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SECTION A

Q1 We wish to emulate an expensive 1D computer model f(x) over the input range
x ∈ [0, 1]. We set up a standard Bayes Linear emulator, specifying a squared
exponential prior covariance structure, with σ2 = 1, θ = 1/3, and prior expectation
E[f(x)] = −1. A single run is performed at the location x(1) = 0.3, yielding the
output D = f(x(1)) = −2.

1.1 Find an expression for the emulator expectation ED[f(x)].

1.2 Find an expression for the emulator variance VarD[f(x)].

1.3 There is interest in determining the lowest value that f(x) could possibly take.
Find the input location x that minimises the lower end of the 3-sigma emulator
prediction interval.

Q2 We wish to emulate an expensive computer model f(x) with 2D input x ∈ X0 =
[0, 1]2 and scalar output f ∈ R. We use a standard Bayes Linear emulator with
prior expectation E[f(x)] = 0, and specify covariance structure

Cov[f(x), f(x′)] = σ2c(x− x′)

where c(x− x′) represents the correlation function. Two runs have been performed
and these are at locations x(1) yielding D1 = f(x(1)) and at x(2) yielding D2 =
f(x(2)), where x(1) 6= x(2). The vector of run outputs is denoted D = (D1, D2)

T .

2.1 By explicitly constructing Var[D], show that its inverse is given by

Var[D]−1 =
1

σ2(1− v2)

(
1 −v
−v 1

)
where v = c(x(1)−x(2)).

2.2 Hence show that the emulator expectation ED[f(x)] is given by:

ED[f(x)] =
1

1− v2

{[
w1(x)− v w2(x)

]
D1 +

[
w2(x)− v w1(x)

]
D2

}
where w1(x) = c(x− x(1)) and w2(x) = c(x− x(2)).

2.3 Demonstrate that the emulator expectation will interpolate the run data. State
a constraint on c(x−x′) that is required for this interpolation to be continuous.

2.4 Show that the emulator variance VarD[f(x)] is given by:

VarD[f(x)] =
σ2

1− v2

{
1− v2 − w1(x)2 − w2(x)2 + 2v w1(x)w2(x)

}
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SECTION B

Q3 A Bayes linear emulator with basis functions gj(x), unknown coefficients βj and
weakly stationary process u(x), takes the form:

f(x) =

p∑
j=1

βjgj(x) + u(x) = g(x)Tβ + u(x)

Prior specifications for β ≡ (β1, . . . , βp)
T and u(x) are given by:

E[β] = µβ, Var[β] = Σβ, E[u(x)] = 0,

Cov[u(x), u(x′)] = σ2c(x− x′), Cov[β, u(x)] = 0,

where c(x − x′) represents the usual squared exponential covariance structure and
where Σβ is of full rank. We define the model output from n runs to be D =(
f(x(1)), . . . , f(x(n))

)T
and also U =

(
u(x(1)), . . . , u(x(n))

)T
with Var[U ] ≡ Ω where

Ω is an n× n covariance matrix with individual elements Ωij = σ2c(x(i)− x(j)). We
also define the n× p design matrix X with elements Xij = gj(x

(i)).

3.1 With the above specifications, show that we can write D = Xβ + U .

3.2 Show that the expectation of the regression coefficients β adjusted by the run
data D is given by:

ED[β] = (XTΩ−1X + Σ−1
β )−1

[
Σ−1
β µβ + (XTΩ−1X) β̂GLS

]
where your answer should also contain a definition of the Generalised Least
Squares estimate β̂GLS. Hint: you can use the following Matrix Identity which
states that for matrices A,B,C,G of appropriate dimension:

AB (GAB + C)−1 = (BC−1G+ A−1)−1BC−1

3.3 Comment on the form of ED[β] derived in Q3.2.

3.4 Show that the variance of the regression coefficients β adjusted by the run data
D is given by:

VarD[β] = (XTΩ−1X + Σ−1
β )−1

3.5 Comment on the form of VarD[β] derived in Q3.4.

3.6 Examine the behaviour of ED[β] and VarD[β] in the vague β prior limit.

3.7 In which limiting situation would ED[β] → β̂OLS and VarD[β] → Var[β̂OLS],
where β̂OLS is the Ordinary Least Squares estimate for β? Justify your answer.
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Q4 We wish to optimise an expensive 1D function f(x) over the interval x ∈ [0, 1] using
a Bayesian Optimisation approach. We have performed a set of n runs giving model
output values D = (f(x(1)), . . . , f(x(n)))T and intend to use a Gaussian Process
emulator. We denote the highest run output so far found as f+ = f(x+) with
x+ ∈ {x(1), . . . , x(n)} the corresponding best input so far.

4.1 Define the Probability of Improvement PI(x) and the Expected Improvement
EI(x) acquisition functions.

4.2 Say that only a single run has been performed at x(1) = 0.7 yielding D =
f(x(1)) = 2. We employ a Gaussian Process emulator with a squared expo-
nential covariance structure, with σ = 1 and θ = 0.5 and with constant prior
expectation E[f(x)] = 0. By first evaluating the emulator expectation and
variance, show that in this case PI(x) is given by:

PI(x) = Φ
[
−2 tanh{2(x− 0.7)2}1/2

]
, for x 6= 0.7

where Φ[.] is the c.d.f. of the standard normal distribution.

4.3 By examining the derivative of PI(x), determine whether PI(x) attains a
maximum in [0, 1] and find limx→0.7 d[PI(x)]/dx.

4.4 If we used the PI(x) acquisition function, where would it suggest we place the
second run? Discuss the weaknesses of the PI(x) acquisition function, with
reference to this example.

4.5 Show that when using a general Gaussian Process emulator, the Expected
Improvement acquisition function becomes:

EI(x) = σD(x)φ(z∗) +
(
µD(x)− f+

)
Φ(z∗),

where µD(x) and σD(x) denote the emulator mean and standard deviation
updated by the runs D, z∗ = (µD(x) − f+)/σD(x) and φ(.) denotes the p.d.f.
of the standard normal distribution.

4.6 By re-expressing both acquisition functions in terms of utilities, discuss why
EI(x) is generally considered superior to PI(x). However, what fundamental
weakness do both acquisition functions possess?
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