

EXAMINATION PAPER

Examination Session: May/June Year: 2025

Exam Code:

MATH3471-WE01

Title:

Geometry of Mathematical Physics III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.	
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.	
	Write your answer in the white-covered answer booklet with barcodes.	
	Begin your answer to each question on a new page.	

Revision:

SECTION A

- **Q1** (a) State the definition of SU(2).
 - (b) Explain why SU(2) is a group.
 - (c) Explain why SU(2) is a Lie group.
- **Q2** Let V be the set of complex 2×2 matrices with the properties that trM = 0 and $M^{\dagger} = M$.
 - (a) Show that V is a vector space isomorphic to \mathbb{R}^3 and give a basis of V.
 - (b) For $g \in SU(2)$ and $M \in V$, show that $gMg^{\dagger} \in V$.
 - (c) Define an action of $g \in SU(2)$ on V by

$$F(g): M \mapsto gMg^{\dagger}.$$

By showing that F(g) preserves det M, argue that F(g) defines a group homomorphism from SU(2) to O(3).

- **Q3** Let **x** and **y** be Lorentz vectors with components x^{μ} and y^{μ} , let x_{μ} and y_{μ} be the components of the associated covectors, and let γ^{μ} be the Dirac matrices.
 - (a) How do x^{μ} , $x_{\mu}x^{\mu}$ and $x_{\mu}x^{\nu}$ behave under Lorentz transformations?
 - (b) For $\mathbf{x} = (1, 2, 0, 0)$ and $\mathbf{y} = (2, 1, 0, 0)$ compute $x^{\mu}x_{\mu}$, $y^{\mu}y_{\mu}$ and $x^{\mu}y_{\mu}$.
 - (c) Show that

$$(\gamma^{\mu} x_{\mu})^2 = x_{\mu} x^{\mu} \mathbb{I}_{4 \times 4}.$$

Q4 Consider a field theory with 2 complex scalar fields $\phi_1 \phi_2$ and action

$$S = \int d^4x \; \partial_\mu \bar{\phi}_1 \partial^\mu \phi_1 + \partial_\mu \bar{\phi}_2 \partial^\mu \phi_2 + \lambda \left(\phi_1 \phi_2 + \bar{\phi}_1 \bar{\phi}_2 \right)$$

for a real constant λ .

- (a) Find the equations of motion for ϕ_1 and ϕ_2 .
- (b) Consider the U(1) action

$$\phi_1 \to e^{iq_1\theta} \phi_1$$
$$\phi_2 \to e^{iq_2\theta} \phi_2$$

For which values of q_1 and q_2 is this a symmetry of S?

(c) Work out the conserved current associated to the U(1) symmetry you found above and check that it is real.

Page number 3 of 6

Exam code	ר - ו
MATH3471-WE01	Ì
	i.
L	

SECTION B

- **Q5** Let V be the complex vector space of homogeneous polynomials in two variables z_1, z_2 of degree 2.
 - (a) Write a general element

$$P(z_1, z_2) = a_1 z_1^2 + a_2 z_1 z_2 + a_3 z_2^2 \,,$$

of V (for $a_1, a_2, a_3 \in \mathbb{C}$) as

$$P(z_1, z_2) = \sum_{j,k} z_j A_{jk} z_k$$

for a symmetric matrix A with components $A_{jk} = A_{kj}$ that you should find.

(b) Show that letting

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \to g^{-1} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

for $g \in SU(2)$ defines a representation r of SU(2) by working out the action of g on A.

- (c) Describe the action of the associated Lie algebra representation ρ by working out the action of $\rho(i\sigma_i)$, for σ_i the Pauli matrices, on A.
- (d) Verify that $\rho(i\sigma_i)$ is a Lie algebra homomorphism.

Page number	Exam code
4 of 6	MATH3471-WE01
I I	I

Q6 Let $SL(2,\mathbb{C})$ be the Lie group of complex 2×2 matrices of determinant 1.

(a) Find the Lie algebra elements γ_1 and γ_2 associated with the paths

$$p_1: t \mapsto \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$$
$$p_2: t \mapsto \begin{pmatrix} \cos t & i \sin t \\ i \sin t & \cos t \end{pmatrix}.$$

(b) Show that

$$\exp\left(\sum_j \alpha_j \sigma_j\right)$$

with

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

is in $SL(2,\mathbb{C})$ for arbitrary $\alpha_j \in \mathbb{C}$, and use this to describe a basis of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.

(c) Work out $\exp(\alpha_1\sigma_1)$, $\exp(\alpha_2\sigma_2)$ and $\exp(\alpha_3\sigma_3)$ for $\alpha_j \in \mathbb{C}$. hint:

$$\cosh \alpha = \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n)!}$$
$$\sinh \alpha = \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!}$$

(d) Show that $G := \{\exp(\alpha_3 \sigma_3), \alpha \in \mathbb{C}\}\$ defines a subgroup of $SL(2, \mathbb{C})$. Find the invariant subspaces of the action

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \exp(\alpha_3 \sigma_3) \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

of G on \mathbb{C}^2 .

- **Q7** Consider two inertial frames A and B which move relatively at a constant speed $\mathbf{v}_{AB} = (v_{AB}, 0, 0).$
 - (a) Write down the boost taking us from frame A to frame B in terms of the rapidity λ_{AB} with $\tanh \lambda_{AB} = v_{AB}$.
 - (b) Assume there is a third frame C with relative motion to A given by a constant speed $\mathbf{v}_{AC} = (v_{AC}, 0, 0)$ and associated rapidity λ_{AC} . Find the Lorentz transformation Λ_{BC} which maps between the frames B and C.
 - (c) The above implies that frames B and C are also moving with constant velocity \mathbf{v}_{BC} and rapidity λ_{BC} . Find λ_{BC} in terms of λ_{AB} and λ_{AC} . Hint:

 $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $\sinh(x+y) = \cosh x \sinh y + \sinh x \cosh y.$

(d) Show that for v_{AB} and v_{AC} both small compared to the speed of light c, we have approximately that

$$v_{BC} = v_{AC} - v_{AB} \,.$$

Q8 Consider a non-abelian gauge theory with gauge field $A_{\mu} = A^{a}_{\mu}t_{a}$ and a complex charged matter field $\phi = (\phi_{1}, \phi_{2})$ in the defining representation of SU(2) which transforms as

$$\phi \mapsto g(\mathbf{x})\phi$$

Exam code

MATH3471-WE01

under gauge transformations $g(\mathbf{x}) \in SU(2)$.

- (a) Show that $(\partial_{\mu}g(\mathbf{x}))g^{-1}(\mathbf{x}) + g(\mathbf{x})(\partial_{\mu}g^{-1}(\mathbf{x})) = 0.$
- (b) Let the covariant derivative and gauge transformation of A_{μ} be given by

$$D_{\mu}\phi := \partial_{\mu}\phi - ig_{YM}A_{\mu}\phi$$

and

$$A_{\mu} \to g(\mathbf{x}) \left(A_{\mu} + i g_{YM}^{-1} \partial_{\mu} \right) g^{-1}(\mathbf{x})$$

(Notice the unusual normalization leading to an appearance of the Yang-Mills coupling constant g_{YM} .)

Show that under a gauge transformation the covariant derivative transforms as

$$D_{\mu}\phi \mapsto g(\mathbf{x})D_{\mu}\phi$$
.

(c) Write the components $F^a_{\mu\nu}$ of the field strength

$$F_{\mu\nu} = F^a_{\mu\nu} t_a := \partial_\mu A_\nu - \partial_\nu A_\mu - ig_{YM} [A_\mu, A_\nu]$$

in terms of the components A^a_μ of the gauge field and the structure constants $f_{ab}{}^c$ of the Lie algebra of the gauge group given by

$$[t_a, t_b] = i f_{ab}{}^c t_c \; .$$

(d) Working in a normalization where $tr(t_a t_b) = \frac{1}{2} \delta_{ab}$, write the Lagrangian density

$$\mathcal{L} = -\frac{1}{2} \mathrm{tr}(F_{\mu\nu}F^{\mu\nu})$$

as a polynomial in g_{YM} ,

$$\mathcal{L} = \mathcal{L}_0 + g_{YM} \mathcal{L}_1 + g_{YM}^2 \mathcal{L}_2 \;,$$

and find explicit expressions for \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_2 in terms of the components A^a_{μ} of the gauge field and the structure constants $f_{ab}{}^c$ of the Lie algebra.