

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH42920-WE01

Title:

Functional Analysis and Applications V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.			
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.			
	Write your answer in the white-covered answer booklet with barcodes.			
	Begin your answer to each question on a new page.			

Revision:

SECTION A

Q1 Consider the set

 $C^{1}[0,1] = \{f: [0,1] \to \mathbb{R} \mid f \text{ is continuously differentiable on } [0,1]\}$

together with the pointwise addition and scalar multiplication. You may use without proof that $C^{1}[0, 1]$ is a vector space under these operations. Define

$$\left\|\cdot\right\|: C^1\left[0,1\right] \to \mathbb{R}$$

by

$$||f|| = ||f||_{\infty} + 5 \, ||f'||_{\infty}$$

where

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|.$$

- **1.1** Show that $\|\cdot\|$ is a norm on $C^1[0,1]$.
- **1.2** Show that $(C^{1}[0,1], \|\cdot\|)$ is a Banach space.
- **Q2** Let \mathcal{X} and \mathcal{Y} be two normed spaces and let $T \in B(\mathcal{X}, \mathcal{Y})$. Assume that for any $x, y \in \mathcal{X}$

$$||Tx - Ty||_{\mathcal{Y}} = ||x - y||_{\mathcal{X}}.$$

- **2.1** Show that if \mathcal{X} is a Banach space then so is $\mathcal{R}(T)$.
- **2.2** Show that if $\mathcal{R}(T)$ is separable then so is \mathcal{X} .

Q3 In $\mathcal{X} = C(\mathbb{R})$ equipped with $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$, define $T : \mathcal{D}(T) \subset \mathcal{X} \to \mathcal{X}$ by

$$(Tf)(x) = f'(0), \quad x \in \mathbb{R}, \quad \text{for} \quad f \in \mathcal{D}(T) = C^1(\mathbb{R}).$$

- **3.1** Show that the operator T is not bounded.
- **3.2** Show that T is not closed. *Hint:* Find a sequence $\{f_n\}_{n\in\mathbb{N}} \subset \mathcal{D}(T)$ such that $\lim_{n\to\infty} f_n = 0$, $\lim_{n\to\infty} Tf_n = g$ for some $0 \neq g \in \mathcal{X}$.

Q4 In $\mathcal{H} = L^2([0,1])$ define $T : \mathcal{H} \to \mathcal{H}$ by

$$(Tf)(x) = \mathrm{i} \int_0^1 (x-y)f(y) \,\mathrm{d}y, \quad x \in [0,1], \quad \text{for} \quad f \in \mathcal{H}.$$

- **4.1** Show that the operator T is bounded.
- **4.2** Show that T is symmetric.
- **4.3** Show that T is selfadjoint.

Exam code	 I
MATH42920-WE01	1
i I	i i
L	

SECTION B

Q5 Let \mathcal{X} be a Banach space and let $T \in B(\mathcal{X}, \mathcal{X})$. Assume that there exists a non-negative sequence $\{c_n\}_{n \in \mathbb{N}}$ such that

$$\sum_{n\in\mathbb{N}}c_n<\infty$$

and for any $x, y \in \mathcal{X}$

$$||T^n x - T^n y|| \le c_n ||x - y||.$$

- **5.1** Show that $||T^n|| \leq c_n$.
- **5.2** Show that $S_N = \sum_{n=0}^N T^n$ converges with respect to the operator norm in $B(\mathcal{X}, \mathcal{X})$ to some bounded linear operator S.
- **5.3** Show that TS = ST. You may use without proof the fact that if $\{A_n\}_{n \in \mathbb{N}} \subset B(\mathcal{X}, \mathcal{X})$ converges with respect to the operator norm to $A \in B(\mathcal{X}, \mathcal{X})$ then for any $B \in B(\mathcal{X}, \mathcal{X})$ we have that

$$\lim_{n \to \infty} A_n B = AB, \quad \text{and} \quad \lim_{n \to \infty} BA_n = BA.$$

- **5.4** Show that STx + x = Sx for any $x \in \mathcal{X}$. Conclude that S is invertible and that its inverse is a bounded linear operator.
- **Q6** Consider the operator $T: \ell_{\infty}(\mathbb{N}) \to \ell_{\infty}(\mathbb{N})$ defined by

$$T(a_1, a_2, \dots, a_n, \dots) = \left(a_1, \frac{a_1 + a_2}{2}, \dots, \frac{\sum_{i=1}^n a_i}{n}, \dots\right).$$

6.1 Show that T is well defined by showing that for any $\boldsymbol{a} \in \ell_{\infty}(\mathbb{N})$

$$\sup_{k\in\mathbb{N}}\left|(T\boldsymbol{a})_{k}\right|\leq\left\|\boldsymbol{a}\right\|_{\infty}.$$

- **6.2** Show that T is injective.
- **6.3** Explicitly find $a_n \in \ell_{\infty}(\mathbb{N})$ such that $Ta_n = e_n$ where

$$\left(\boldsymbol{e}_{n}\right)_{k} = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

Use this to show that $T^{-1}: \mathcal{R}(T) \to \ell_{\infty}(\mathbb{N})$ is not a bounded operator.

Q7 In $\mathcal{H} = \ell_2(\mathbb{N})$ let $T : \mathcal{H} \to \mathcal{H}$ be the linear operator defined by

$$T(x_1, x_2, x_3, \dots) = (0, 0, x_1, x_2, x_3, \dots).$$

- **7.1** Show that T is bounded and find ||T||.
- 7.2 Find the adjoint operator T^* and its operator domain.
- **7.3** Find $\sigma_p(T)$, $\sigma_p(T^*)$ and $\sigma(T)$.

Q8 Let $\mathcal{H} = \{ \boldsymbol{x} \in \ell_2(\mathbb{N}) \mid \sum_{n=1}^{\infty} |nx_n|^2 < \infty \}$. You may use without proof that \mathcal{H} is a Hilbert space with scalar product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{n=1}^{\infty} n^2 x_n \overline{y_n}$. Let $B : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ be defined by

$$B(\boldsymbol{x}, \boldsymbol{y}) = \sum_{n=1}^{\infty} (\mathrm{i}^n + 2n^2) x_n \overline{y_n}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}.$$

- **8.1** Show that B is a sesquilinear form.
- **8.2** Show that the sesquilinear form B is bounded and coercive.
- **8.3** Let $f : \mathcal{H} \to \mathbb{C}$ be defined by

$$f(\boldsymbol{x}) = \sum_{n=1}^{\infty} x_n, \quad \boldsymbol{x} \in \mathcal{H}.$$

Show that $f \in \mathcal{H}^*$ and conclude that there exists $\boldsymbol{y} \in \mathcal{H}$ such that $B(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{H}$.