

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:		
May/June	2024		MATH4302	0-WE01	
Stochastic Processes V					
Time:	3 hours	3 hours			
Additional Material prov	ided:				
Materials Permitted:					
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.			
Instructions to Candidat	worth 60%, a and B, all que	Answer all questions. Section A is worth 30%, Section B is worth 60%, and Section C is worth 10%. Within Sections A and B, all questions carry equal marks. Students must use the mathematics specific answer book.			
			Revision:		

SECTION A

Q1 Let $X_1 \sim \text{Bernoulli}(p)$ and $X_2 \sim \text{Poisson}(\lambda)$ where $p \in (0, 1)$ and $\lambda > 0$.

- (a) Show that $X_1 \leq_{\text{st}} X_2$ if and only if $\lambda \geq -\log(1-p)$.
- (b) Suppose $\lambda \geq -\log(1-p)$. Show that $d_{\text{TV}}(X_1, X_2) = 1 e^{-\lambda} \min(p, \lambda e^{-\lambda})$.

Q2 This question deals with Poisson processes.

- (a) Customers arrive at a store according to a Poisson process of rate 5/hour. Each customer is independently a little spender with probability 2/3 or a big spender with probability 1/3. A little spender spends on average 3 pounds and a big spender spends on average 9 pounds. Let T be the total amount of money earned by the shop in the first 10 hours. Find $\mathsf{E}[T]$.
- (b) Consider two independent Poisson processes consisting of red balls and blue balls, both having rate λ . Find the probability that 4 red balls appear before 3 blue balls appear.

Q3 This question deals with Martingales.

- (a) State the definition of a Martingale sequence. Make sure to state all probabilistic objects and conditions involved in the definition.
- (b) Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with common distribution $P(X_k = +1) = p$, $P(X_k = -1) = 1 p = q$ where 0 . Define

$$S_0 = 0, \quad S_n = \sum_{k=1}^n X_k \quad n \ge 1.$$

Let \mathcal{F}_0 be the trivial σ -algebra and let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ for $n \geq 1$. Find a constant c such that the process $M_n = S_n + cn$ for $n \geq 0$ is a martingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$. Make sure to verify all the martingale conditions.

SECTION B

Q4 Let $(S_n)_{n\geq 0}$ be a random walk starting from 0 with i.i.d. increments $S_{n+1} - S_n \stackrel{(d)}{=} X$ satisfying

$$P(X = j) = \begin{cases} p(1-p)^{j-1} & \text{for integers } j \ge 1\\ 0 & \text{otherwise} \end{cases}$$

for some $p \in (0,1)$. Consider

$$C(t):=\sum_{n\geq 1}1_{\{S_n\leq t\}}\quad\text{for }t\geq 0\qquad\text{and}\qquad \widehat{C}(u):=\sum_{n\geq 1}u^{S_n}\quad\text{for }u\in (0,1).$$

- (a) Find a formula for $\widehat{c}(u) := \mathsf{E}[\widehat{C}(u)]$ in terms of u and p.
- (b) Using (a), prove that $c(t) := \mathsf{E}[C(t)] < \infty$ for any fixed t > 0. (Hint: for any $x \ge 0$ and t > 0, we have $1_{\{x \le t\}} \le e^{1-x/t}$.)
- (c) Explain why $C(t) \leq t$ for all $t \geq 0$, then show that

$$\lim_{t \to \infty} \frac{C(t)}{t} = p \quad \text{a.s.} \qquad \text{and} \qquad \lim_{t \to \infty} \frac{c(t)}{t} = p.$$

(d) Using (a) or otherwise, find a formula for c(j) for any integers $j \geq 0$. (Hint: find a probabilistic representation for the coefficients $(\widehat{c}_n)_n$ in the Taylor series expansion $\widehat{c}(u) = \sum_{n \geq 0} \widehat{c}_n u^n$.) Q5 (a) Let $(U_n, V_n)_{n\geq 1}$ be independent pairs of non-negative random variables with $U_n \leq_{\text{st}} V_n$ for all n. Suppose A and B are two non-negative integer-valued random variables on the same probability space that are independent of $(U_n, V_n)_{n\geq 1}$ and such that $A \leq_{\text{st}} B$. Prove that

$$\sum_{n \le A} U_n \le_{\text{st}} \sum_{n \le B} V_n.$$

- (b) Let $p \in (0,1)$. Suppose $M \sim \text{Binomial}(10,p)$, $L \sim \text{Binomial}(5,p^2)$ and $R \sim \text{Binomial}(5,1-(1-p)^2)$. Show that $2L \leq_{\text{st}} M$ and $M \leq_{\text{st}} 2R$. (Hint: you may want to construct a suitable coupling using i.i.d. Bernoulli(p) random variables C_1, C_2, \ldots, C_{10} .)
- (c) Let $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ be two branching processes with $X_0=Y_0=1$, and suppose their offspring distributions are described by the generating functions

$$\varphi^X(s) := \mathsf{E}[s^{X_1}] = \left(\frac{1+3s^2}{4}\right)^5 \quad \text{and} \quad \varphi^Y(s) := \mathsf{E}[s^{Y_1}] = \left(\frac{1+s}{2}\right)^{10}.$$

Which of the two processes is more likely to survive forever? Using the previous parts, justify your claim with a complete proof.

- Q6 A barbershop has one chair for a barber to cut customers' hair and two chairs in the waiting room. The barber cuts hair at a rate of 3 (people/hour). Customers arrive at a rate of 2 (people/hour). Customers leave if both chairs in the waiting room are occupied. Let X(t) denote the number of customers in the barbershop at time t (this includes the barber's chair and the waiting room). The process X(t) is a continuous time Markov process.
 - **6.1** Find the state space of X(t) and its generator (Q-matrix). Explain your reasoning in probabilistic language.
 - **6.2** Show that X(t) is an irreducible Markov process.
 - **6.3** Find the stationary distribution of X(t). Explain what proportion of customers are lost from service in the long run.
 - **6.4** Find $\lim_{t\to\infty} p_{0,1}(t)$ with appropriate justification.
- Q7 Let X_1, X_2, \ldots be independent and identically distributed random variables with common distribution

$$P(X_i = 0) = P(X_i = 1) = 1/2$$

Consider the (random) infinite sequence X_1, X_2, X_3, \ldots Let T be the first time the pattern 1010 appears in the sequence. For instance, if the sequence starts off as 11001010... then the pattern appears at time T=8. Find $\mathsf{E}[T]$. Justify all steps in the calculation and quote the theorems that you use. (Hint: use martingales)

SECTION C

Q8 Let $(Z_n^1, Z_n^2)_{n\geq 0}$ be a two-type time-homogeneous branching process with offspring distribution satisfying

$$\begin{split} f^1(s_1,s_2) &:= \mathsf{E}\left[s_1^{Z_1}s_2^{Z_2}\big|\big(Z_0^1,Z_0^2\big) = (1,0)\right] = \frac{1}{8}\left[2 + 4e^{s_2-1} + s_1s_2^2 + s_1^2s_2^2\right],\\ f^2(s_1,s_2) &:= \mathsf{E}\left[s_1^{Z_1}s_2^{Z_2}\big|\big(Z_0^1,Z_0^2\big) = (0,1)\right] = \frac{1}{8}(2 + 5s_1 + s_2). \end{split}$$

Does this process become extinct with probability 1?