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SECTION A

Q1 Suppose we have the following neural network:
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with the following specifications:

• All neurons have a common differentiable activation function φ

• The weight w
(`)
ij indicates the weight for the ith input for the jth neuron in the

`th layer. All neurons have zero bias

• The value x
(`)
j is the output of the jth neuron in the `th layer, except for the

final layer, for which the single output is y, and x
(0)
1 , x

(0)
2 , which are the inputs

for the network.

• The value s
(`)
j is the weighted sum of inputs for neuron j in layer `, before the

activation function is applied; that is s`j = w
(`)
1j x

(`−1)
1 + w

(`)
2j x

(`−1)
2

• The loss function for the output y of the neural network is a differentiable
function C(y).

Answer the following questions:

(a) Let δ
(`)
i = ∂C

∂s`
i
, for i ∈ {1, 2} and ` ∈ {1, 2, 3}. Show that:

δ
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)
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(b) Show that:
∂C

∂w
(1)
12

= δ
(1)
2 x

(0)
1 .

(c) Suppose that we modify the overall cost to a new function L by adding a
penalty term as follows (with c > 0 constant):

L = C(y) + c
∑

All weights w

w2.

Why might we want to do this? Name another method we could use for the
same purpose.
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Q2 Suppose we are given n discrete random variables X1, X2, . . . , Xn, where n ≥ 3.
The mutual information I of all of these variables is defined as:

I(X1, X2, . . . , Xn) = −H(X1, X2, . . . , Xn) +
n∑
k=1

H(Xk),

where H is entropy.

(a) Show that for discrete random variables X, Y, Z we have:

I(X, Y, Z) = I(X, Y ) + I((X, Y ), Z).

(b) Let S1 = X1, S2 = (X1, X2), and Si = (X1, X2, . . . , Xi). Show that:

I(X1, X2, . . . , Xn) =
n∑
k=2

I(Si−1, Xi).

Hint: you may wish to begin with an analogy of the identity in the previous
part, and proceed by induction.

In this question, you may use any result from lectures, but must state when you do
so.
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SECTION B

Q3 We wish to design a variational autoencoder (VAE). We have some data, which we
presume is generated by the following latent process:

• Sample a value z ∼MVN(0, Im) for some dimension m.

• Take a data sample X with distribution given by

(X|Z = z) ∼MVN
(
f(z, θ(d)), cIn

)
where f(·, θ(d)) : Rm → Rn is some smooth function, c > 0 is a constant,
n > m, and θ(d) is the set of parameters of our decoder.

The encoder of our VAE has parameters θ(e), and we will aim to approximate the
PDF fZ|X=x(z) by a distribution qx(z, θ

(e)). In this question:

• The expression MVN(µ,Σ) is the multivariate normal distribution with mean
µ and covariance matrix Σ,

• If x = (x1, x2, . . . , xk) then ||x||22 = x2
1 + x2

2 + · · ·+ x2
k,

• The expression Ik denotes the identity matrix of order k,

• The expression fZ(z) denotes the probability density function of Z at z, and
fX|Z=z(x) denotes the probability density function of (X|Z = z) at x.

(a) Sketch the architecture of a VAE, showing the encoder, the decoder, and any
random sampling. Indicate the data space and latent space and their relative
dimensions.

(b) Show that:

arg min
θ(e)

DKL

(
qx(z, θ

(e))||fZ|X=x(z)
)

=

= arg min
θ(e)

(
Eqx(z,θ(e))

{
||x− f(z, θ(d))||22

2c

}
+DKL

(
qx(z, θ

(e))||fZ(z)
))

.

where DKL (f1(z)||f2(z)) denotes the Kullback-Leibler divergence between dis-
tributions with densities f1(z) and f2(z).

(c) Explain why we wish to resample the latent space with added noise, rather
than encode our data to a latent representation and decode it directly.

(d) Briefly describe the operation of a generative adversarial network, and the
problem of mode collapse. Why is a VAE less susceptible to mode collapse?
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Q4 Suppose we wish to build a neural network which can approximate the function:

f(x) = cos(2πx),

on the interval x ∈ [0, p], where p is a positive integer. We want our approximation
g(x) to satisfy

|f(x)− g(x)| < ε,

for all x ∈ [0, p], for some ε > 0.

Our network will have one input, some number of hidden layers, and an output layer
consisting of a single neuron. Neurons in the hidden layers have ReLU activation
functions, and the neuron in the final layer has an identity activation function (that
is, φ(x) = x).

(a) Show that there exists a function k(ε) such that if we only use one hidden layer,
we need at least k(ε)p neurons in total to produce such an approximation.

Hint: you may wish to consider the number of line segments needed to ap-
proximate cos(2πx) on x ∈ [0, 1] to a maximum error of ε using a continuous
piecewise linear function taking the value 1 at both endpoints. You do not
need to find the function k(·), only show that it exists and is finite.

(b) Specify a network with more than one hidden layer which implements this func-
tion using at most c ln(p) + k(ε) neurons, where c is a constant not depending
on p or ε, and k is a function of ε only.

Hint: if

k(x) = ReLU

(
2ReLU(x)− 4ReLu

(
x− 1

2

))
,

then

r times︷ ︸︸ ︷
k(k(. . . k(x))) describes a ‘sawtooth’ function with 2r−1 ‘teeth’; e.g.:
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(c) Consider the set A(p) of functions from {1, 2, . . . , p} to {0, 1}, and the set Am(p)
of such functions which are periodic with period m. Describe the behaviour of
the Kolmogorov complexity of typical members of A(p) and Am(p) for large p
and fixed m.
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