

EXAMINATION PAPER

Examination Session: May/June

Year: 2025

Exam Code:

MATH3401-WE01

Title:

Cryptography and Codes III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions.						
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.						
	Write your answer in the white-covered answer booklet with barcodes.						
	Begin your answer to each question on a new page.						

Revision:

SECTION A

Q1 We use the following convention to convert alphabetic messages into sequences of integers modulo 26:

А	В	\mathbf{C}	D	Е	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ
1	2	3	4	5	6	7	8	9	10	11	12	13
Ν	Ο	Р	Q	R	\mathbf{S}	Т	U	V	W	Х	Y	Ζ
14	15	16	17	18	19	20	21	22	23	24	25	26

You receive the ciphertext "JOPRMD", encrypted using a Hill cipher with block length 2 and key matrix

$$K = \begin{pmatrix} 5 & 1\\ 12 & 9 \end{pmatrix}.$$

Find the plaintext (as a word).

- **Q2** Alice and Bob are using the Diffie–Hellmann key exchange scheme with p = 157 and g = 5.
 - (a) Alice sends $g^{\alpha} = 124$ to Bob and Bob sends $g^{\beta} = 108$ to Alice. Use the baby-step giant-step algorithm to find α .
 - (b) Find their shared secret key. If you were unable to answer part (a), use the (incorrect) value $\alpha = 19$.
- **Q3** (a) Give a matrix $H \in M_{2,4}(\mathbb{F}_3)$ such that the code defined by

$$C = \{ \mathbf{x} \in \mathbb{F}_3^4 \mid \mathbf{x} H^t = \mathbf{0} \}$$

is a ternary Hamming code of redundancy 2.

- (b) Give the parameters of the code C (no proof is required).
- (c) Is the code C permutation equivalent to a cyclic code? Justify your answer. (Hint: Write generator-matrices for all ternary cyclic codes of block-length 4 and dimension 2.)
- **Q4** Let $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2 + x + 2)$.
 - (a) Show that x is primitive in \mathbb{F}_9 .
 - (b) Let $C = \langle \{(0, x + 1, 2x + 1, x, 1), (1, 0, 0, 2, x), (2, 1, 0, x + 2, x)\} \rangle \subseteq \mathbb{F}_9^5$. Find a generator- and a check-matrix for C, and its parameters [n, k, d].

SECTION B

Q5 (a) Using the congruences

$$458^2 \equiv 2^3 \cdot 3^6 \cdot 5 \mod{45151}$$

 $1327^2 \equiv 2^3 \cdot 5 \mod{45151}$,

factorise 45151.

- (b) Bob's RSA public key is (N, e) = (47941, 3).
 - (i) Find the encryption of m = 149.
 - (ii) Another message m' has encryption 31163. Show that the encryption of 149m' is 27.
 - (iii) Hence find m'. You do not need to find the decryption exponent.
- **Q6** Let *E* be the curve defined by $y^2 = x^3 + x^2 + x$ over \mathbb{F}_p where p > 3 is prime. Although this is not an elliptic curve as defined in lectures, it is still possible to put a group law \oplus on the set of points

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 = x^3 + x^2 + x\} \cup \{\mathcal{O}\}$$

as follows. Define $P \oplus \mathcal{O} = \mathcal{O} \oplus P = P$. If $P = (x_0, y_0)$ and $Q = (x_1, y_1)$ are in $E(\mathbb{F}_p)$ and $y_0 = -y_1$, define $P \oplus Q = \mathcal{O}$. Otherwise, define

$$P \oplus Q = (x_2, y_2)$$

where

$$x_2 = \lambda^2 - 1 - x_0 - x_1$$

and

$$y_2 = -(\lambda x_2 + \mu)$$

with

$$\lambda = \begin{cases} \frac{y_1 - y_0}{x_1 - x_0} & \text{if } x_1 \neq x_0\\ \frac{3x_0^2 + 2x_0 + 1}{2y_0} & \text{if } x_1 = x_0 \text{ and } y_1 = y_0 \end{cases}$$

and

$$\mu = y_0 - \lambda x_0.$$

- (a) Give a geometric interpretation, with justification, of the quantities λ and μ .
- (b) Suppose that p = 5. List the points of $E(\mathbb{F}_5)$ and show that $E(\mathbb{F}_5)$ is cyclic of order 8 with P = (2, 2) being a generator.
- (c) Suppose that p = 7. List the points of $E(\mathbb{F}_7)$ and show that $|E(\mathbb{F}_7)| = 8$. Is $E(\mathbb{F}_7)$ cyclic?

- **Q7** (a) Show that the only irreducible polynomials in $\mathbb{F}_2[x]$ of degree three are $x^3 + x^2 + 1$ and $x^3 + x + 1$.
 - (b) Using the fact that $x^7 1 = (x 1)(x^3 + x^2 + 1)(x^3 + x + 1)$ in $\mathbb{F}_2[x]$, list the generator-polynomials of all binary cyclic codes of block length 7.
 - (c) Give generator- and check-matrices for the binary cyclic codes of length 7 and dimension 4.
 - (d) State the sphere packing bound for a q-ary (n, M, d) code and explain what it means for a code to be perfect. Find all (if any) binary cyclic codes of length 7 and dimension 4 which are perfect. Justify your answer.
- **Q8** Let p be an odd prime, and let $C_1, C_2 \subseteq \mathbb{F}_2^p$ be cyclic binary codes of block-length p. Write $g_1(x)$ and $g_2(x)$ for their generator-polynomials, and assume that $x^p 1 = (x 1)g_1(x)g_2(x)$.
 - (a) Let $a(x) \in \langle g_1(x) \rangle$ and $b(x) \in \langle g_2(x) \rangle$. Show that a(x)b(x) is either zero or equal to $1 + x + \ldots + x^{p-1}$ in $\mathbf{R}_p = \mathbb{F}_2[x]/(x^p 1)$.
 - (b) Assume now that C_1 and C_2 are permutation equivalent and let a be a codeword of C_1 of weight w. Show that there is a codeword $b \in C_2$ of weight w.
 - (c) With notation as above assume that w is odd. Show that $w^2 \ge p$.
 - (d) Using the fact that

$$x^{31} - 1 = (x - 1)(1 + x^3 + x^8 + x^9 + x^{13} + x^{14} + x^{15})(1 + x + x^2 + x^6 + x^7 + x^{12} + x^{15})$$

in $\mathbb{F}_2[x]$, show that every codeword of odd weight of the cyclic code $\langle g(x) \rangle$, with $g(x) = 1 + x^3 + x^8 + x^9 + x^{13} + x^{14} + x^{15}$, has weight at least 7.