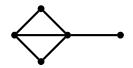


EXAMINATION PAPER

Examination Session:	Year:		Exam Code:			
May/June	2024	ļ.	MATH44320-WE02			
Title:						
Advanced Probability Theory V: Paper 2						
Time:	2 hours	2 hours				
Additional Material provi	ided:					
Materials Permitted:						
Calculators Permitted:	No	Models Permit	ted: Use of electronic calculators			
		is forbidden.				
Instructions to Candidate	•	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within				
			arry equal marks.			
	Students mu	st use the mathe	ematics specific answer book.			
			Revision:			

SECTION A

- Q1 (a) State and prove the Second Moment Method for a non-negative integer-valued random variable.
 - (b) Suppose $c \in (0,1)$ and $\alpha > 0$ are constants, and for each $n \geq 1$ the random variables $X_1^{(n)}, X_2^{(n)}, \ldots$ are independent and identically distributed, with $X_1^{(n)} \sim \text{Bern}(cn^{-\alpha})$. Define $Y_n := \sum_{i=1}^n X_i^{(n)}$. Prove that, if $0 < \alpha < 1$, then $\mathbb{P}(Y_n = 0)$ converges as $n \to \infty$ and determine its limit.
 - (c) Describe the behaviour of $\mathbb{P}(Y_n = 0)$ as $n \to \infty$ for all other values of $\alpha > 0$.


Your answers should be supported by appropriate calculations and explanations.

- Q2 (a) Let T_d be the infinite regular tree in which every vertex has degree $d \geq 2$. Define the critical probability p_{cr} for Bernoulli site percolation on T_d , and prove that $p_{cr} = 1/(d-1)$.
 - (b) Suppose T is an arbitrary infinite tree, with every vertex having degree in the range $[d_1, d_2]$ for integers d_1, d_2 satisfying $2 \le d_1 \le d_2$. Prove upper and lower bounds on the critical probability for Bernoulli site percolation on T.

Your answers should be supported by appropriate calculations and explanations.

SECTION B

Q3 Let H be the graph shown below, and let $G_{n,p}$ be a binomial random graph on n vertices, with edge probability $p \in [0, 1]$.

- (a) Using a coupling argument, or otherwise, prove that for all fixed n, the probability $\mathbb{P}(G_{n,p} \text{ contains a copy of } H)$ is non-decreasing in p.
- (b) Define $X_{n,p}$ to be the number of copies of H in $G_{n,p}$. Calculate $\mathbb{E}X_{n,p}$ as a function of n and p, and show that as $n \to \infty$,

$$\mathbb{E}X_{n,p} \to \begin{cases} 0 & \text{if } pn^{\alpha} \to 0, \\ \infty & \text{if } pn^{\alpha} \to \infty, \end{cases}$$
 (†)

where α is a constant that should be determined.

(c) State the definition of a threshold for containing a copy of H in the random graph $G_{n,p}$. For the value of α satisfying (†) in part (b) above, explain whether $p^*(n) = n^{-\alpha}$ is a threshold for containing a copy of H. If $p^*(n)$ is not a threshold, find a function p(n) for which $p(n)/p^*(n) \to \infty$ and $\mathbb{P}(G_{n,p(n)})$ contains a copy of H $\to 0$ as $n \to \infty$.

Your answers should be supported by appropriate calculations and explanations.

Page number	 	
3 of 3		

ım coae	
MATH44320-W	E02

- Q4 (a) Suppose G=(V,E) is an infinite, locally finite, connected graph. Describe the Bernoulli bond percolation model on G. Your answer should include a definition of the percolation probability $\theta_x^G(p)$ for a fixed vertex $x\in V$ and parameter $p\in[0,1]$ and a definition of the critical probability $p_{\sf cr}(G)$.
 - (b) Let \mathbb{L}^d be the d-dimensional integer lattice. Explain why the critical probability $p_{\mathsf{cr}}(\mathbb{L}^d)$ is non-increasing in d.
 - (c) Prove that $p_{\mathsf{cr}}(\mathbb{L}^d) < 1$ for all $d \geq 2$, by finding an explicit value of p < 1 with $p_{\mathsf{cr}}(\mathbb{L}^2) \leq p$.

Your answers should be supported by appropriate calculations and explanations.