

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH2581-WE01

Title:

Algebra II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Write your answer in the white-covered answer booklet with barcodes.
	Begin your answer to each question on a new page.

Revision:

	Exam code
	MATH2581-WE01
Í.	
_ L	

SECTION A

- Q1 (a) Which of the following rings are integral domains? Justify your answers.
 - (i) $\mathbb{Z}/6$,
 - (ii) $\mathbb{Q}[x]/(x^5 + px + p)$ for p a prime,
 - (iii) $(\mathbb{Z}/3)[x]/(x^2 + \bar{2}),$
 - (iv) $\mathbb{Z}/7 \times \mathbb{Z}/3$,
 - (v) $\mathbb{Z}[i]$.
 - (b) Find all units of the following rings. There is no need to justify your answer.
 - (i) ℤ/7,
 - (ii) $\mathbb{Q}[x]$,
 - (iii) $\mathbb{Z}/3 \times \mathbb{Z}/4$,
 - (iv) $M_2(\mathbb{Q})$,
 - (v) $\mathbb{Z}[x]$.
- **Q2** Let R and S be rings, and let $\phi : R \to S$ be a ring homomorphism.
 - (a) Show that if J is an ideal of S, then $\phi^{-1}(J) = \{r \in R \mid \phi(r) \in J\}$ is an ideal of R.
 - (b) Assume now that ϕ is surjective. Show that, if I is an ideal of R, then $\phi(I) = \{\phi(r) \mid r \in I\}$ is an ideal of S.
- **Q3** (a) Let $G = S_7$ and $\gamma = (1\,2\,3)(4\,2\,3)(5\,4)(6\,7)$.
 - (i) What is the order of γ in G?
 - (ii) Give the size of the conjugacy class of γ in G. [Justify your answer.]
 - (b) Determine the rank and the torsion coefficients of the kernel of the map

$$f : \mathbb{Z}^3 \to \mathbb{Z},$$
$$(a, b, c) \mapsto 12a + 15b + 6c$$

- **Q4** (a) Let G be an abelian group. Show that the set of elements of order 1 or 2 form a subgroup of G.
 - (b) Assume all elements of a group G have order at most 2. Show that G is abelian.

SECTION B

Q5 (a) (i) Factorise the following polynomials into irreducible factors in $(\mathbb{Z}/2)[x]$.

 $f(x) = x^5 + x^4 + x^3 + x^2 + x + \overline{1}$, and $g(x) = x^6 + x^4 + x + \overline{1}$.

- (ii) With notation as above, let I = (f(x), g(x)) be the ideal in $(\mathbb{Z}/2)[x]$ generated by f(x) and g(x). Consider the quotient ring $R = (\mathbb{Z}/2)[x]/I$. Give a set of representatives for the elements in R. Is R a field? Justify your answers.
- (b) Let $R = \mathbb{Z}[\sqrt{-5}]$, and let $I = (3, 2 + \sqrt{-5})$. Show that the ideal I is not a principal ideal.
- **Q6** (a) Let n > 1 be an integer and consider the ideal I = (n, x) in $\mathbb{Z}[x]$. Give conditions on n such that I is a maximal ideal. Justify your answer.
 - (b) Show that the quotient ring $\mathbb{Q}[x]/(x^3 3x^2 3x + 9)$ is isomorphic to the ring $\mathbb{Q} \times \mathbb{Q}[\sqrt{3}]$, where $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}.$
- **Q7** Let $G = (\mathbb{Z}/15)^{\times}$, the group of units in the ring $\mathbb{Z}/15$.
 - (a) Write down the elements of G, say as classes in $\mathbb{Z}/15$, giving both the order and the inverse of each element.
 - (b) Write G as a product of cyclic groups. [Justify your result.]
 - (c) State Cayley's Theorem.
 - (d) Use the procedure in the proof of Cayley's Theorem to find generators of a subgroup of S_8 to which G is isomorphic.
- **Q8** Let G be a group of order 20.
 - (a) Show that G contains a group H of order 5, stating carefully any results that you use.
 - (b) For any $g \in G$ show that its conjugate gHg^{-1} is also a subgroup of G.
 - (c) Show that the intersection of two different conjugates of H contains only one element.
 - (d) Given the previous part, find a sharp bound for how many different conjugates of H can be contained in G.
 - (e) Show that the number of conjugates of H divides |G|. (Hint: You may want to consider a suitable group action.)
 - (f) Using the previous parts, show that every group with 20 elements contains a *normal* subgroup of order 5.