

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH4327-WE01

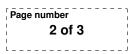
Title:

Topics in Probability IV

Time:	2 hours	
Additional Material provided:		
Matariala Davraittadu		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:



SECTION A

- **Q1** (a) State and prove the Second Moment Method for a non-negative integer-valued random variable.
 - (b) Suppose $c \in (0,1)$ and $\alpha > 0$ are constants, and for each $n \ge 1$ the random variables $X_1^{(n)}, X_2^{(n)}, \ldots$ are independent and identically distributed, with $X_1^{(n)} \sim \text{Bern}(cn^{-\alpha})$. Define $Y_n := \sum_{i=1}^n X_i^{(n)}$. Prove that, if $0 < \alpha < 1$, then $\mathbb{P}(Y_n = 0)$ converges as $n \to \infty$ and determine its limit.
 - (c) Describe the behaviour of $\mathbb{P}(Y_n = 0)$ as $n \to \infty$ for all other values of $\alpha > 0$.

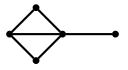
Your answers should be supported by appropriate calculations and explanations.

- Q2 (a) Let T_d be the infinite regular tree in which every vertex has degree $d \ge 2$. Define the critical probability p_{cr} for Bernoulli site percolation on T_d , and prove that $p_{cr} = 1/(d-1)$.
 - (b) Suppose T is an arbitrary infinite tree, with every vertex having degree in the range $[d_1, d_2]$ for integers d_1, d_2 satisfying $2 \le d_1 \le d_2$. Prove upper and lower bounds on the critical probability for Bernoulli site percolation on T.

Your answers should be supported by appropriate calculations and explanations.

SECTION B

Q3 Let *H* be the graph shown below, and let $G_{n,p}$ be a binomial random graph on *n* vertices, with edge probability $p \in [0, 1]$.



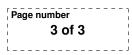
- (a) Using a coupling argument, or otherwise, prove that for all fixed n, the probability $\mathbb{P}(G_{n,p} \text{ contains a copy of } H)$ is non-decreasing in p.
- (b) Define $X_{n,p}$ to be the number of copies of H in $G_{n,p}$. Calculate $\mathbb{E}X_{n,p}$ as a function of n and p, and show that as $n \to \infty$,

$$\mathbb{E}X_{n,p} \to \begin{cases} 0 & \text{if } pn^{\alpha} \to 0, \\ \infty & \text{if } pn^{\alpha} \to \infty, \end{cases}$$
(†)

where α is a constant that should be determined.

(c) State the definition of a threshold for containing a copy of H in the random graph $G_{n,p}$. For the value of α satisfying (†) in part (b) above, explain whether $p^*(n) = n^{-\alpha}$ is a threshold for containing a copy of H. If $p^*(n)$ is not a threshold, find a function p(n) for which $p(n)/p^*(n) \to \infty$ and $\mathbb{P}(G_{n,p(n)} \text{ contains a copy of } H) \to 0 \text{ as } n \to \infty$.

Your answers should be supported by appropriate calculations and explanations.



- **Q4** (a) Suppose G = (V, E) is an infinite, locally finite, connected graph. Describe the Bernoulli bond percolation model on G. Your answer should include a definition of the percolation probability $\theta_x^G(p)$ for a fixed vertex $x \in V$ and parameter $p \in [0, 1]$ and a definition of the critical probability $p_{cr}(G)$.
 - (b) Let \mathbb{L}^d be the *d*-dimensional integer lattice. Explain why the critical probability $p_{cr}(\mathbb{L}^d)$ is non-increasing in *d*.
 - (c) Prove that $p_{cr}(\mathbb{L}^d) < 1$ for all $d \ge 2$, by finding an explicit value of p < 1 with $p_{cr}(\mathbb{L}^2) \le p$.

Your answers should be supported by appropriate calculations and explanations.