

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH2707-WE01

Title:

Markov Chains II

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.				
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.				
	Write your answer in the white-covered answer booklet with barcodes.				
	Begin your answer to each question on a new page.				

Revision:

SECTION A

Q1 Suppose P is the stochastic matrix

$$P = \begin{bmatrix} 0 & \frac{1}{3} & 0 & 0 & \frac{2}{3} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} & 0 & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}$$

- (a) Determine the communicating classes of P.
- (b) Determine which states are recurrent, and which are transient.
- (c) Determine the period of each state.

For each problem you should show all of your workings and justify your calculations with suitable explanations.

Q2 Consider the transition matrix P on $I = \{1, 2, 3\}$ given by

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Suppose $(X_n)_{n\geq 0}$ is a Markov chain with transition matrix P. Let $f: I \to \mathbb{R}$ be given by f(1) = f(3) = -1 and f(2) = 1. Compute the quantity

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(X_n),$$

and justify your computation by citing an appropriate theorem.

SECTION B

Q3 You have been asked to program a robotic security guard for an art gallery. The art gallery is rectangular in shape, and is tiled with square floor tiles. See Figure 1 for an illustration of the case when the gallery is five tiles wide. This problem concerns galleries of width 2n + 1 for some $n \ge 1$.

The owners of the gallery have asked that the robot spends, on average, **twice as much time** on a tile at distance k from the central tile as at a tile at distance k+1 for all k = 0, 1, ..., n-1. The robot must behave as a Markov Chain, and its design restricts it to moving at most one tile horizontally in any unit of time.

- (a) Suppose $n \ge 1$. Write down a formula for the entries of a transition matrix that meets the requirements given in the case of a gallery of width 2n + 1. You should index your matrix by $I = \{-n, -n + 1, ..., n - 1, n\}$, with -n the leftmost tile and n the rightmost tile. You must carefully justify why your solution leads to the requirements being met.
- (b) Let $p_{ij}(n)$ be the ij^{th} entry of a matrix that provides a solution to part (a), and P be the matrix with entries $p_{ij} = \lim_{n \to \infty} p_{ij}(n)$. Show that P is a stochastic matrix.
- (c) Let P be a transition matrix that provides a solution to part (b). Suppose $(X_m)_{m\geq 0}$ is a Markov Chain with transition matrix P. Is this Markov Chain recurrent or not?

For each problem you should show all of your workings and justify your calculations with suitable explanations.

2	1	0	1	2

Figure 1: The case of a gallery of width 5. Each tile is labelled with its distance to the central tile.

Q4 For this problem, the state space is $I = \{0, 1, 2, 3, 4\}$, and P is the stochastic matrix with entries p_{ij} described by the following figure.

Figure 2: Illustration of P for Q4. All arrows have the value $\frac{1}{2}$.

Recall that H^A is the hitting time of a set of states $A \subset I$.

- (a) Compute $\mathbb{E}_1[H^{\{0,4\}}]$.
- (b) Compute $\mathbb{P}_i[H^{\{4\}} < H^{\{0\}}]$ for each $i \in I$. **Hint**: explain why you can apply a standard theorem to compute this.
- (c) Define $\tilde{p}_{ii} = 1$ for $i \in \{0, 4\}$, $\tilde{p}_{ij} = 0$ if $i \in \{0, 4\}$ and $j \neq i$, and otherwise define

$$\tilde{p}_{ij} = \frac{p_{ij} \mathbb{P}_j [H^{\{4\}} < H^{\{0\}}]}{\mathbb{P}_i [H^{\{4\}} < H^{\{0\}}]}.$$

Is the matrix \tilde{P} with entries \tilde{p}_{ij} a stochastic matrix?

(d) Compute $\mathbb{E}_i[H^{\{4\}} \mid H^{\{4\}} < H^{\{0\}}].$

For each problem you should show all of your workings and justify your calculations with suitable explanations.