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SECTION A

Q1 We have the following observations of categorical variables genus (x1), habitat (x2)
and number of legs (x3) alongside the response variable life expectancy in years (y).

Animal x1 x2 x3 y
rat mammalia urban 4 2
cat mammalia urban 4 15
salmon actinopterygii river 0 5
frog amphibia river 4 8
eagle aves mountain 2 25

(a) Calculate the distance matrix for these observations based on the Hamming
distance (treat the number of legs as a category here rather than a number).

(b) Recode the variables using one-hot encoding and calculate the distance matrix
based on the Manhattan distance (treat the number of legs as a number in this
case).

(c) Due to the number of categories and variables, we decide to use the Hamming
distance version. We have two new animals to predict the life expectancy for:

Animal x1 x2 x3

dog mammalia urban 4
otter mammalia river 4

Use a k-nearest neighbour algorithm with k = 2 to predict the life expectancy
for these two animals.
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Q2 Consider the regression problem, with a predictive rule hw : Rd → (0, 1) which
receives inputs x = (x1, ..., xd)

> ∈ Rd and returns values in (0, 1). Let hw (x) be
modeled as a feedforward neural network (FNN) with equation

hw (x) = σ2

(
c∑
j=1

w2,1,jσ1

(
d∑
i=1

w1,j,ixi

))

We consider activation functions

σ1 (ξ) =

{
exp (ξ)− 1 , ξ ≤ 0

1 , ξ > 0

and
σ2 (ξ) = exp

(
−ξ2

)
for ξ ∈ R. The parameters c, d ∈ N+ are known while the weights {w·,·,·} of the NN
are unknown. To learn the unknown weights {w·,·,·}, we specify the loss function

` (w, z = (x, y)) = − log (1 + hw (x)− y) + log (1− hw (x) + y)

where z = (x, y) denotes an example, x ∈ Rd is the input vector (features), and
y ∈ R is the output value (target).

(a) Describe the algorithm necessary to perform the forward pass of the back-
propagation procedure to compute the activations (which may be denoted by
{αt,i}) and outputs (which may be denoted by {ot,i}) at each layer t.

(b) Describe the algorithm necessary to perform the backward pass of the back-
propagation procedure in order to compute the gradient

∇w` (w, (x, y)) =

((
∂

∂w1,j,i

` (w, (x, y))

)c,d
j=1,i=1

,

(
∂

∂w2,1,j

` (w, (x, y))

)c
j=1

)

of the loss function ` (w, z) with respect to w for any example z = (x, y).
Clearly state the steps of the procedure as well as state the quantities

∂

∂w1,j,i

` (w, (x, y)) , and
∂

∂w2,1,j

` (w, (x, y))

for all j = 1, ..., c, and i = 1, ..., d.
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SECTION B

Q3 A researcher is attempting to set up a classification system for images of handwritten
letters. As a first attempt, they are trying out decision tree models to see if they
can predict the letters “A”, “B” and “C” from 16 measurements of the letters
(x1, ..., x16).

(a) The following decision tree has been fitted to the data.

X7 < 6

X12 < 9

X12 >= 8

X13 < 6

X9 < 6

A
789  766  736

A
667  19  9

B
122  747  727

B
92  731  32

A
76  62  20

A
73  9  20

A
73  4  2

C
0  5  18

B
3  53  0

B
16  669  12

C
30  16  695

yes no

(i) In which regions of input space would the tree classify as a “C”?

(ii) What is the accuracy of this classifier with respect to all classes?

(b) In constructing a decision tree for a classification problem, two standard im-
purity measures are used: entropy and Gini impurity. Show that these both
are special cases of Tsallis entropy for partition t:

Iq(t) =
1

q − 1

(
1−

c∑
i=1

p(i|t)q
)
,

where q > 1 is a parameter and c is the number of classes

(c) As an alternative, a random forest classifier is proposed.

(i) Write out the algorithm for fitting a random forest model.

(ii) For these data, the accuracy for the random forest model is 0.98 (to 2
d.p.). Which of the two models would you prefer to use and why?
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Q4 (a) Consider a learning problem (H,Z, `). Assume that the loss function ` (w, z)
is convex, β-smooth, and nonnegative with z ∈ Z and w ∈ H where ‖w‖ ≤ B.
Let g denote the real data generating process. If we run the Stochastic Gradient
Descent (SGD) algorithm with constant learning rate η, for total number of
iterations T , and with purpose to minimize the risk function Rg (w), then we
have that for every w∗ ∈ H

E (Rg (wSGD)) ≤ 1

1− ηβ

(
Rg (w∗) +

‖w∗‖2

2ηT

)
where wSGD is the output of the SGD. In addition assume that ` (0, z) ≤ 1 for
all z. Show that by running online SGD with η = 1

β(1+3/ε)
for T ≥ 12B2β/ε

iterations, where ε > 0, we obtain agnostic Probably Approximately Correct
(PAC)-like guarantees.

(b) Consider the regression problem with inputs x ∈ X ≡ R2 , target y ∈ Y ≡ R,
and prediction rule hw : R2 → R with hw (x) = w>x = w1x1 + w2x2, w =
(w1, w2)

>. Consider a loss function ` : R2 → R+ with

` (w, z = (x, y)) =
∥∥y − w>x∥∥2

2
+ α ‖w2‖1 + (1− α) ‖w2‖22 (1)

for some given value α ∈ (0, 1). Assume there is available a training data set
Sm = {zi = (xi, yi) ; i = 1, ...,m} of size m. Let g denote the real data gener-
ating process. Write down the algorithm of the Stochastic Gradient Descent
(SGD) with constant learning rate η > 0, batch sample size equal to 1, and
termination criterion t > T for some T > 0 (t denotes the t-th iteration of
SGD), that aims to compute w∗, where

w∗ = arg min
w

(Ez∼g (` (w, z = (x, y)))) (2)

The formulas in your algorithm should be specific to the loss function in (1).

(c) Let X be an instance set and let ψ be a feature mapping of X into some Hilbert
feature space V . Let K : X × X → R be a kernel function that implements
inner products in the feature space V .

Consider the binary classification algorithm that predicts the label of an unseen
instance according to the class with the closest average. Formally, given a
training sequence S = {(x1, y1) , ..., (xm, ym)}, for every y ∈ Y = {−1,+1} we
define

cy =
1

my

∑
i:yi=y

ψ (xi)

where my = |{i : yi = y}|. We assume that m+1 and m−1 are nonzero. Then,
the algorithm outputs the value of the following decision rule:

h (x) =

{
1 , ‖ψ (x)− c+1‖2 ≤ ‖ψ (x)− c−1‖2
−1 , otherwise.

(i) Let w = c+1 − c−1 and let b = 1
2

(
‖c−1‖22 − ‖c+1‖22

)
. Show that

h (x) = sign (〈w,ψ (x)〉+ b)

(ii) Express h (x) in terms of the kernel function, and without accessing indi-
vidual entries of ψ (x) or w.
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