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SECTION A

Q1 (a) Consider the clustering problem for a high dimensional data set with n = 67
observations and p = 3000 variables. Figure 1 shows the scree plot from the
K-means clustering method with the number of clusters varying from 1 to 15.
Based on this scree plot, what number of clusters is most appropriate for the
K-means clustering of this data and why?
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Figure 1: Scree plot for the K-means clustering in part (a) of Q1.

(b) Now consider hierarchical clustering for the data set in Part (a). Figure 2 shows
the dendrogram from hierarchical clustering for this high dimensional data
set. Based on this dendrogram, explain what type of hierarchical clustering
(agglomerative or divisive) is used here.

(c) Using the dendrogram shown in Figure 2 on page 4, how many clusters do you
suggest for this data? Explain your answer.

(d) The R output on the next page reports the proportion of variance and the
cumulative proportion captured by the principal components for this data.
Based on this output, how many principal components capture about 95% of
the data variance?
Also, explain briefly why the total variance (100%) is fully captured by only
67 principal components while there are 3000 variables in this data set.
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Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 14.4311 7.9997 5.84184 4.51285 4.28174 3.95003 3.53042
Proportion of Variance 0.4149 0.1275 0.06798 0.04057 0.03652 0.03108 0.02483
Cumulative Proportion 0.4149 0.5424 0.61034 0.65091 0.68743 0.71852 0.74335

PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 3.3459 3.1447 3.11112 2.95285 2.61072 2.41062 2.27749
Proportion of Variance 0.0223 0.0197 0.01928 0.01737 0.01358 0.01158 0.01033
Cumulative Proportion 0.7657 0.7853 0.80463 0.82200 0.83558 0.84715 0.85749

PC15 PC16 PC17 PC18 PC19 PC20 PC21
Standard deviation 2.08230 2.02676 1.99309 1.87063 1.82158 1.76700 1.66751
Proportion of Variance 0.00864 0.00818 0.00791 0.00697 0.00661 0.00622 0.00554
Cumulative Proportion 0.86612 0.87431 0.88222 0.88919 0.89580 0.90202 0.90756

PC22 PC23 PC24 PC25 PC26 PC27 PC28
Standard deviation 1.61992 1.59664 1.53104 1.46407 1.3993 1.34242 1.30520
Proportion of Variance 0.00523 0.00508 0.00467 0.00427 0.0039 0.00359 0.00339
Cumulative Proportion 0.91279 0.91787 0.92254 0.92681 0.9307 0.93430 0.93769

PC29 PC30 PC31 PC32 PC33 PC34 PC35
Standard deviation 1.29655 1.26377 1.21520 1.1848 1.10976 1.10597 1.07783
Proportion of Variance 0.00335 0.00318 0.00294 0.0028 0.00245 0.00244 0.00231
Cumulative Proportion 0.94104 0.94422 0.94716 0.9500 0.95241 0.95485 0.95716

PC36 PC37 PC38 PC39 PC40 PC41 PC42
Standard deviation 1.06867 1.05511 1.01839 0.99151 0.97300 0.96405 0.9501
Proportion of Variance 0.00228 0.00222 0.00207 0.00196 0.00189 0.00185 0.0018
Cumulative Proportion 0.95944 0.96166 0.96372 0.96568 0.96757 0.96942 0.9712

PC43 PC44 PC45 PC46 PC47 PC48 PC49
Standard deviation 0.94500 0.93754 0.91271 0.88823 0.85382 0.83616 0.82573
Proportion of Variance 0.00178 0.00175 0.00166 0.00157 0.00145 0.00139 0.00136
Cumulative Proportion 0.97300 0.97475 0.97641 0.97798 0.97943 0.98082 0.98218

PC50 PC51 PC52 PC53 PC54 PC55 PC56
Standard deviation 0.81650 0.80496 0.78883 0.78213 0.77324 0.76232 0.75980
Proportion of Variance 0.00133 0.00129 0.00124 0.00122 0.00119 0.00116 0.00115
Cumulative Proportion 0.98351 0.98480 0.98604 0.98726 0.98845 0.98961 0.99076

PC57 PC58 PC59 PC60 PC61 PC62 PC63
Standard deviation 0.73549 0.72290 0.71643 0.7082 0.70021 0.69464 0.65413
Proportion of Variance 0.00108 0.00104 0.00102 0.0010 0.00098 0.00096 0.00085
Cumulative Proportion 0.99184 0.99288 0.99390 0.9949 0.99587 0.99684 0.99769

PC64 PC65 PC66 PC67
Standard deviation 0.65224 0.62365 0.58815 1.992e-14
Proportion of Variance 0.00085 0.00077 0.00069 0.000e+00
Cumulative Proportion 0.99854 0.99931 1.00000 1.000e+00
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Figure 2: Dendrogram from the hierarchical clustering in part (b) of Q1.
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Q2 Consider the linear regression model Y = Xβ + ε. The elastic net estimator of β
is defined as follows

β̂EN(λ1, λ2) = arg min
β∈Rp

{∥∥Y −Xβ∥∥2

2
+ λ1

∥∥β∥∥1

1
+ λ2

∥∥β∥∥2

2

}
,

where λ1, λ2 ≥ 0 are two separate regularisation parameters.

(a) Prove that the elastic net estimator with a fixed λ2 can be computed using a
lasso problem.

Hint: Make an appropriate enlargement of the design matrix X using some
additional matrix and proceed from there.

(b) Consider a simple case where the columns of X are orthonormal, that is, we
have XTX = Ip with Ip being the p × p identity matrix, meaning that the
columns of X are orthogonal with norm 1. Show that the elastic net estimator
in this simple case can be obtained in closed form as follows

[β̂EN(λ1, λ2)]j =
sign([XTY ]j)

(∣∣[XTY ]j
∣∣− λ1

2

)
+

1 + λ2

, j = 1, . . . , p,

where sign(x) = 1(x > 0)− 1(x < 0) for x 6= 0, and also (x)+ = max(x, 0).

Hint: For this question and throughout the paper you may use the following
formulae on matrix differentiation. Let x be a vector, and further suppose that
matrix A and vectors a and b are all not functions of x. The following matrix
differentiation results hold:

∂a

∂x
= 0

∂x

∂x
= I

∂Ax

∂x
= A

∂xTA

∂x
= AT

∂xTAx

∂x
= xT

(
A+AT

)
the row representation

∂xTAx

∂x
=
(
A+AT

)
x the column representation

∂aTxb

∂x
= abT

∂aTxTb

∂x
= baT

∂aTxTxb

∂x
= xT

(
abT + baT

)
the row representation

∂aTxxTb

∂x
=
(
abT + baT

)
x the column representation.
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SECTION B

Q3 (a) Recall the linear regression model Y = Xβ + ε, here with a scaled matrix X
(i.e., all columns of X have mean 0 and variance 1). Assume the random errors
ε = (ε1, . . . , εn) are Gaussian and all independent with mean 0 and variance
σ2. Let F :=

{
2
n

∥∥εTX∥∥∞ ≤ λ0

}
, where ‖·‖∞ denotes the L∞-norm of a vector

(e.g., ‖a‖∞ = max
{
|a1|, . . . , |ap|

}
). Prove that, on F with λ ≥ 2λ0, we have

2

n

∥∥X(β̂ − β0)
∥∥2

2
+ λ
∥∥β̂Sc

0

∥∥1

1
≤ 3λ

∥∥β̂S0
− β0

S0

∥∥1

1
,

where β̂ is the lasso estimator, β0 is the vector of unknown true parameter
values, and S0 denotes the active set.

Hint: Use the basic inequality for β̂, that is,

1

n

∥∥X(β̂ − β0)
∥∥2

2
+ λ
∥∥β̂∥∥1

1
≤ 2

n
εTX(β̂ − β0) + λ

∥∥β0
∥∥1

1
,

and the Holder’s inequality for two vectors u and v which is

uTv ≤
∥∥u∥∥1

q

∥∥v∥∥1

r
,

1

q
+

1

r
= 1.

(b) Suppose that the compatibility condition holds for S0, that is, for some constant
φ0 > 0 we can write∥∥β̂S0

− β0
S0

∥∥2

2
≤
∥∥X(β̂ − β0)

∥∥2

2

/(
nφ2

0

)
.

Prove that, on F with λ ≥ 2λ0, we have

1

n

∥∥X(β̂ − β0)
∥∥2

2
+ λ
∥∥β̂ − β0

∥∥1

1
≤ 4λ2s0

/
φ2

0,

where s0 = |S0| is the sparsity index which is the cardinality of active set.

(c) Assume λ = 4σ
√

t2+2 log(p)
n

, with a known σ (e.g., by prior knowledge or an

appropriate estimate), for some constant t > 0. What would the result in part
(b) claim about the optimality of lasso estimator β̂ with such choice of λ?
Justify your claim mathematically.
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Q4 (a) Consider the sparse PCA problem

min
v,θ

n∑
i=1

∥∥X i − θvTX i

∥∥2

2
+ λ
∥∥v∥∥2

2
+ λ1

∥∥v∥∥1

1
, subject to θTθ = 1.

For the case when both regularisation parameters λ and λ1 are zero and n > p,
prove that v = θ and is the leading principal component direction.

(b) Write down the sparse PCA problem for the general case of d components
with v1, . . . ,vd. Also, briefly explain how to carry out the computation for
this general sparse PCA problem.

(c) We know that in K-means clustering, the (squared) Euclidean distance

d(X i,Xj) =
∥∥X i −Xj

∥∥2

2
=

p∑
l=1

(
X il −Xjl

)2
is often used as the dissimilarity measure for clustering the observations. Now
suppose that we instead use the weighted Euclidean distance

dW (X i,Xj) =

∑p
l=1wl

(
X il −Xjl

)2∑p
l=1wl

,

where the wl are some non-negative weights for clustering. Show that the
weighted Euclidean distance satisfies

dW (X i,Xj) = d(Zi,Zj) =

p∑
l=1

(
Zil −Zjl

)2
,

where

Zil = X il

( wl∑p
l=1wl

)1/2

.

What is the implication of this result when applying the K-means clustering
method in this case? Explain your answer.
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