^d \to \mathbb{R}$ be a smooth compactly supported function. For an unknown function $u: \mathbb{R}^d \times (0, +\infty) \to \mathbb{R}$ we consider the following Cauchy problem.

$$\begin{cases}
\partial_t u(\boldsymbol{x},t) - \Delta u(\boldsymbol{x},t) = f(x), & (\boldsymbol{x},t) \in \mathbb{R}^d \times (0,+\infty), \\
u(\boldsymbol{x},0) = 0, & \boldsymbol{x} \in \mathbb{R}^d.
\end{cases}$$
(2)

For any $s \geq 0$ given, for the unknown function $v^s : \mathbb{R}^d \times (s, +\infty) \to \mathbb{R}$ we consider a second Cauchy problem

$$\begin{cases}
\partial_t v^s(\boldsymbol{x}, t) - \Delta v^s(\boldsymbol{x}, t) = 0, & (\boldsymbol{x}, t) \in \mathbb{R}^d \times (s, +\infty), \\
v^s(\boldsymbol{x}, s) = f(x), & \boldsymbol{x} \in \mathbb{R}^d,
\end{cases}$$
(3)

where Δ stands for the classical Laplace operator.

- **3.1** Express the solution v^s to (3) in terms of the heat kernel (for which you must give the explicit formula), f and the parameter s.
- **3.2** Show that if v^s is a classical solution to (3), then

$$u(\boldsymbol{x},t) := \int_0^t v^s(\boldsymbol{x},t) \, \mathrm{d}s$$

is a classical solution to (2).

- **3.3** Write the solution u to (2) as an expression that does not involve v^s , i.e. it is expressed via the heat kernel and f.
- **3.4** Prove that if f is nonnegative, then both u and v^s , the solutions to (2) and (3), are nonnegative.

SECTION B

Q4 Let $\alpha \in \mathbb{R}$ and set $A^{\alpha} = (a_{ij}^{\alpha})_{i,j=1}^{2} \in \mathbb{R}^{2\times 2}$ to be the matrix $A^{\alpha} := \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$. For a given open set $\Omega \subseteq \mathbb{R}^{2}$ and $u \in C^{2}(\Omega)$, we define the differential operator

$$(\mathcal{L}^{\alpha}u)(\boldsymbol{x}) := -A^{\alpha} : D^{2}u(\boldsymbol{x}) = -\sum_{i,j=1}^{2} a_{ij}^{\alpha} \partial_{x_{i}} \partial_{x_{j}} u(\boldsymbol{x}),$$

where D^2u stands for the Hessian matrix of u.

- **4.1** Show that the matrix A^{α} is positive semi-definite if and only if $|\alpha| \leq 1$. Show that A^{α} is positive definite if and only if $|\alpha| < 1$.
- **4.2** Let Ω be open, bounded and connected with smooth boundary. Suppose that $|\alpha| < 1$ and $u : \Omega \to \mathbb{R}$ is a classical solution to

$$(\mathcal{L}^{\alpha}u)(\boldsymbol{x})=0, \ \boldsymbol{x}\in\Omega.$$

Explain why u attains both its minimum and maximum on $\partial\Omega$.

4.3 Now we set $\alpha = 1$. Find all those real numbers $c_1, c_2 \in \mathbb{R}$ for which the function $u : \mathbb{R}^2 \to \mathbb{R}$ defined as

$$u(x_1, x_2) = c_1(x_1^2 + x_2^2) - c_2 x_1 x_2$$

is a solution to $\mathcal{L}^1 u = 0$.

4.4 Suppose that we are in the setting of the previous point **Q4.3**. Show that u fails to satisfy either the weak minimum or the weak maximum principle (one of the two). [Hint: choose c_1, c_2 such that $u(x_1, x_2) \geq 0$ for all $(x_1, x_2) \in \mathbb{R}^2$. Find a particular bounded connected domain $\Omega \subset \mathbb{R}^2$, which is a sublevel set of u, i.e. $\Omega := \{(x_1, x_2) \in \mathbb{R}^2 : u(x_1, x_2) < r\}$, for some r > 0. Deduce the failure of the weak minimum principle in this domain.]

Q5 Let $f: \mathbb{R} \to \mathbb{R}$ of class C^2 be given. Suppose that this is strongly convex, i.e. there exists $c_0 > 0$ such that $f''(x) \ge c_0$ for all $x \in \mathbb{R}$. Consider the following Cauchy problem for the unknown $u: \mathbb{R} \times (0, +\infty) \to \mathbb{R}$

$$\begin{cases}
\partial_t u(x,t) + \partial_x (f(u(x,t))) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}.
\end{cases}$$
(4)

For $\varepsilon > 0$ we consider the following approximation of (4)

$$\begin{cases}
\partial_t u^{\varepsilon}(x,t) + \partial_x (f(u^{\varepsilon}(x,t))) - \varepsilon \partial_{xx}^2 u^{\varepsilon}(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\
u^{\varepsilon}(x,0) = u_0(x), & x \in \mathbb{R}.
\end{cases} (5)$$

- **5.1** State Lax's entropy condition for weak solutions to the Cauchy problem (4).
- **5.2** We look for a solution to (5) in the form

$$u^{\varepsilon}(x,t) := v\left(\frac{x - \alpha t}{\varepsilon}\right),$$
 (6)

for a given constant $\alpha \in \mathbb{R}$ and some given smooth enough function $v : \mathbb{R} \to \mathbb{R}$. Find the second order ODE that v needs to satisfy in order for the formula (6) to give a classical solution to (5).

5.3 Let $u_{\ell}, u_r \in \mathbb{R}$ be given, and we are looking for a solution to the ODE for v found in **Q5.2** with the additional assumptions

$$\lim_{s \to -\infty} v(s) = u_{\ell}; \quad \lim_{s \to +\infty} v(s) = u_r; \quad \lim_{s \to \pm \infty} v'(s) = 0.$$

Suppose that we find such a solution v. Compute the limit $\lim_{\varepsilon \to 0} u^{\varepsilon}(x,t)$, in the case when $x \neq \alpha t$.

- **5.4** Suppose that we are in the setting of **Q5.3**. Find an equation that α needs to satisfy, in terms of f and u_{ℓ}, u_{r} . [Hint: integrate the second oder ODE for v, then take limits $s \to \pm \infty$].
- **5.5** Suppose that $u_0(x) = \begin{cases} u_\ell, & x < 0, \\ u_r, & x > 0. \end{cases}$ Suppose that $u_r < u_l$. Suppose that (5) has a classical solution in the form of (6), and v and α satisfy all the previously set and obtained properties. Conclude that $u^{\varepsilon}(x,t) \to u(x,t)$, as $\varepsilon \to 0$, almost everywhere, where u is the unique solution to (4) which satisfies Lax's entropy condition.

Q6 We consider the following Cauchy problem

$$\begin{cases}
\partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\
u(x,0) = u_0(x), & x \in \mathbb{R}.
\end{cases}$$
(7)

We set

$$u_0(x) = \begin{cases} 0, & x < 0, \\ 1, & 0 < x < 1, \\ 2, & 1 < x < 2, \\ x, & 2 < x. \end{cases}$$

We aim to construct a unique entropy solution to this Cauchy problem.

- **6.1** Sketch the characteristic lines associated with the Cauchy problem and discuss about the need of shock curves and/or rarefaction waves.
- **6.2** Introduce the corresponding shocks and/or rarefaction waves.
- **6.3** Write down the candidate for the weak entropy solutions to (7).
- **6.4** Show that this solution is continuous everywhere if t > 0.
- **6.5** Show that the solution satisfies Lax's entropy condition.
- Q7 Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary. Let $F : \mathbb{R} \to \mathbb{R}$ be a given smooth function which is bounded above. We consider the energy functional

$$E[u] := \int_{\Omega} \frac{1}{2} (\Delta u(\boldsymbol{x}))^2 d\boldsymbol{x} - \int_{\Omega} F(u(\boldsymbol{x})) d\boldsymbol{x},$$

which we define on the set of scalar functions which belong to

$$\mathcal{V} := \{ u \in C^2(\overline{\Omega}) : \nabla u \cdot \boldsymbol{n} = 0 \text{ and } u = 0 \text{ on } \partial \Omega \}.$$

Here we denoted by Δ the Laplace operator, by ∇ the gradient operator and by \boldsymbol{n} the outward pointing unit normal vector field to $\partial\Omega$.

- **7.1** Show that there exists a constant $c_0 > 0$ such that $E[u] \geq -c_0$ for all $u \in \mathcal{V}$.
- **7.2** Suppose that $u \in \mathcal{V}$ is a minimiser of E. Write down the first order optimality condition, i.e. the Euler-Lagrange equation satisfied by u.
- **7.3** Suppose that $u \in C^4(\overline{\Omega})$ is a minimiser of E over \mathcal{V} . Find the PDE and boundary conditions satisfied by u.
- **7.4** Suppose that F is strictly concave. Deduce that if a minimiser of E over \mathcal{V} exists, then it must be unique.
- **7.5** Show the uniqueness of minimisers of E in \mathcal{V} , if F is the constant zero function.

SECTION C

Q8 Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of strictly positive real numbers such that $a_n\to 0$, as $n\to +\infty$. We define $G_n:\mathbb{R}\to\mathbb{R}$ as

$$G_n(x) = \frac{1}{\sqrt{4\pi a_n}} e^{-\frac{x^2}{4a_n}}.$$

- **8.1** Show that $G_n \in L^1(\mathbb{R})$ for all $n \in \mathbb{N}$. [*Hint:* you can use without a proof that $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$.]
- **8.2** Compute the pointwise limit of the sequence of functions $(G_n)_{n\in\mathbb{N}}$.
- **8.3** Does the sequence of functions $(G_n)_{n\in\mathbb{N}}$ converge in $L^1(\mathbb{R})$ to its pointwise limit? Justify your answer.
- **8.4** Compute the limit of the sequence $(G_n)_{n\in\mathbb{N}}$ in the sense of distributions and rigorously show the convergence of $(G_n)_{n\in\mathbb{N}}$ to its distributional limit.