

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH1617-WE01

Title:

Statistics I

Time:	2 hours					
Additional Material provided:	Tables: Normal distribution, t-distribution.					
Materials Permitted:						
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.				

Instructions to Candidates: Credit will be given for your answers to each question. All questions carry the same marks. Write your answer in the white-covered answer booklet with barcodes. Begin your answer to each question on a new page.

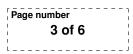
Revision:

Page number 2 of 6

Q1 A new test has been developed to detect a new strain of *human papillomavirus* (HPV), a major cause of cervical cancer. The following data classify 577 patients according to presence or absence of the HPV strain as diagnosed by a "gold standard" (an expensive and time consuming lab procedure) and by the results of the new fast, but less accurate swab test.

		Has disease?		
		Yes	No	Total
		D^+	D^{-}	
Test result positive	T^+	276	17	293
Test result negative	T^{-}	15	269	284
Total		291	286	577

- (a) Define and calculate the sensitivity and specificity of the test.
- (b) A person from the general UK population, who is selected at random, is tested and receives a positive test result. It is thought that about 1/250 people in the UK have this strain of HPV. Calculate the probability the person has the disease given they received a positive test result, $P(D^+|T^+)$. Comment briefly on your answer.
- (c) The patient actually had the test done twice and received two positive results, represented by the event T^{++} . Assuming the test results are *conditionally independent given disease status*, calculate the probability that they have the disease after receiving two positive tests, $P(D^+|T^{++})$. Comment briefly on your answer.
- (d) Consider a general test with sensitivity x and specificity y, where again the test results are conditionally independent given disease status. Denoting n positive test results as the event T^{n+} , derive an expression for the posterior probability $P(D^+|T^{n+})$.
- (e) In the limit of a large number of positive tests, we would hope that the posterior probability $P(D^+|T^{n+})$ would tend to 1. Derive a constraint on x and y that ensures this is true. Comment on your answer.



- **Q2** A set of *n* Bernoulli trials X_1, \ldots, X_n are performed in a nuclear physics accelerator experiment, with probability *p* of success in each trial, where success relates to the creation of a new kind of exotic nucleus. The total number of successes over the *n* trials is summed and represented by $X = \sum_{i=1}^{n} X_i$.
 - (a) Give the name of the distribution of X.
 - (b) If data is measured to be X = x, give the likelihood as a function of the parameter of interest p.
 - (c) Derive the maximum likelihood estimate of p, and evaluate it in the case where n = 20 and x = 6.
 - (d) The scientist running the experiment has prior beliefs about p, based on previous experiments with related heavy nuclei. They specify a prior p.d.f. for p as

$$f(p) = 6p(1-p), \qquad 0 \le p \le 1$$

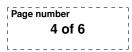
Derive the posterior p.d.f. for p, up to a proportionality constant, given n = 20 and x = 6.

- (e) Show that, for general n and x, the prior specification of $p \sim Beta(a, b)$ is conjugate to the likelihood you gave in $\mathbf{Q2}(b)$. Your answer should clearly explain your reasoning, and contain an expression for the full posterior p.d.f. for p, including an expression for the proportionality constant. <u>Hint</u>: You may wish to refer to the definition of the Beta distribution given at the end of this question.
- (f) Use your results from Q2(e) to specify the proportionality constant in Q2(d).

<u>Hint</u>: Let $Y \sim Beta(a, b)$ for a, b > 0 known. Then Y has a *Beta distribution* with p.d.f.

$$f(y) = \frac{1}{B(a,b)} y^{a-1} (1-y)^{b-1} = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}, \quad 0 \le y \le 1$$

and 0 otherwise, where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is the Beta function, and $\Gamma(a)$ is the Gamma function with $\Gamma(a) = (a-1)!$ for $a \in \mathbb{N}$.



- **Q3** Suppose you plan to take a simple random sample X_1, \ldots, X_n of size n from a population with mean μ and variance σ^2 but with unknown distribution.
 - (a) Derive expressions for the expectation of the sample mean $E[\bar{X}]$, and the variance of the sample mean $Var[\bar{X}]$.
 - (b) Assume the sample size is n > 20. By considering the distribution of the sample mean \bar{X} , derive a formula for a general Confidence Interval for the unknown population mean μ , assuming the population variance σ^2 is known. Clearly name any theorems you use.
 - (c) State the definition of the sample variance s^2 and derive its alternative form:

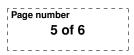
$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_{i}^{2}) - n\bar{x}^{2} \right]$$

(d) A conservationist is studying the effects of pollution on the development of *Fraxinus*, more commonly known as the ash tree. They gather a random sample of size n = 24 of trunk diameters (in cm), summaries of which are given by:

$$\sum_{i=1}^{n} x_i = 831.6 \qquad \sum_{i=1}^{n} x_i^2 = 29011.1$$

The conservationist at first assumes $\sigma = 2.9$ cm based on previous studies. Calculate a 99% Confidence Interval for the population mean μ .

- (e) The conservationist now wishes to drop this assumption and to view σ as unknown. Calculate a 99% Confidence Interval for the population mean μ in this scenario. You should mention any assumptions that your answer relies upon, and how in principle you would check these assumptions (however you do not need to perform such checks).
- (f) Test the hypothesis that $\mu = 36.3$ at the 1% significance level, both when σ is assumed to be $\sigma = 2.9$ cm, and when σ is assumed to be unknown.
- (g) Further examination of the ash tree sample shows significant departures from Normality, with a long tail to the left. Discuss how this finding impacts your results found in questions **Q3**(d) and **Q3**(e).



- **Q4** Suppose that the number of minutes X that a person must wait for a bus each morning has a uniform distribution on the interval $[0, \theta]$, where the value of the endpoint θ is unknown. So we have $X|\theta \sim U[0, \theta]$.
 - (a) Sketch a plot of the conditional pdf of X given theta, that is plot $f(x|\theta)$ against x, clearly labelling key points on both axes.
 - (b) If a single waiting time observation x_1 is obtained, write down the likelihood $\ell(\theta)$ as a function of θ , remembering to specify clearly the values of θ for which the likelihood will be zero. [Hint: Uniform distributions over arbitrary ranges still have to integrate to 1.]
 - (c) Sketch a plot of the likelihood $\ell(\theta)$ against θ , carefully labelling the location of the single waiting time x_1 .
 - (d) If instead, four waiting times observations x_1, x_2, x_3, x_4 were made, show that the likelihood $\ell(\theta)$ is now given by:

$$\ell(\theta) = \begin{cases} \frac{1}{\theta^4} & \text{for } m < \theta, \\ 0 & \text{otherwise,} \end{cases}$$

where you should find an expression for the constant m.

(e) Suppose that the prior pdf of θ is as follows:

$$f(\theta) = \begin{cases} \frac{50}{\theta^3} & \text{for } 5 < \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Find the posterior pdf of θ given the observations x_1, x_2, x_3, x_4 , including determining the normalisation constant. Your answer should also involve the constant $c = \max\{m, 5\}$.

(f) Find the exact $(1-\alpha)$ highest posterior density (HPD) and equal-tailed (EQT) Credible Intervals corresponding to this posterior, and comment on which of these two intervals you think is most appropriate to use here.

Q5 Let X_1, \ldots, X_n be an i.i.d. sample of size *n* from a $N(\mu, 1/\tau)$ distribution, where the precision $\tau = 1/\sigma^2$ is assumed known (and hence not a parameter of interest). The pdf for a generic random variable $Y \sim N(\mu, 1/\tau)$ is given by

$$f(y|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left\{-\frac{1}{2}\tau(y-\mu)^2\right\},\,$$

and the corresponding likelihood for μ for the i.i.d. sample X_1, \ldots, X_n is given by

$$\ell(\mu) = f(x_1, \dots, x_n | \mu, \tau) \propto \exp\left\{-\frac{n\tau}{2}(\bar{x} - \mu)^2\right\}.$$

where terms depending only on the data or the known τ have been absorbed into the proportionality sign.

(a) If the prior for μ is judged to be a normal distribution such that $\mu \sim N(m, 1/t)$, show that the posterior for μ is also normal such that

$$\mu | x_1, \dots, x_n \sim N(m_1, \frac{1}{t_1}),$$

where $t_1 = t + n\tau$, and $m_1 = \frac{tm + n\tau \bar{x}}{t_1}.$

- (b) An ornithologist is interested in the value of the mean wing-span, μ , of a newly discovered species of hummingbird. The wing-spans, X, of individual hummingbirds are thought to have a normal distribution for which the value of the mean wing-span μ is unknown but the standard deviation is assumed to be $\sigma = 2$ cm. The ornithologist represents her prior beliefs about μ (based upon previous experience of similar species) by a normal distribution with a mean of m = 9 cm and a standard deviation of v = 1.5 cm. A sample of n = 7 adult hummingbirds are captured at random from the population, measured, and released, and their average wing-span is found to be $\bar{x} = 11.1$ cm. What is the ornithologist's posterior distribution for μ given the data?
- (c) Explain why an equal-tailed (EQT) posterior credible interval and a highest posterior density (HPD) credible interval would give the same result for this posterior distribution.
- (d) For both the prior and posterior distribution of μ , find the 95% EQT credible interval for μ . Comment on the difference between these two intervals.
- (e) Consider the general case where the number of humming birds sampled, n, becomes very large, but let the mean of the data still be denoted as \bar{x} . What is the limiting form of the posterior for μ given the data? Comment on your answer.
- (f) Derive the 95% EQT posterior credible interval for μ in this large n limit, and comment on its form in relation to the results of a corresponding Frequentist analysis.