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SECTION A

Q1 (a) Suppose that {Z(s) : s ∈ S} is a stationary isotropic stochastic process with
zero mean and a covariance function given by

c (h) =

{
σ2 exp

(
−
∣∣∣hφ ∣∣∣r) if h > 0

σ2 + τ 2 if h = 0

where 0 < r < 2.

(i) What are the range, sill, partial sill, and nugget for this covariance model?
Justify your answers.

(ii) In terms of the covariance function, derive an expression for the semi-
variogram, simplifying your result as much as possible.

(b) Let {Z(s) : s ∈ S} with S = (−π, π) be a Gaussian process with mean function
µ (s) = m where m ∈ R is a constant and covariance function

c (s, t) =
1

2

(
cos (s) + cos (t)− (t− s)

2
3

)
for s, t ∈ S. Report whether or not the stochastic process Z(·) is weakly
stationary, intrinsically stationary, continuous, and everywhere differentiable.
Justify your answer.

Q2 (a) Consider the Exponential covariance function c (h) = σ2 exp
(
−β ‖h‖11

)
for

σ2, β > 0 and h ∈ Rd. Compute the spectral density from Bochner’s theo-
rem.

(b) Consider the Gaussian CAR model with local characteristics {Pri (zi|zS−i)}
being Gaussian distributions with mean E (Zi|ZS−i) =

∑
j 6=i bi,jZj and variance

Var (Zi|ZS−i) = κi for i ∈ S. Assume that {Pri (zi|zS−i)} are fully compatible
with the joint distribution PrZ (z) of Z = {Zi}. By using Besag’s factorization
theorem, derive the joint distribution PrZ (z) of Z as

Z ∼ N
(
µ, (I −B)−1K

)
for some matrices B and K that you will specify. State any assumptions made.
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Q3 Consider the discrete-time auto-regressive stochastic model

Xt = φXt−1 + εt, εt ∼ N(0, σ2), t = 1, 2, . . . ,

given parameters φ ∈ R and σ > 0.

3.1 Suppose first that the process is initialised deterministically with X0 = x0 for
some specific x0 ∈ R.

(i) Show that the (conditional) distribution of the process at time t > 0 is
given by

(Xt|X0 = x0) ∼ N

(
φtx0,

1− φ2t

1− φ2
σ2

)
.

(ii) What values of φ will lead to a stable limiting distribution as t→∞?

(iii) Identify this limiting distribution.

3.2 Suppose now that a random initialisation is used,

X0 ∼ N(µ0, σ
2
0),

for some given µ0 ∈ R and σ0 > 0.

(i) Deduce the form of the marginal distribution of the process at time t, Xt.

(ii) Use this to confirm that if the process is initialised with the limiting dis-
tribution previously identified, the process is stationary.

Q4 Consider the discrete time order p auto-regressive model

Xt =

p∑
j=1

φjXt−j + εt, εt ∼ N(0, σ2), t ∈ Z,

for auto-regressive parameters φφφ = (φ1, φ2, . . . , φp)
T ∈ Rp, and innovation variance

σ2 > 0. An observed stationary time series x1, x2, . . . , xn is assumed to be consistent
with a model of this form.

4.1 Briefly describe how moment matching can be used to estimate the auto-
regressive parameters most consistent with the observed time series. Include
an appropriate expression for the parameter estimates, φ̂φφ.

4.2 Briefly describe how least squares fitting can be used to estimate the auto-
regressive parameters most consistent with the observed time series. Include
an appropriate expression for the parameter estimates, φ̂φφ.

4.3 Explain why moment matching and least squares fitting are asymptotically
equivalent for fitting auto-regressive models.
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SECTION B

Q5 Assume a random field Z on S = {1, ..., n} with values in Z = {0, ..., N}, where
n ∈ N − {0}. Here, Z (s) represents the number of successes at location s ∈ S.
Consider a family of conditional distributions

zi|z−i ∼ Binomial (N, θi (z−i)) , i ∈ S
where

θi (z−i) =

(
1 + exp

(
−αi −

∑
j:j∼i

βi,jzj

))−1

for some {αi} and {βi,j}. We use notation z−i = (z1, ..., zi−1, zi+1, ..., zn)>.

(a) Show that the conditionals zi|z−i are compatible as a Besag’s auto-model when
{αi} and {βi,j} satisfy certain conditions, and specify these conditions.

Hint: The probability mass function of a random variable x ∼ Binomial (n, p)
is Pr (x) =

(
n
x

)
px (1− p)n−x 1 (x ∈ {0, ..., n}).

(b) Write down the marginal distribution of the associated random field.

(c) What would be the sign of {βi,j} if you wish to introduce competition between
neighbouring sites? What would be the sign of {βi,j} if you wish to introduce
similarity between neighbouring sites? What does αi represent when βi,j = 0?

Q6 Consider a statistical model which is a stochastic process (Z (s))s∈S with S =(
0, 1

2
π
)
, where Z (·) ∼ GP (µ (·) , c (·, ·)) with mean function µ (s) = 1

2
s and co-

variance function c (s, t) = cos (s− t) for any s ∈ S and t ∈ S. Assume there is
available a dataset {(Zi, si)}ni=1 where Zi = Z (si) and si ∈ S are point sites.

(a) Imagine you are interested in locations in the domain S. Is the above covariance
function c (·, ·) a reasonable choice according to the ‘First Law of Geography’?
Explain your answer.

(b) Compute the block mean µ (v) for some block v = [a, b] ⊂ S.

(c) Compute the block covariance function c (v, s) for some block v = [a, b] ⊂ S
and point s ∈ S.

(d) Compute the block covariance function c (v, v′) for some blocks v = [a, b] ⊂ S
and v′ = [a′, b′] ⊂ S.

(e) Consider a set of sites S = {s1, ..., sn}. Consider observations Z = (Z1, ..., Zn)>

where Zi = Z (si) for i = 1, ..., n. Derive the predictive stochastic process
[Z (v) |Z] at any block v = [a, b] ⊂ S with |v| > 0.

Hint: Let x1 ∈ Rd1 , and x2 ∈ Rd2 . If[
x1

x2

]
∼ Nd1+d2

([
µ1

µ2

]
,

[
Σ1 Σ>21

Σ21 Σ2

])
then

x2|x1 ∼ Nd2

(
µ2|1,Σ2|1

)
where

µ2|1 = µ2 + Σ21Σ
−1
1 (x1 − µ1) and Σ2|1 = Σ2 − Σ21Σ

−1
1 Σ>21
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Q7 Consider the second-order auto-regressive model

Xt = Xt−1 −
1

2
Xt−2 + εt, εt ∼ N(0, 1), t ∈ Z.

7.1 (i) Confirm that this model is stationary.

(ii) Compute the auto-correlation function, ρt, of this process. Your final
expression should be an explicit function of t and should not involve the
imaginary unit, i.

7.2 (i) Obtain the stationary variance of the process.

(ii) Without further computation, using previous working, write down the par-
tial auto-correlation function for this process.

7.3 (i) Compute the spectral density function for this process as a function of fre-
quency ω ∈ [0, 1

2
]. Your final expression should not involve the imaginary

unit, i.

(ii) Without further computation, using previous working, at roughly what
value of ω would you expect a peak in the spectral density to occur?
Justify your answer.

Q8 Consider the constant (time-invariant) dynamic linear model

Yt = FXt + νννt, νννt ∼ N(000,V),

Xt = GXt−1 +ωωωt, ωωωt ∼ N(000,W),

for m-dimensional observation vectors, Yt, p-dimensional hidden states Xt, and fully
specified matrices F,G,V,W (of appropriate dimensions). The model is considered
for t = 1, 2, . . ., and initialised with X0 ∼ N(m0,C0). Given n observations y1:n =
(y1, . . . ,yn), sequential computation of the filtered distributions

(Xt|Y1:t = y1:t) ∼ N(mt,Ct), t = 1, . . . , n,

is desired (often referred to as the Kalman filter).

8.1 (i) Consider the problem at time t, where we have already computed mt−1, Ct−1.
Show that the predictive distribution for Xt can be written

(Xt|Y1:(t−1) = y1:(t−1)) ∼ N(m̃t, C̃t)

for appropriate definitions of m̃t, C̃t, which you should deduce.

(ii) Construct the joint distribution of Xt and Yt given all of the data up to
time t− 1.

(iii) Use multivariate normal conditioning to deduce expressions for mt and Ct.

8.2 Assume now that we have run our Kalman filter to obtain the final filtered
moments, mn, Cn. Deduce the forecast distribution (mean and variance) for
one and two steps ahead, Yn+1 and Yn+2, given the data y1:n.

8.3 (i) Suppose that we wish to model a quarterly (period 4) univariate time
series using a dynamic linear model consisting of a locally linear trend and
a seasonal effect. How would you structure this model? Give explicit forms
for F and G, and suggest an appropriate structural form for W (though this
may contain unspecified parameters).

(ii) Discuss briefly one approach that could be used to estimate any unspecified
parameters in the model.
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