

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH3431-WE01

Title:

Machine Learning and Neural Networks III

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions.					
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.					
	Write your answer in the white-covered answer booklet with barcodes.					
	Begin your answer to each question on a new page.					

Revision:

Exam code	ר - ו
MATH3431-WE01	

SECTION A

Q1	We have the following observations of categorical variables genus (x_1) , habitat (x_1)	(x_2)
	and number of legs (x_3) alongside the response variable life expectancy in years (y).

Animal	x_1	x_2	x_3	y
rat	mammalia	urban	4	2
cat	mammalia	urban	4	15
salmon	actinopterygii	river	0	5
frog	amphibia	river	4	8
eagle	aves	$\operatorname{mountain}$	2	25

- (a) Calculate the distance matrix for these observations based on the Hamming distance (treat the number of legs as a category here rather than a number).
- (b) Recode the variables using one-hot encoding and calculate the distance matrix based on the Manhattan distance (treat the number of legs as a number in this case).
- (c) Due to the number of categories and variables, we decide to use the Hamming distance version. We have two new animals to predict the life expectancy for:

Animal	x_1	x_2	x_3
dog	mammalia	urban	4
otter	mammalia	river	4

Use a k-nearest neighbour algorithm with k = 2 to predict the life expectancy for these two animals.

Page number	Exam code
3 of 5	MATH3431-WE01
	1
LJ	

Q2 Consider the regression problem, with a predictive rule $h_w : \mathbb{R}^d \to (0, 1)$ which receives inputs $x = (x_1, ..., x_d)^\top \in \mathbb{R}^d$ and returns values in (0, 1). Let $h_w(x)$ be modeled as a feedforward neural network (FNN) with equation

$$h_w(x) = \sigma_2\left(\sum_{j=1}^c w_{2,1,j}\sigma_1\left(\sum_{i=1}^d w_{1,j,i}x_i\right)\right)$$

We consider activation functions

$$\sigma_{1}(\xi) = \begin{cases} \exp(\xi) - 1 & , \xi \leq 0\\ 1 & , \xi > 0 \end{cases}$$

and

$$\sigma_2\left(\xi\right) = \exp\left(-\xi^2\right)$$

for $\xi \in \mathbb{R}$. The parameters $c, d \in \mathbb{N}_+$ are known while the weights $\{w_{.,.,.}\}$ of the NN are unknown. To learn the unknown weights $\{w_{.,.,.}\}$, we specify the loss function

$$\ell(w, z = (x, y)) = -\log(1 + h_w(x) - y) + \log(1 - h_w(x) + y)$$

where z = (x, y) denotes an example, $x \in \mathbb{R}^d$ is the input vector (features), and $y \in \mathbb{R}$ is the output value (target).

- (a) Describe the algorithm necessary to perform the forward pass of the backpropagation procedure to compute the activations (which may be denoted by $\{\alpha_{t,i}\}$) and outputs (which may be denoted by $\{o_{t,i}\}$) at each layer t.
- (b) Describe the algorithm necessary to perform the backward pass of the backpropagation procedure in order to compute the gradient

$$\nabla_{w}\ell\left(w,(x,y)\right) = \left(\left(\frac{\partial}{\partial w_{1,j,i}}\ell\left(w,(x,y)\right)\right)_{j=1,i=1}^{c,d}, \left(\frac{\partial}{\partial w_{2,1,j}}\ell\left(w,(x,y)\right)\right)_{j=1}^{c}\right)$$

of the loss function $\ell(w, z)$ with respect to w for any example z = (x, y). Clearly state the steps of the procedure as well as state the quantities

$$\frac{\partial}{\partial w_{1,j,i}}\ell\left(w,(x,y)\right), \text{ and } \frac{\partial}{\partial w_{2,1,j}}\ell\left(w,(x,y)\right)$$

for all j = 1, ..., c, and i = 1, ..., d.

SECTION B

- Q3 A researcher is attempting to set up a classification system for images of handwritten letters. As a first attempt, they are trying out decision tree models to see if they can predict the letters "A", "B" and "C" from 16 measurements of the letters $(x_1, ..., x_{16})$.
 - (a) The following decision tree has been fitted to the data.

- (i) In which regions of input space would the tree classify as a "C"?
- (ii) What is the accuracy of this classifier with respect to all classes?
- (b) In constructing a decision tree for a classification problem, two standard impurity measures are used: entropy and Gini impurity. Show that these both are special cases of Tsallis entropy for partition t:

$$I_q(t) = \frac{1}{q-1} \left(1 - \sum_{i=1}^{c} p(i|t)^q \right),$$

where q > 1 is a parameter and c is the number of classes

- (c) As an alternative, a random forest classifier is proposed.
 - (i) Write out the algorithm for fitting a random forest model.
 - (ii) For these data, the accuracy for the random forest model is 0.98 (to 2 d.p.). Which of the two models would you prefer to use and why?

Page number																
L						E		~	£	5						
I.						J) (υ	1	J						
L.																
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Q4 (a) Consider a learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$. Assume that the loss function $\ell(w, z)$ is convex, β -smooth, and nonnegative with $z \in \mathcal{Z}$ and $w \in \mathcal{H}$ where $||w|| \leq B$. Let g denote the real data generating process. If we run the Stochastic Gradient Descent (SGD) algorithm with constant learning rate η , for total number of iterations T, and with purpose to minimize the risk function $R_g(w)$, then we have that for every $w^* \in \mathcal{H}$

$$E(R_g(w_{SGD})) \le \frac{1}{1 - \eta\beta} \left(R_g(w^*) + \frac{\|w^*\|^2}{2\eta T} \right)$$

where w_{SGD} is the output of the SGD. In addition assume that $\ell(0, z) \leq 1$ for all z. Show that by running online SGD with $\eta = \frac{1}{\beta(1+3/\epsilon)}$ for $T \geq 12B^2\beta/\epsilon$ iterations, where $\epsilon > 0$, we obtain agnostic Probably Approximately Correct (PAC)-like guarantees.

(b) Consider the regression problem with inputs $x \in \mathcal{X} \equiv \mathbb{R}^2$, target $y \in \mathcal{Y} \equiv \mathbb{R}$, and prediction rule $h_w : \mathbb{R}^2 \to \mathbb{R}$ with $h_w(x) = w^{\top}x = w_1x_1 + w_2x_2$, $w = (w_1, w_2)^{\top}$. Consider a loss function $\ell : \mathbb{R}^2 \to \mathbb{R}_+$ with

$$\ell(w, z = (x, y)) = \|y - w^{\top} x\|_{2}^{2} + \alpha \|w_{2}\|_{1} + (1 - \alpha) \|w_{2}\|_{2}^{2}$$
(1)

for some given value $\alpha \in (0, 1)$. Assume there is available a training data set $S_m = \{z_i = (x_i, y_i); i = 1, ..., m\}$ of size m. Let g denote the real data generating process. Write down the algorithm of the Stochastic Gradient Descent (SGD) with constant learning rate $\eta > 0$, batch sample size equal to 1, and termination criterion t > T for some T > 0 (t denotes the t-th iteration of SGD), that aims to compute w^* , where

$$w^* = \arg\min_{w} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$
(2)

The formulas in your algorithm should be specific to the loss function in (1).

(c) Let X be an instance set and let ψ be a feature mapping of \mathcal{X} into some Hilbert feature space \mathcal{V} . Let $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel function that implements inner products in the feature space \mathcal{V} .

Consider the binary classification algorithm that predicts the label of an unseen instance according to the class with the closest average. Formally, given a training sequence $S = \{(x_1, y_1), ..., (x_m, y_m)\}$, for every $y \in \mathcal{Y} = \{-1, +1\}$ we define

$$c_y = \frac{1}{m_y} \sum_{i:y_i=y} \psi\left(x_i\right)$$

where $m_y = |\{i : y_i = y\}|$. We assume that m_{+1} and m_{-1} are nonzero. Then, the algorithm outputs the value of the following decision rule:

$$h(x) = \begin{cases} 1 & , \|\psi(x) - c_{+1}\|_2 \le \|\psi(x) - c_{-1}\|_2 \\ -1 & , \text{ otherwise.} \end{cases}$$

- (i) Let $w = c_{+1} c_{-1}$ and let $b = \frac{1}{2} \left(\|c_{-1}\|_2^2 \|c_{+1}\|_2^2 \right)$. Show that $h(x) = \text{sign} \left(\langle w, \psi(x) \rangle + b \right)$
- (ii) Express h(x) in terms of the kernel function, and without accessing individual entries of $\psi(x)$ or w.