

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH4281-WE01

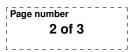
Title:

Topics in Combinatorics IV

Time:	3 hours	
Additional Material provided:		
Matariala Darmittadu		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	

Revision:

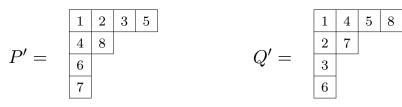


SECTION A

- **Q1 1.1** Let *n* be a natural number, n > 3. Compute the number of Dyck paths of length 2n with the rightmost peak of height n 3.
 - **1.2** Denote by $p_k(n)$ the number of Young diagrams $\lambda \vdash n$ with k rows. Show that

$$p_{k-1}(n-1) + p_k(n-k) = p_k(n)$$

- **Q2** 2.1 A poset *P* is a *meet-semilattice* if every two elements have a meet. Show that a finite meet-semilattice with a unique maximal element $\hat{1}$ is a lattice.
 - **2.2** Let Δ be a root system of type C_3 . Let Δ_s be the set of short roots of Δ . Show that Δ_s is a root system and find its type.
- Q3 (a) Let $w = 36748215 \in S_8$. Apply the Robinson-Shensted-Knuth (RSK) algorithm to compute the insertion and recording tableaux P and Q.
 - (b) Let (P', Q') be standard Young tableaux of shape $\lambda = (4, 2, 1, 1) \vdash 8$, where

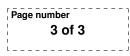


Find $w' \in S_8$ which is taken to the pair (P', Q') by the RSK algorithm.

- **Q4** (a) Let (G, S) be a Coxeter system of type G_2 . Show that two simple reflections of G are not conjugated to each other in G, i.e. $s_1 \neq gs_2g^{-1}$ for any $g \in G$.
 - (b) Let (G, S) be an irreducible Coxeter system, $G = \langle s_1, \ldots, s_n | s_i^2, (s_i s_j)^{m_{ij}} \rangle$. Suppose that for any $s_i, s_j \in S$ either $m_{ij} = 2$ or $m_{ij} = 3$. Show that any two reflections in (G, S) are conjugated to each other.

SECTION B

- **Q5** Given a permutation $w = w_1 \dots w_n \in S_n$, recall that $i \in [n]$ is an excedance of w if $i < w_i, i \in [n]$ is a weak excedance of w if $i \le w_i$, and $i \in [n-1]$ is a descent of w if $w_i > w_{i+1}$. Denote by exc (w) and wexc (w) the numbers of excedances and weak excedances of w respectively.
 - (a) Compute the generating function $f_{\text{wexc}}(x) = \sum_{w \in S_n} x^{\text{wexc}(w)}$ for n = 3.
 - (b) Recall from lectures that there exists a bijection $f : S_n \to S_n$ taking excedances to descents. Let $w \in S_n$ have k + 1 weak excedances, and let $v = v_1 v_2 \dots v_n = f(w^{-1})$. Compute the number of descents of the permutation $v' = v_n v_{n-1} \dots v_2 v_1$.
 - (c) Show that statistics exc and wexc -1 are equidistributed (i.e., for any k the number of permutations in S_n with k excedances is equal to the number of permutations in S_n with k + 1 weak excedances).



- **Q6** Let (G, S) be a Coxeter system. Given $s \in S$, denote by P_s the set of $g \in G$ such that l(sg) > l(g), where l(g) denotes the length of g.
 - (a) Show that $\bigcap_{s \in S} P_s = \{e\}.$
 - (b) Show that for $s \in S$ and $g \in G$ either l(sg) > l(g) or l(sg) < l(g).
 - (c) Show that for every $s \in S$ the sets P_s and sP_s do not intersect, and $P_s \cup sP_s = G$.
 - (d) Let $s, t \in S, g \in G$. Show that if $g \in P_s$ and $gt \notin P_s$, then sg = gt.
- **Q7** Denote by $F_k(n)$ the number of plane trees with n edges such that the root has precisely k children.
 - (a) Show that $F_1(n) = F_2(n) = C_{n-1}$, the (n-1)-st Catalan number (you can use all results from lectures).
 - (b) Fix $k \ge 1$. Compute the generating function $F_k(x) = \sum_{n=0}^{\infty} F_k(n) x^n$ (express $F_k(x)$ via C(x), the generating function for Catalan numbers).
 - (c) Define $F_0(0) = 1$ and $F_0(n) = 0$ for n > 0. Show that the generating function $F(x, y) = \sum_{k,n=0}^{\infty} F_k(n) x^n y^k$ is equal to $\frac{1}{1 xyC(x)}$.
- **Q8** Let Δ be a root system of type B_3 .
 - (a) Compute the Coxeter number of Δ and the exponents of the Weyl group of Δ .
 - (b) Let P be the root poset of Δ . Draw the Hasse diagram of P.
 - (c) Draw the Hasse diagram of the poset of order ideals of P. Identify join-irreducible elements.