

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH42220-WE01

Title:

Representation Theory V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

- **Q1** Let (π, \mathbb{C}^6) denote the permutation representation of S_6 on \mathbb{C}^6 .
 - (a) Find a three-dimensional subspace U of \mathbb{C}^6 such that $(\operatorname{Res}_{S_4}^{S_6}\pi, U)$ is isomorphic to the trivial representation $(\operatorname{Id}, \mathbb{C}^3)$ of S_4 .
 - (b) Compute $\|\operatorname{Res}_{S_4}^{S_6}\chi_{\pi}\|_{S_4}$.
- **Q2** Let G be the group of order twenty with five conjugacy classes.

size: 1 4 5 5 5
class
$$C_1$$
 C_2 C_3 C_4 C_5

- (a) Compute the entries of the C_1 -column of the character table of G.
- (b) Letting $H = \mathcal{C}_1 \cup \mathcal{C}_2$ be the normal subgroup of G such that $\widetilde{G} = G/H \cong C_4$, use lifts of the irreducible representations of \widetilde{G} to G to find four rows of the character table of G.
- (c) Complete the character table of G.
- Q3 (a) Describe the following Lie algebras as subalgebras of some space of matrices and calculate their dimension as a real vector space: $\mathfrak{sl}_n(\mathbb{R})$, $\mathfrak{so}(n)$, and $\mathfrak{su}(n)$.
 - (b) Give a basis for each of $\mathfrak{sl}_2(\mathbb{R})$, $\mathfrak{so}(3)$ and $\mathfrak{su}(2)$.
- Q4 (a) Describe, without proof, all the finite dimensional irreducible representations up to isomorphism
 - (i) of U(1),
 - (ii) of SU(2).

(b) Compute $\exp(I + tX)$ for the matrix $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $t \in \mathbb{R}$, where I denotes the (3×3) -identity matrix.

SECTION B

- **Q5** For $n \geq 2$, let $(\pi, \mathcal{M}^{(n-1,1)})$ denote the permutation representation of S_n on the space of polytabloids of shape (n-1,1).
 - (a) Show that

$$(\pi, \mathcal{M}^{(n-1,1)}) \cong (\pi, \mathcal{S}^{(n)}) \oplus (\pi, \mathcal{S}^{(n-1,1)})$$

where $\mathcal{S}^{(n)}$ is the Specht module of shape (n) and $\mathcal{S}^{(n-1,1)}$ is the Specht module of shape (n-1,1).

(b) Show that

$$\|\operatorname{Ind}_{S_n}^{S_{n+1}}\chi_{(\pi,\mathcal{M}^{(n-1,1)})}\|_{S_{n+1}} = \begin{cases} \sqrt{6} & \text{if } n = 2, \\ \sqrt{7} & \text{otherwise.} \end{cases}$$

CONTINUED

- **Q6** Given a prime number p, let G be a group of order p^3 such that |Z(G)| = p. Here Z(G) denotes the centre of G.
 - (a) State the character formula and use it to show that for each representation π of Z(G),

$$\operatorname{Ind}_{Z(G)}^{G}\chi_{\pi}(g) = \begin{cases} p^{2} \cdot \chi_{\pi}(g) & \text{if } g \in Z(G), \\ 0 & \text{otherwise.} \end{cases}$$

(b) Show that

$$\left\{ \operatorname{Ind}_{Z(G)}^{G} \chi_{\pi} : \pi \in \operatorname{Irr}(Z(G)), \ \pi \not\cong \operatorname{triv} \right\}$$

is an orthonormal set in the space of class functions on G.

- (c) Use part (b) and lifts of representations of G/Z(G) to show that G has at least $p^2 + p 1$ isomorphism classes of irreducible representations. *Hint: recall that any group of order* p^2 *is Abelian.*
- (d) Deduce from (b), (c), and the fact that G has $p^2 + p 1$ conjugacy classes that G has p 1 irreducible representations of degree p.
- **Q7** Consider a finite dimensional representation (ρ, V) of $\mathfrak{sl}_2(\mathbb{C})$.
 - (a) Write down the standard basis elements X, Y, and H of $\mathfrak{sl}_2(\mathbb{C})$ as matrices, and express the Lie brackets [X, Y], [H, X], and [H, Y] in this basis.
 - (b) Show that

$$Z := 2\rho(X)\rho(Y) + 2\rho(Y)\rho(X) + \rho(H)\rho(H)$$

commutes with the action of $\mathfrak{sl}_2(\mathbb{C})$.

- (c) Now suppose V is irreducible. Show that the element Z defined above then acts as a scalar. Determine this scalar for the irreducible representation of highest weight n.
- (d) Let $V = \mathbb{C}[x]$ be the (infinite-dimensional) \mathbb{C} -vector space of complex polynomials in one variable. For a certain representation (ρ, V) we are given that, for any $f \in V$ $(\rho(X)f)(x) = f'(x)$

and

$$(\rho(Y)f)(x) = xf(x) \,,$$

where f'(x) denotes the derivative of f(x) with respect to x. What is Z for this representation?

- **Q8** For given n > 0, consider $V = V^{(n)} = \operatorname{Sym}^{n}(\mathbb{C}^{2})$, the irreducible representation of highest weight n of $\mathfrak{sl}_{2}(\mathbb{C})$. Let $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, acting as a lowering operator, let v_{n} be a highest weight vector and set $v_{n-2k} = Y^{k}(v_{n})$ with $k = 0, \ldots, n$.
 - (a) State the Clebsch-Gordan formula expressing $\operatorname{Sym}^{a}(\mathbb{C}^{2}) \otimes \operatorname{Sym}^{b}(\mathbb{C}^{2})$ for any $a \geq b \geq 0$.
 - (b) Decompose the representations defined by $V \otimes V \otimes V$ for $V = V^{(1)} = \mathbb{C}^2$ and by $\operatorname{Sym}^3(\mathbb{C}^2) \otimes \operatorname{Sym}^2(\mathbb{C}^2)$, and give an explicit weight basis in each case.
 - (c) Exhibit a highest weight vector for each of the irreducible constituents in the latter representation $\operatorname{Sym}^3(\mathbb{C}^2) \otimes \operatorname{Sym}^2(\mathbb{C}^2)$, using the v_{n-2k} $(k = 0, \ldots, n)$.