

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH2011-WE01

Title:

Complex Analysis II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.		
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Write your answer in the white-covered answer booklet with barcodes.		
	Begin your answer to each question on a new page.		

Revision:

SECTION A

 $\mathbf{Q1}$ Consider the function

$$f(z) = f(x + iy) = x^4 - 6x^2y^2 + y^4 + i(4x^3y - 4xy^3).$$

- (a) At which points is f complex differentiable? Justify your answer.
- (b) At which points is f holomorphic? Justify your answer.
- **Q2** (a) Use the definition of sin(z) and cos(z)

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

to show that for any $z \in \mathbb{C}$

$$2\sin(2z)\sin(z) = \cos(z) - \cos(3z).$$

- (b) Using the principal branch of the logarithm calculate $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{\frac{\pi}{2}}$.
- Q3 Let a, b, c be complex numbers, with $a \neq 0$, and let γ denote the contour |z| = 3 traversed anticlockwise. For $\omega \in B_3(0) = \{z \in \mathbb{C} : |z| < 3\}$ consider the function

$$g(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{az^2 + bz + c}{z - \omega} dz \qquad (|\omega| < 3).$$

- (a) Evaluate $g(\omega)$, stating clearly any results that you use.
- (b) Hence, explain why g can have at most two fixed points in B₃(0); that is, points ω with |ω| < 3 such that g(ω) = ω.
 Find these fixed points in the case that a = b = 1 and c = -1.
- **Q4** Suppose f is holomorphic on \mathbb{C} and consider the function $g(z) = \exp(f(z))$.
 - (a) By differentiating g, or otherwise, show that if g were constant on \mathbb{C} then f would also have to be constant on \mathbb{C} .
 - (b) Suppose there exists some real constant M > 0 such that $|\operatorname{Re}(f(z))| \leq M$ for all $z \in \mathbb{C}$. By proving that g is bounded on \mathbb{C} , show that f must be constant on \mathbb{C} . State any result that you use.
 - (c) Explain why this means that all bounded *harmonic* functions on \mathbb{C} are constant.

SECTION B

Q5 (a) Prove that the general form of a Möbius transformation that takes the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ to the right half plane $\mathbb{H}_R = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ is

$$M(z) = -i\frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{R}$ and ad - bc = 1.

(b) Show that if M(z) is a Möbius transformation that takes the upper half plane \mathbb{H} to the right half plane \mathbb{H}_R and if M(i) = 1 then

$$M(-i) = -1.$$

- (c) Let M(z) be a Möbius transformation that takes the upper half plane \mathbb{H} to the right half plane \mathbb{H}_R and such that M(i) = 1 and M(0) = 0. Find the image of the unit disc \mathbb{D} under M(z).
- **Q6** In this question you may use without proof the fact that for z = x + iy

$$\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y).$$

Consider the series

$$\sum_{n=0}^{\infty} \frac{\cos^{2n}(z)}{n!} \tag{1}$$

(a) Show that for any $\alpha > 0$ the series converges uniformly in

 $V_{\alpha} = \{ z \in \mathbb{C} : -\alpha < \operatorname{Im}(z) < \alpha \}.$

(b) Show that for any $\beta > 0$ the sequence of functions

$$f_n(z) = \frac{\cos^{2n}(z)}{n!}$$

does not converge uniformly to f(z) = 0 on

$$D_{\beta} = \{ z \in \mathbb{C} : -\beta < \operatorname{Re}(z) < \beta \}$$

by finding an appropriate purely imaginary sequence $\{z_n\}_{n\in\mathbb{N}}$, i.e. a sequence $\{z_n\}_{n\in\mathbb{N}}\subset i\mathbb{R}$.

Q7 In this question you may use without proof the fact that the zeros of $g(z) = \sin(z)$ lie at precisely the points $z = \pi k$ for $k \in \mathbb{Z}$, and that $e - 1/e \ge 2$.

Consider the function $f(z) = \sin(z) - 1/z$, defined for all $z \in \mathbb{C} \setminus \{0\}$. Let

$$L = \left\{ z \in \mathbb{C} : \operatorname{Re}(z) \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \right\}$$

be an open vertical strip in $\mathbb{C} \setminus \{0\}$ and for any real $R \ge 1$ define the subset

$$L(R) = \{ z \in L : \text{Im}(z) \in (-R, R) \}.$$

Denote by $\ell(R)$ the rectangular contour bounding L(R), traversed anticlockwise.

(a) Show that on the vertical lines $\operatorname{Re}(z) = \pi \pm \pi/2$ we have

$$|\sin(z)| = \frac{1}{2}(e^{\operatorname{Im}(z)} + e^{-\operatorname{Im}(z)}) = \cosh(\operatorname{Im}(z)).$$

Similarly, show that on the horizontal lines $Im(z) = \pm R$ we have

$$|\sin(z)| \ge \frac{1}{2}(e^R - e^{-R}).$$

Hence, conclude that $|\sin(z)| \ge 1$ for all z on the contour $\ell(R)$, when $R \ge 1$.

- (b) Use Rouché's Theorem to show that for all $R \ge 1$ the function f has exactly one zero in L(R). Explain why this means that f has exactly one zero in the vertical strip L.
- (c) Assume that f has no zeros on the vertical lines $\operatorname{Re}(z) = \pi \pm \pi/2$, and consider the contour $\ell(\pi)$ corresponding to the case $R = \pi$. Using part **7(b)**, evaluate the integral

$$\int_{\ell(\pi)} \frac{f'(z)}{f(z)} dz = \int_{\ell(\pi)} \frac{z^2 \cos(z) + 1}{z(z \sin(z) - 1)} dz.$$

State any results that you use.

Q8 Consider the meromorphic function $f(z) = e^{-2iz} (1+z^2)^{-1}$.

(a) For R > 1 let C_R be the semicircular contour in the lower half-plane defined by $C_R(\theta) = Re^{i\theta}$ for $\theta \in [-\pi, 0]$. Show that

$$\int_{C_R} f(z) \, dz \longrightarrow 0 \quad \text{as} \quad R \longrightarrow \infty$$

(b) Let L_R be the straight line segment on the real axis that begins at the point z = R and ends at the point z = -R. By integrating f around the 'D-shaped' contour given by $L_R \cup C_R$, evaluate

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{e^{-2ix}}{1+x^2} \, dx.$$

(c) In answering part **8(b)**, why could we not integrate f around the usual D-shaped contour consisting of the line segment joining z = -R to z = R and the semicircular contour in the <u>upper half-plane</u> given by $C_R(\theta) = Re^{i\theta}$ for $\theta \in [0, \pi]$?