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SECTION A

Q1 Consider a thermodynamic system with pressure p, volume V , and temperature T ,
with the following internal energy E and equation of state:

E(T ) = αT 2 , pV = βT .

Here α and β are constants.

Suppose we run a reversible cycle using this system that involves four processes,
carried out in order:

(i) Expansion from volume V0 to volume V1 at constant pressure p1.

(ii) A decrease of pressure from p1 to p0 at constant volume V1.

(iii) Compression from volume V1 to volume V0 at constant pressure p0.

(iv) An increase of pressure from p0 to p1 at constant volume V0.

For this cycle, the 1st law takes the form dE = TdS − pdV .

(a) Compute the change in energy, the work, and the heat for each of the four
processes. Do any of these four processes represent an adiabatic process?

(b) What is the total change in entropy around the entire cycle?

Q2 In this problem we will consider the following Hamiltonian for a particle living in
two dimensions (q1, q2) with the following potential:

H(qi, pi) =
1

2m
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1 + p2
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mω2
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2
2 .

Here the range of q1 and q2 is unbounded. Recall that the surface area of a unit
3-sphere (which is the boundary of a 4-dimensional unit ball) is given by Ω4 = 2π2.

(a) In the microcanonical ensemble, compute the “area” of accessible states N (E)
in the full phase space P , defined as

N (E) =

∫
P
dµδ(H(q, p)− E)

(b) Compute in the microcanonical ensemble the entropy S(E) = kB log Ω(E),
where Ω(E) = N

N0
, and as usual we take N0 = h2

E
, with h a constant.

(c) Compute in the microcanonical ensemble the temperature as a function of E.

(d) Compute the unconditional probability distribution ρunc(p1) of p1 in the micro-
canonical ensemble. You do not need to normalize it correctly: in this problem
we are only asking for the p1 dependence.
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Q3 A quantum system has a single particle state |E0〉 that has E0 = 0, and n states
|E1, i = 1 . . . n〉, that have corresponding single particle energies ε > 0.

(a) Draw a figure to list the possible microstates for the case in which the sys-
tem has two indistinguishable Fermions, and for the case in which it has two
indistinguishable Bosons, indicating the degeneracies for each.

(b) Evaluate the partition function for each case when the system is held at tem-
perature T .

(c) Determine the entropy for the system in each case in the approximation that
kBT � ε, and comment on the difference between the Fermionic and Bosonic
systems in this limit.

Q4 Consider a quantum system with discrete states |n〉, and neglect any possible de-
pendence on the volume in the following discussion. Define the following statistical
ensembles, by specifying which quantities are kept fixed and writing down the ap-
propriate discrete probability distributions p(|n〉):

(a) Microcanonical ensemble.

(b) Canonical ensemble.

(c) Grand canonical ensemble.
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SECTION B

Q5 Consider a 2-dimensional system with Hamiltonian:

H(q1, q2, p1, p2) =
p2

1

2m
+

p2
2

2mq2
1

, (1)

where q1 and q2 are bounded: q1 ∈ [0, R], q2 ∈ [0, 2π]. Note the factor of q2
1 in the

denominator of the second term of the Hamiltonian. Recall also that the Poisson
bracket is defined as {A,B} =

∑
i
∂A
∂qi

∂B
∂pi
− ∂A

∂pi

∂B
∂qi

, and Liouville’s equation is given

by ∂ρ
∂t

+ {ρ,H} = 0.

(a) Write down Hamilton’s equations for this system.

(b) Suppose that a particle has initial conditions q1(t=0) = a, q2(t = 0) = b, p1(t =
0) = c, p2(t=0)= 0, with a, b, c > 0. Using Hamilton’s equations, determine the
equation of motion of the particle. At what time t does it reach the boundary
at q1 = R?

(c) Compute the Poisson brackets {H, p1}, {H, p2}.
(d) We now study probability distributions ρ(q, p; t) that evolve according to Hamil-

tonian evolution with Hamiltonian (1). Which of the following probability
distributions are time-independent solutions to Liouville’s equation? Briefly
explain your reasoning:

(i) ρ1(qi, pi) = N1 exp(−H)

(ii) ρ2(qi, pi) = N2 exp(−H + p1)

(iii) ρ3(qi, pi) = N3 exp(−H + p2)

Q6 Consider a particle moving in one dimension undergoing a random walk. At each
time step, the particle then takes a combined step scomb, which is the sum of a
random step s and a deterministic step sdet = b:

scomb = s+ sdet = s+ b.

Here, the random displacement s is drawn from a normalized probability distribution
with density function w(s), where w(s) is a uniform distribution of width 2a centered
at zero:

w(s) =

{
M −a < s < a

0 otherwise
.

(a) Calculate the constant M in terms of the width a, assuming that w(s) is a
properly normalized probability distribution.

(b) Calculate the mean 〈s〉 and the variance 〈s2〉c associated with the PDF w(s).

(c) Calculate the characteristic function w̃(k) associated with the PDF w(s).

(d) After N steps, calculate the mean 〈X〉 and the variance 〈X2〉c associated with

the total displacement X =
∑N

i=1 s
(i)
comb, where s

(i)
comb = s(i) + b is the ith

combined step of the particle.
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Q7 (a) The simple harmonic oscillator (SHO) in one dimension is given by the classical
Hamiltonian

H =
p2

2m
+
m

2
ω2x2 ,

which when quantised yields discrete energy levels

En = ~ω(n+
1

2
), (n ∈ Z+).

Derive the canonical partition function at temperature T for the harmonic
oscillator, and hence the mean energy 〈E〉 for a single SHO. Comment on how
your answer for 〈E〉 relates to the equipartition theorem at high T .

(b) Now consider a simplified model of graphite, in which each carbon atom acts
as a harmonic oscillator, oscillating with frequency ω within the layer and
frequency ω′ perpendicular to it. The oscillations in the three directions are
independent, such that the expression for the energy of each carbon atom is

H =
p2
x + p2

y + p2
z

2m
+
m

2
(ω2x2 + ω2y2 + ω′

2
z2) ,

where the x, y coordinates are in the plane and the z coordinate is perpendic-
ular. The oscillations within the layer are much slower than the perpendicular
oscillations, such that at temperature T we have ~ω � T and ~ω′ � T .

(i) Given the temperature conditions some of the dimensions may be treated
classically. Use your result to part (a) to identify which dimension(s) these
are.

(ii) Determine the canonical partition function treating these dimension(s)
classically and the other(s) in full as in part (a).

(iii) From your answer determine 〈E〉.
(iv) Determine the specific heat, and discuss with reference to part (a), its

behaviour when T drops below ~ω and tends to zero.
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Q8 An interesting model for superconductors is a system in which electrons (which recall
are fermions) with chemical potential µ and energy ε can either sit in an almost full
‘valence band’ with negative energies, or jump to an almost empty conduction band
that has energies greater than ε0 (leaving behind a ‘hole’ in the valence band), such
that overall they have following continuous energy spectrum:

g(ε) =

{
A(ε− ε0)

1/2 ε0 < ε <∞
A|ε|1/2 −∞ < ε < 0

where A is a constant. There are no states with 0 < ε < ε0. We will refer to
the states with positive energy in the conduction band as ‘particles’, while the
unnoccupied states they leave behind we call ‘holes’.

(a) Show that when in equilibrium at temperature T , the probability pparticle of
finding a particular state of energy ε = µ+α occupied by a particle is equal to
the probability phole of finding a state of energy µ−α being unoccupied, where
α is a positive constant.

(b) Obtain explicit integral expressions for the mean number of particles and the
mean number of holes.

(c) Given the physical set-up, we expect the mean number of particles 〈Nparticle〉
to be equal to the mean number of holes 〈Nhole〉. Use this fact and your answer
to part (b) to find an equation for the chemical potential µ which is valid at
all temperatures.

(d) Use your result to find an equation for 〈Nparticle〉 at low temperatures.
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