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SECTION A

Q1 Consider an inertial frame defined by the orthogonal basis ei = {e1, e2, e3} and a
rotating frame with the orthogonal basis êi = {ê1, ê2, ê3}. The axis of rotation for
the rotating frame is aligned with ê2 = 1/2e2 +

√
3/2e3 and rotates with a constant

angular velocity of Ω = 1. The vectors e1 and ê1 are initially aligned (only at t = 0).
It can be shown that the unit vectors of these two frames are related to each other
as below

e1 = cos(t)ê1 + sin(t)ê3, (1a)

e2 =

√
3

2
sin(t)ê1 +

1

2
ê2 −

√
3

2
cos(t)ê3, (1b)

e3 =
1

2
cos(t)ê3 −

1

2
sin(t)ê1 +

√
3

2
ê2. (1c)

(a) Find an expression for

(
d

dt
(ê1 + 5ê2 − 2ê3)

)
I

(where subscript I denotes the

inertial frame). You can express the answer either in terms of êi or ei.

(b) If a particle’s position vector is defined as X = t3e2 in the inertial frame, find
its acceleration in the rotating frame (written in terms of the unit vectors of
the rotating frame).

Q2 The two-dimensional hydrostatic Boussinesq equations (where ∂/∂y = 0 and v = 0)
written in terms of the density variable are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ̄

∂p

∂x
, (2a)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ̄

∂p

∂z
− ρg

ρ̄
, (2b)

∂u

∂x
+
∂w

∂z
= 0, (2c)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0. (2d)

(a) We can decompose the variables into a basic state (for the fluid at rest) and a
perturbation

u = u′(x, z, t), w = w′(x, z, t), ρ = ρ̃(z) + ρ′(x, z, t), p = p̃(z) + p′(x, z, t),

where (̃ ) denotes the basic state and ( )′ the perturbations to this state. Write
(2) in terms of p′, u′, w′ and ρ′, and neglect the products of perturbation
(primed) quantities. Assume that the basic state is at hydrostatic balance:

dp̃

dz
= −ρ̃g.

(b) Write the equations you derive in part (a) in terms of buoyancy variable

b = −ρ
′

ρ̄
g,

and buoyancy frequency

N2 = −g
ρ̄

dρ̃

dz
.

ED01/2024
University of Durham Copyright

CONTINUED



3 of 7
Page number

MATH44120-WE01
Exam code

Q3 Consider the magnetic field B = B0 sin(αz)ex + B0 cos(αz)ey where α and B0 are
constants.

(a) Calculate the current density.

(b) Is B a force-free field? Justify your answer.

(c) Calculate the magnetic pressure and tension forces associated with B.

(d) Find a vector potential, A, for B.

Q4 (a) By considering B and u to be the sum of mean and fluctuating parts

B = 〈B〉+ B′, u = 〈u〉+ u′,

such that 〈B′〉 = 〈u′〉 = 0, show that the mean field induction equation can
be written as

∂〈B〉
∂t

= ∇× (〈u〉 × 〈B〉) +∇× 〈u′ ×B′〉+ η∇2〈B〉.

(b) Hence or otherwise show that the induction equation for the fluctuating mag-
netic field can be written as

∂B′

∂t
= ∇× (〈u〉 ×B′) +∇× (u′ × 〈B〉) +∇× G + η∇2B′,

where G = u′ ×B′ − 〈u′ ×B′〉.
(c) Consider the case where there is no mean flow, i.e., 〈u〉 = 0. Taking B, L, T

and U to be characteristic scales of the fluctuating magnetic field, length, time
and fluctuating velocity, respectively, show that, if U = L/T ,

|∇ × G| ∼
∣∣∣∣∂B′∂t

∣∣∣∣ .
Find also the characteristic scale of η|∇2B′| in terms of Rm =

UL
η

.

(d) For what values of Rm is it reasonable to neglect
∂B′

∂t
and∇×G (in comparison

with η∇2B′) from the fluctuating induction equation? Comment on if this is
a realistic assumption for astrophysical fluids.
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SECTION B

Q5 We consider the Shallow Water equations (with the flat bottom) written in terms
of the height variation from the mean ξ = h − H (H being the mean height and
constant) and the velocity vector v = (u, v)

∂v

∂t
+ (v · ∇H)v + fez × v = −g ∇Hξ (3a)

∂ξ

∂t
+H ∇H · v +∇H · (ξv) = 0, (3b)

h(x, y, t) = η(x, y, t) = ξ(x, y, t) +H. (3c)

where f = (f0 + βy) is the Coriolis parameter in the β-plane approximation and
ez the unit vector in the z direction. We consider the following scaling to non-
dimensionalise this system

(x, y) = L(x∗, y∗), (u, v) = U(u∗, v∗), t = T t∗, ξ =
f0L U
g

ξ∗. (4)

(a) Find the appropriate timescale T to derive the quasi-geostrophic (QG) dynam-

ics for this system. You can do this by assuming (v ·∇H)v and
∂v

∂t
have similar

orders.

(b) Non-dimensionalise (3) using the scaling given in (4) and part (a). Write your
answer in terms of the Rossby number and the ratio of the deformation radius
over the length scale:

Ro = ε =
U
f0L

,
Ld

L
=

√
gH

f0L
.

You should also assume that the beta effect is an order (ε) smaller than f0:

f

f0

=

(
f0 + βy∗L

f0

)
=

(
1 +

βL
f0

y∗
)

= (1 + ε β∗y∗) .

where β∗ = βL/(f0ε) is O(1) due to the assumption made.

(c) Expand the variables in terms of ε as below

v∗ = v∗0 + εv∗1, ξ∗ = ξ∗0 + εξ∗1 .

Then assuming Ro = ε→ 0 and L ∼ Ld, derive the leading-order equations.

(d) We define the dimensionless QG PV for this system as

q∗ =
∂v∗0
∂x∗
− ∂u∗0
∂y∗

+ β∗y∗ −
(
L
Ld

)2

ξ∗0 .

Show that at the limit of Ro = ε → 0 and L ∼ Ld the dimensionless QG PV
is materially conserved, i.e.

Dq∗

Dt
=
∂q∗

∂t∗
+ u∗0

∂q∗

∂x∗
+ v∗0

∂q∗

∂y∗
= 0.
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Q6 The Shallow Water equations (with the flat bottom and in an inertial frame) written
in terms of the height variation from the mean ξ and the velocity vector v = (u, v)
are

∂v

∂t
+ (v · ∇H)v = −g ∇Hξ, (5a)

∂ξ

∂t
+H ∇H · v +∇H · (ξv) = 0. (5b)

We consider the dynamics to consist of a background flow and waves

u = U + u′, v = v′, ξ = ξ′, (6)

where U = sin(εy) is the velocity of the background flow and u′, v′ and ξ′ are the
velocity and height variation of the waves. We assume ε to be a small parameter
meaning that the background flow slowly varies with y (i.e. dU/dy = O(ε)).

(a) Substitute (6) into (5) and linearise for the wave terms by neglecting the prod-
ucts of two wave terms. Also neglect the terms that are O(ε).

(b) Find the dispersion relation for the linearised equations (that you derive in
part (a)) by assuming the following wave ansatz

u′ = ũ ei(kxx+kyy−ωt), v′ = ṽ ei(kxx+kyy−ωt), ξ′ = ξ̃ ei(kxx+kyy−ωt).

(c) Find the group velocity for each set of waves that you find in part (b).

Q7 Consider a conducting fluid flow down a channel whose boundaries are the planes

y = −d and y = d. The flow is given by u = u(y)ex, where u(y) = U sin
(πy
d

)
with

U constant. At time t = 0, a uniform magnetic field B0ey is applied. The flow then
distorts the field so that at later times B = b(y, t)ex +B0ey.

(a) Show that in this case the x-component of the induction equation becomes

∂b

∂t
= B0

du

dy
+ η

∂2b

∂y2
.

(b) Show that for small t, b can be approximated by

b =
B0Uπ

d
cos
(πy
d

)
t.

(c) Given b = 0 at y = ±d, find an approximate solution for b at large t.

(d) Sketch the magnetic field lines for the approximate solutions at both small and
large t for B0 > 0.
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Q8 The following set of non-dimensional equations describes incompressible convection
in the presence of a magnetic field in a layer of fluid lying between two horizontal
planes at z = 0 and z = 1

∂u

∂t
+ (u · ∇)u = −∇p+RaPrTez + ζQPr(∇×B)×B + Pr∇2u,

∇ · u = 0,

∂T

∂t
+ (u · ∇)T = ∇2T,

∂B

∂t
= ∇× (u×B) + ζ∇2B,

where the relevant non-dimensional parameters are given by

Ra =
α∆Tgd3

νκ
, Pr =

ν

κ
, Q =

B2
0d

2

µ0ρ̄νη
, ζ =

η

κ
.

(a) Show that uc = 0, Tc = 1 − z, pc = p̄ + RaPr(z − z2/2), Bc = ex is a basic
state solution for this system, where p̄ is a constant taken to be the value of pc

at the bottom of the layer.

(b) You are given that the equations governing the linear perturbations about the
basic state in (a) can be written as

∂∇2w′

∂t
= RaPr∇2

Hθ + ζQPr
∂∇2B′z
∂x

+ Pr∇4w′,

∇ · u′ = 0,

∂θ

∂t
− w′ = ∇2θ,

∂B′z
∂t

=
∂w′

∂x
+ ζ∇2B′z,

where w′, θ and B′z are the perturbations to the vertical velocity, temperature
and vertical magnetic field, respectively.

By seeking normal mode solutions of the form w′ = w̃(z)f(x, y) exp(st) (and
similar for θ and B′z), show that

∇2
Hf = −k2

hf,

for some constant kh.

Taking f(x, y) = exp(ikxx + ikyy), show that the normal mode equations can
be written as

(D2 − k2
h)
[
s− Pr(D2 − k2

h)
]
w̃ = −RaPrk2

hθ̃ + ζQPrikx(D2 − k2
h)B̃z,[

s− (D2 − k2
h)
]
θ̃ = w̃,[

s− ζ(D2 − k2
h)
]
B̃z = ikxw̃,

where k2
h = k2

x + k2
y and D2 ≡ d2

dz2
.
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(c) Assume that the boundaries are impenetrable, free-slip and held at fixed tem-
perature. Assume also that there is no vertical component of the magnetic
field at the boundaries. Write down boundary conditions that w̃, θ̃ and B̃z

must satisfy and briefly justify your conditions.

Hint: the system requires 8 boundary conditions.

(d) Suggest suitable trigonometric forms for w̃, θ̃ and B̃z and use these to find
the critical value of Ra for the onset of convection as direct (non-oscillatory)
modes.

What happens to the critical Rayleigh number if we consider disturbances
aligned with the basic state magnetic field?
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