

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH40920-WE01

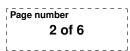
Title:

Mathematical Finance V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

barcodes. Begin your answer to each question on a new page.	
--	--

Revision:



SECTION A

- **Q1** Consider the market consisting of one risk-free asset with price dynamics $B_t = \left(\frac{5}{4}\right)^t$ and one risky asset whose price evolves with $S_0 = 24$, $u = \frac{3}{2}$ and $d = \frac{3}{4}$. Let T = 2.
 - (a) Prove that there is no arbitrage in this market, and find the risk-neutral measure.
 - (b) Calculate the fair prices at times t = 0, 1, 2, for a gap option with payoff

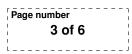
$$\Phi(S_T) = \begin{cases} S_T - 15 & \text{if } S_T > 20, \\ 0 & \text{if } S_T \le 20. \end{cases}$$

- (c) A broker offers to buy or sell the option in part (b) for £15. Is this a fair price? If it is not, describe in words how you would construct an arbitrage portfolio using this option (you do not have to actually construct the portfolio; "buy something and sell something else" is sufficient).
- Q2 (a) State the definition of a Brownian motion. For the rest of the question, let $(W_t)_{t>0}$ be a Brownian motion, and define

$$X_t := c \left(W_{2t+1} - W_1 \right)$$

for $t \ge 0$.

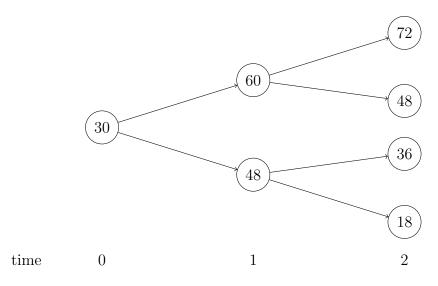
- (b) Prove, for a unique value of the constant c > 0 which you should determine, that $(X_t)_{t>0}$ is also a Brownian motion.
- (c) Choosing the constant c as determined in part (b), explain whether $(X_t)_{t\geq 0}$ is a martingale with respect to the natural filtration $(\mathcal{F}_t)_{t\geq 0}$ generated by $(W_t)_{t\geq 0}$.
- **Q3** Let $(W_t)_{t\geq 0}$ be a Brownian motion, and define $X_t := \int_0^t s^4 dW_s$ for $t \geq 0$.
 - (a) For each $t \ge 0$, find $\mathbb{E}[X_t]$ and $\operatorname{Var}(X_t)$, and identify the distribution of X_t .
 - (b) Let $R = \int_0^1 X_s \, dW_s$. Find $\operatorname{Var}(R)$.



SECTION B

Q4 A *collar* is a trading strategy, in which the holder will:

- Buy one unit of the underlying risky asset,
- Buy one European put option, with expiry date T and strike price K,
- Short sell one European call option, with expiry date T and strike price L > K.
- (a) Calculate and sketch the payoff of the collar option, as a function of S_T , the value of the risky asset at time T.
- (b) Find the hedging portfolio for a collar option, with T = 2, K = 24 and L = 60, in the binomial market containing one risk-free asset with price dynamics $B_t = (1 + 0.2)^t$, and one risky asset whose price dynamics are shown in the tree below. Use your hedging portfolio to calculate the price of the option at every point.



Q5 Consider a discrete-time market containing two assets, as follows.

There is one risk-free asset, whose price dynamics are

$$B_t = \begin{cases} 1 & t = 0, \\ (1+r_1) & t = 1, \\ (1+r_1)(1+r_2) & t = 2. \end{cases}$$

There is also one risky asset, with $S_0 = s$, which evolves according to a recombinant binomial model (with u and d fixed).

(a) Under which conditions on u, d, r_1 and r_2 does there exist a unique measure \mathbb{Q} such that

$$\mathbb{E}_{\mathbb{Q}}[S_t] = B_t S_0$$

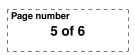
holds for t = 0, 1, 2?

Define \mathbb{Q} (for example, by giving the values of q_u and q_d at each time-step).

(b) Using the risk-neutral valuation formula

$$V_0 = \frac{1}{B_T} \mathbb{E}_{\mathbb{Q}}[V_T],$$

find the fair price at time 0 for a European put option with expiry date T = 2and strike price K = 80 in this market, if s = 100, u = 1.2, d = 0.6, $r_1 = 0.1$ and $r_2 = 0.05$.



Q6 Consider the stochastic differential equation

$$dX_t = (a - bX_t) dt + \sigma X_t dW_t, \qquad X_0 = 0,$$

where $a, b, \sigma > 0$ are constants, and $(W_t)_{t \ge 0}$ is a Brownian motion.

(a) Let $Y_t = \exp\left((b + \frac{\sigma^2}{2})t - \sigma W_t\right)$. Show that Y_t satisfies a stochastic differential equation of the form

$$\frac{dY_t}{Y_t} = c\,dt - \sigma\,dW_t,$$

and express the constant c in terms of b and σ .

- (b) Let $Z_t := X_t Y_t$. By applying Itô's lemma, derive and simplify the stochastic differential equation satisfied by Z_t .
- (c) By solving your stochastic differential equation from (b), or otherwise, show that for any fixed t > 0, X_t has the same distribution as

$$a\int_0^t \exp\left(-\left(b+\frac{\sigma^2}{2}\right)u+\sigma\widetilde{W}_u\right)du$$

where $(\widetilde{W}_u)_{u \in [0,t]}$ is some Brownian motion on [0,t].

- (d) Hence or otherwise, evaluate $\mathbb{E}[X_t]$.
- **Q7** Let $B_t = e^{rt}$ be the bond price at time t with risk-free interest rate r = 0.05, and let $(S_t)_{t\geq 0}$ be the stock price process following the stochastic differential equation

$$\frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t, \qquad S_0 = 2025,$$

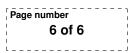
where $(W_t)_{t\geq 0}$ is a Brownian motion (under the real world measure \mathbb{P}), and the functions μ and σ are given by

$$\mu_t = 0.3 + 0.1 \sin(2\pi t), \qquad \sigma_t = 0.2 \left[2 + \cos(2\pi t)\right] \qquad \text{for any } t \ge 0.$$

- (a) Write down the stochastic differential equation satisfied by $Z_t := \log S_t$.
- (b) Using the Itô isometry, or otherwise, find $\operatorname{Var}(Z_1)$. (You may use the fact that $\int_0^1 \cos^2(2\pi t) dt = \frac{1}{2}$.)
- (c) Let (a_t, b_t) be a portfolio and $V_t := a_t B_t + b_t S_t$ the value process. State the definitions for (a_t, b_t) to be a self-financing replicating portfolio of a contingent claim Φ at expiry time T.
- (d) Let $\Pi_t(\Phi)$ be the no-arbitrage price of the contingent claim Φ at time t, and suppose that there exists a smooth function $F: [0,T] \times \mathbb{R} \to \mathbb{R}$ such that $F(t, S_t) = \Pi_t(\Phi)$. By constructing a hedging portfolio, show that F satisfies a partial differential equation of the form

$$\begin{cases} \partial_t F + P(t,x)\partial_{xx}F + Q(t,x)\partial_x F - R(t,x)F = 0, \\ F(T,x) = \Phi(x), \end{cases}$$

and identify the functions P(t, x), Q(t, x) and R(t, x).



SECTION C

- **Q8** (a) Write down the usual unbiased estimators for the mean and variance of a random variable X constructed from the sample X_1, X_2, \ldots, X_M . Under what conditions on the random variables X_1, X_2, \ldots, X_M are each of these estimators unbiased?
 - (b) Give an approximate 95% confidence interval [L, U] for $\mathbb{E}[X]$, assuming that M is large. Explain why

$$\mathbb{P}\big(\mathbb{E}[X] \in [L, U]\big) \approx 0.95$$

if M is large.

You may find some of the following values of the standard normal distribution function helpful.

(c) Suppose that S_t is the price of a risky asset which evolves randomly according to a geometric Brownian motion with drift μ and volatility σ , and that interest is compounded continuously at rate r.

Suppose that you also have a sequence of random variables $\xi_1, \xi_2, \ldots, \xi_M$ which are independently sampled from a standard Normal distribution.

Describe how these Normal samples can be used in the previous part to find a confidence interval for the payoff of a contingent claim, given by $X = \Lambda(S_T)$. (You can assume that Λ is a continuous function.) You might do this by setting $X_i = f(\xi_i)$, where f is some function to be defined.