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SECTION A

Q1 Starter for 10

Consider the following models for interacting populations x(t) and y(t):

(i) :

dx

dt
= x(1− x) +

xy

1 + y
,

dy

dt
= y(1− y) + xy,

(ii) :

dx

dt
= x(1− x)− xy

1 + y
,

dy

dt
= y(1− y) + xy,

(iii) :

dx

dt
= x− xy,

dy

dt
= −y + xy,

(iv) :

dx

dt
= a− x+ x2y,

dy

dt
= b− x2y.

State the physically valid equilibria in each of the models labelled (i)–(iv). For (iv)
you should assume a, b > 0.
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Q2 The one about the generic eigen-expansions for which I have no pun

Consider two models for population dispersal:

∂u1

∂t
= ∇2u1,

∂2u2

∂t2
= ∇2u2,

for densities u1(x, y, t), u2(x, y, t), on a box domain with coordinates (x, y) ∈ [0, L]×
[0, L] and no-flux boundary conditions.

(a) State the general solution to the equation for u1 as a Fourier series.

(b) The solution for u2 is:

u2(x, y, t) =
∞∑

n=0

∞∑
m=0

[Anm cos (knmt) +Bnm sin (knmt)] cos
(nπx
L

)
cos
(mπy

L

)
,

knm =

√
(n2 +m2)π2

L2
.

Consider a population which is seeded initially with a complex pattern of pop-
ulation sub-groupings of a large variety of spatial scales. Describe and contrast
how the complexity of this pattern changes in time in both cases (this only
needs to be a rough description).
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Q3 Fickian no more

Consider the following model of a population of cells moving in a domain [0, L]:

∂u

∂t
= a

∂2u

∂x2
+ b

∂4u

∂x4
+ f(u),

subject to the boundary conditions,

∂u

∂x
(0, t) =

∂u

∂x
(L, t) =

∂3u

∂x3
(0, t) =

∂3u

∂x3
(L, t) = 0.

(a) Assume there is an equilibrium u0 > 0 such that f(u0) = 0. Linearize the
model and determine necessary conditions on a, b, and f such that, for some
L > 0, the system exhibits a Turing instability.

(b) Give a biological interpretation of the three terms on the right-hand side of the
equation (remember that u represents the density of a population). What do
the boundary conditions signify physically? Hint: Note carefully the signs of
a and b in terms of constraints needed for Turing instability above.
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Q4 Bringing the budworms back

Consider the following modified spruce budworm model:

∂u

∂t
=
∂2u

∂x2
+ u(1− u)− u2

1 + u
, x ∈ [0, L],

with homogeneous Dirichlet (u = 0) boundary conditions at x = 0 and x = L.

(a) Find all feasible spatially homogeneous equilibria and determine their stability
in the absence of diffusion.

(b) Using a linear stability analysis, determine a value Lc such that for L > Lc,
the population will not go extinct.
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SECTION B

Q5 It’s predator–prey, but not as we know it. . .

Consider the following interacting population model:

dû

dt̂
= aû(1− û) + cû v̂(1− v̂),

dv̂

dt̂
= −bv̂ + dû v̂,

(1)

where a, b, c, d > 0 are real constants.

(a) Describe the physical interpretation of the terms on the right-hand side of the
model.

(b) With a suitable rescaling, (1) can be written as:

du

dt
= u (1− αu) + uv (1− βv) ,

dv

dt
= −vγ + uv.

State the form of the constants α, β, γ in terms of the constants a, b, c, d.

(c) Find all the physically valid equilibria, and determine conditions for them to
be asymptotically stable.
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Q6 Tidal advection–diffusion

Consider a species of algae represented by its density (number per unit length)
u(x, t) living in a thin pipe of length L which is fed into by the ocean at one end.
The bacteria move subject to diffusion within the sea water, determined by Fick’s
law. They are also moved by the tides which we assume wax and wane (or advance
and retreat) at a rate v sin(ωt) (v and ω constant).

(a) Explain why the bacteria could be modelled using the following PDE based on
the information given above:

∂u

∂t
= D

∂2u

∂x2
+ v sin(ωt)

∂u

∂x
. (2)

You should start from the general advection–diffusion equation:

∂u

∂t
= −∇ · J +∇ · (vu) + f,

where the terms in the equation are as defined in class.

(b) Assume v is sufficiently small such that (2) can be approximated as:

∂u

∂t
= D

∂2u

∂x2
,

and assume further that the algae density has the same value uc at both ends
of the pipe. Use separation of variables to show that

u(x, t) =
∞∑

n=1

Cn exp

(
−Dn

2π2

L2
t

)
sin
(nπx
L

)
+ uc, (3)

for some real constants C and λ. You may quote any results derived in class.

(c) The previous solution indicates that in the absence of the tidal velocity v the
population tends to a constant value over time. We now investigate whether
the tidal flow can induce the growth of patterns.

Assume v = ε � 1. We consider a solution to (2) in the form u(x, t) =
u0(x, t) + εu1(x, t) where u0(x, t) is (3). You should assume the solution u1

satisfies no-flux boundary conditions (so the advective motion can change the
average density). By seeking the general form for a solution for u1 evaluate
whether patterns can develop in the long time limit. Hint: You do not need
to provide the full solution to answer this question, just clarify its form.

You may use any results derived in class.
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Q7 Golden spiralling down the rabbit hole

Recall Fibonacci’s model of a growing rabbit population,

Fn = Fn−1 + Fn−2.

Remember that this model represents a month of time per generation, and that it
takes one generation for the population to mature to breeding age.

(a) Introduce the variable In = Fn−1 to model the population of immature rabbits
who cannot yet mate. Use this to write the system as a first-order system in
terms of the mature rabbits Fn and the immature ones In. Solve this linear
system to find a formula for the total number of mature rabbits at each gen-
eration, that is Fn. You do not need to compute the eigenvectors or use the
initial conditions, so your formula for Fn can contain arbitrary constants.

(b) Consider a model of the form

un = un−1(1− un−1) + vn−1(1− vn−1), vn = un−1, (4)

where now un and vn represent densities of rabbits, rather than numbers of
individuals. Besides treating rabbits in terms of densities, what else is different
about this model compared with the one you wrote in part (a)? What is a
plausible biological interpretation for any terms which are different?

(c) Find the equilibria of (4) and determine their stability.
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Q8 Hunting with gradients

Consider the following reaction–cross-diffusion system,

∂u

∂t
= u(K − u)− uv +∇2u+ α∇ · (u∇v) ,

∂v

∂t
= −v + uv +∇2v + β∇ · (v∇u) ,

(5)

where K > 0 on some closed and bounded domain Ω. Assume that the populations
u and v are not allowed to leave this domain through the boundary, ∂Ω.

(a) Give an interpretation to the uv term in the kinetics, and hence describe how
the two populations interact.

(b) State what boundary conditions represent the populations not leaving through
the boundary. Show that these conditions are equivalent to imposing Neumann
boundary conditions.

(c) Compute the homogeneous equilibrium where both species coexist, and deter-
mine any conditions necessary for its feasibility and stability. Can this system
satisfy the Turing conditions if we only have reaction and diffusion (that is, if
α = β = 0)?

(d) In the lecture notes we derived the following two necessary conditions for
diffusion-driven (Turing) instability in cross-diffusion systems:

d1Gv + d4Fu > d2Gu + d3Fv,

(d1Gv + d4Fu − d2Gu − d3Fv)2 > 4(d1d4 − d2d3)(FuGv − FvGu).

Write the functions di for the system (5). Consider K = 2, and consider two
separate cases: (i) α = 0, β 6= 0 and (ii) β = 0, α 6= 0. For each case, determine
if the system can admit Turing instabilities, and if so find a simple bound for
α or β in each case which are necessary for such instabilities.

(e) Given the bounds on α and β found above, give a physical interpretation to
the two cross-diffusion terms in the case that the system can admit Turing
instabilities. Are these interpretations biologically plausible?
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