

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH3281-WE01

Title:

Topology III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Write your answer in the white-covered answer booklet with barcodes.
	Begin your answer to each question on a new page.

Revision:

SECTION A

- **Q1** (a) For a subset A of topological space X, define a *limit point* of A.
 - (b) Let \mathbb{R} have the standard topology. Using your definition above, show that every real number is a limit point of the set \mathbb{Q} .
 - (c) As usual, let \overline{A} denote the *closure* of A, and A° the *interior* of A. Define each of these terms.
 - (d) Among the following statements, only two are necessarily true for all subsets A, B of a topological space.

 $\overline{A\cap B} = \overline{A} \cap \overline{B}; \quad \overline{A\cup B} = \overline{A} \cup \overline{B}; \quad (A\cap B)^\circ = A^\circ \cap B^\circ; \quad (A\cup B)^\circ = A^\circ \cup B^\circ.$

Give counterexamples for the ones that are not necessarily true. (You are **not** asked for any proofs.)

- **Q2** (a) Let (X, τ) be a topological space, with sets $B \subset A \subset X$. We give A the subspace (induced) topology. Define carefully, in terms of τ , the meaning of the following statements:
 - i) (X, τ) is connected.
 - ii) B is open in A.
 - iii) B is not connected in A.

In Furstenberg's topology τ_F on \mathbb{Z} , a subset $U \subseteq \mathbb{Z}$ is defined to be open if for every $a \in U$ there exists a non-zero $d \in \mathbb{Z}$ with $a + d\mathbb{Z} \subseteq U$.

- (b) Show that (\mathbb{Z}, τ_F) is not connected.
- (c) Show that in (\mathbb{Z}, τ_F) the only nonempty connected sets are the singleton sets $\{x\}$.
- Q3 (a) State what it means for two topological spaces to be homotopy equivalent.
 - (b) Consider the lists of upper- and lower-case letters below (in the given font!).

Viewing each letter as a subset of \mathbb{R}^2 equipped with the subspace topology, partition the upper-case list, the lower-case list and the combined list, respectively, into sets of homotopy-equivalent topological spaces. In particular, identify any letters from the upper-case list which are not homotopy equivalent to their lower-case counterparts. Briefly justify your answers, including by making reference to appropriate topological invariants wherever necessary.

(c) Let A be the annulus $A = \{z \in \mathbb{C} \mid 1 \le |z| < 2\}$, let S^1 be the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ and let X be an arbitrary nonempty compact topological space. Prove that the product $X \times A$ is homotopy equivalent, but not homeomorphic, to the product $X \times S^1$.

- Q4 (a) If K and L are finite simplicial complexes, state what it means for a map $f: K \to L$ to be a simplicial map.
 - (b) Let K be the 2-dimensional finite simplicial complex which triangulates the torus $T = S^1 \times S^1$ and is given (via the identifications indicated by the arrows on the sides of the square) by the diagram below, where the vertices are labelled v_1, \ldots, v_9 .

Consider now the surjective simplicial map $f: K \to L$ determined by

$$f(v_i) = w_{i \bmod 3},$$

where L is a finite simplicial complex with vertices w_0, w_1, w_2 .

- (i) Sketch the simplicial complex L. State whether L triangulates a closed surface and, if so, identify that closed surface. Provide a brief justification for each part of your answer.
- (ii) Compute the fundamental groups $\pi_1(K, v_1)$ and $\pi_1(L, w_1)$.
- (iii) Deduce that the homomorphism $f_* : \pi_1(K, v_1) \to \pi_1(L, w_1)$ induced by f is surjective, but not an isomorphism.

SECTION B

Q5 (a) Give the definition of compactness for a topological space.

The Heine-Borel theorem states that, for a set $A \subseteq \mathbb{R}^n$,

 $A \text{ compact} \iff A \text{ closed and bounded.}$

- (b) Prove **one** direction, either \Leftarrow or \Rightarrow , of Heine-Borel. You may use other results from the lectures, stating them clearly.
- (c) Give an example of a metric space (M, d) and a set $A \subseteq M$, with A closed and bounded but not compact.
- (d) For $n \ge 2$, determine which of the matrix groups $\operatorname{GL}_n(\mathbb{R})$, $\operatorname{SL}_n(\mathbb{R})$, $\operatorname{O}(n)$, $\operatorname{SO}(n)$ are compact.
- **Q6** Let $S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + \cdots + x_{n+1}^2 = 1\}$, *G* be the group $\{+1, -1\}$ with multiplication, and $G^{n+1} = \{(e_1, e_2, \ldots, e_{n+1}) | e_i \in \{-1, +1\}\}$ be the direct product of n+1 copies of *G*. We give each of S^n and G^{n+1} respectively the topology induced by the standard topology on \mathbb{R}^{n+1} . Then the map

• :
$$G^{n+1} \times S^n \to S^n$$
 given by $(e_1, \dots, e_{n+1})(x_1, \dots, x_{n+1}) \mapsto (e_1 x_1, \dots, e_{n+1} x_{n+1})$

defines an action of G^{n+1} on S^n .

- (a) Consider the elements (+1, +1, -1), (+1, -1, -1) and (-1, -1, -1) in the group G^3 . Describe in simple geometric terms how each of these acts on S^2 .
- (b) Consider the orbits when G^{n+1} acts on S^n . For each $k \in \{1, \ldots, n+1\}$, specify an orbit with 2^k elements.

Let $f: S^n \to \mathbb{R}^{n+1}$ be given by $f((x_1, \dots, x_{n+1})) = (x_1^2, \dots, x_{n+1}^2)$.

- (c) For n = 2, describe geometrically the image $f(S^2)$ of this map.
- (d) As usual, we write S^n/G^{n+1} for the orbit space of this action, and define the maps

$$\pi: S^n \to S^n/G^{n+1}$$
 given by $\pi((x_1, \dots, x_{n+1})) = [(x_1, \dots, x_{n+1})]$

$$\bar{f}: S^n/G^{n+1} \to \mathbb{R}^{n+1}$$
 given by $\bar{f}([(x_1, \dots, x_{n+1})]) = f((x_1, \dots, x_{n+1})),$

so that $f = \overline{f} \circ \pi$. Show that \overline{f} is both well-defined and injective.

(e) Show that \overline{f} is a homeomorphism onto its image. You may use the following result from lectures: If X is compact, Y is Hausdorff, and $f : X \to Y$ is a continuous bijection, then f is a homeomorphism.

- **Q7** Let X be the connected, two-dimensional, finite simplicial complex given by $X = K \cup L$, where K and L are connected, two-dimensional, finite simplicial complexes and where the intersection $K \cap L$ is a single 0-simplex common to both K and L. Suppose, in addition, that K triangulates the Klein bottle and that L triangulates the topological space given by removing a small open disc from the real projective plane.
 - (a) Prove or disprove the statement that X is homeomorphic to a closed surface. Briefly justify any assertions you make.
 - (b) Compute the Euler characteristic of X, justifying any assertions you make.
 - (c) Compute the fundamental group π₁(X).
 [You may assume knowledge of the fundamental group of the circle S¹ and of any contractible space, if necessary, but you should present as part of your answer a calculation of the fundamental group of any other space you use.]
- **Q8** (a) Let S_1 and S_2 be two closed surfaces. State the definition of the connected sum $S_1 \# S_2$ of S_1 and S_2 .
 - (b) Let $K \# \mathbb{P}$ be the connected sum of the Klein bottle K and the real projective plane \mathbb{P} .
 - (i) Compute the Euler characteristic $\chi(K\#\mathbb{P})$ of $K\#\mathbb{P}$, briefly justifying any formula you use.
 - (ii) Using $K \# \mathbb{P}$ as your starting point, explain how to obtain a closed, orientable surface Σ with Euler characteristic $\chi(\Sigma) = -2$ by attaching or removing discs, handles or crosscaps, as appropriate. You must give a brief explanation of the effect on the Euler characteristic of any operations you perform.