

# EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH43020-WE01

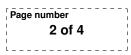
### Title:

## Stochastic Processes V

| Time:                         | 3 hours |                                                               |
|-------------------------------|---------|---------------------------------------------------------------|
| Additional Material provided: |         |                                                               |
|                               |         |                                                               |
| Materials Permitted:          |         |                                                               |
|                               |         |                                                               |
| Calculators Permitted:        | No      | Models Permitted: Use of electronic calculators is forbidden. |

|  | barcodes.<br>Begin your answer to each question on a new | nswer booklet with<br>new page. |
|--|----------------------------------------------------------|---------------------------------|
|--|----------------------------------------------------------|---------------------------------|

**Revision:** 



#### SECTION A

- Q1 Let X, Y be two non-negative random variables on a common probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  with  $\mathbb{E}[X], \mathbb{E}[Y] < \infty$ .
  - (a) State the definition of  $X \leq_{\text{st}} Y$ .
  - (b) Suppose  $X \leq_{\text{st}} Y$ . Show that  $\mathbb{E}[X] \leq \mathbb{E}[Y]$ .
  - (c) Does  $\mathbb{E}[X] \leq \mathbb{E}[Y]$  imply  $X \leq_{st} Y$ ? Provide a proof if this is true, or a counter-example otherwise.
- **Q2** Let  $(N(t))_{t>0}$  be a Poisson process with intensity  $\lambda$ . Assume that N(0) = 0.
  - (a) Write down a formula for the distribution of N(t) for fixed t > 0, that is, what is the value of  $\mathbb{P}[N(t) = k]$  for integers  $k \ge 0$ ?
  - (b) Let s, t > 0 with 0 < s < t. Explain why for m > n

$$\mathbb{P}[N(s) = m \,|\, N(t) = n] = 0,$$

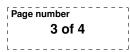
and for  $0 \le m \le n$  derive a formula for

$$\mathbb{P}[N(s) = m \mid N(t) = n].$$

- Q3 (a) State the definition of a martingale sequence. Make sure to state all probabilistic objects and conditions involved in the definition.
  - (b) Let  $X_1, X_2, \ldots$  be a sequence of independent random variables with

$$\mathbb{P}[X_n = i] = \begin{cases} e^{-n} & \text{if } i = 0\\ 1 - 2e^{-n} & \text{if } i = 1\\ e^{-n} & \text{if } i = 2 \end{cases} \quad \text{for } n \ge 1.$$

Let  $M_n = \prod_{i=1}^n X_i$ . Specify a filtration and show that  $M_n$  is a martingale with respect to this filtration.



#### SECTION B

- Q4 (a) State the definition of the total variation distance  $d_{\text{TV}}(U, V)$  between two realvalued random variables U, V.
  - (b) State and prove the triangle inequality for total variation distance.
  - (c) What is the largest value that the total variation distance may take? Prove this best upper bound and show that this can be attained with suitable examples of random variables.
  - (d) Let  $(X_n)_{n\geq 0}$  be a branching process with  $X_0 = 1$  and  $\varphi_X(s) := \mathbb{E}[s^{X_1}] = \frac{1}{4}(1+s+s^2+s^3)$ . Find the extinction probability  $\rho_X := \lim_{n\to\infty} \mathbb{P}(X_n = 0)$ .
  - (e) Continuing from the previous part, let  $(Y_n)_{n\geq 0}$  be another branching process with  $Y_0 = 10$  and

$$\varphi_Y(s) := \mathbb{E}[s^{Y_2}|Y_1 = 1] = \frac{1}{4}(1+s^3) + \frac{1}{2}e^{\frac{1}{2}(s-1)}.$$

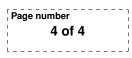
Evaluate  $\lim_{n\to\infty} d_{\mathrm{TV}}(X_n, Y_n)$ .

(Hint: what is the mean number of offspring of each individual in  $(Y_n)_{n\geq 0}$ ?)

(You may use any results concerning branching processes provided that they are stated carefully.)

- Q5 (a) What does it mean for a real-valued random variable X to be arithmetic? Give an example of a 3-arithmetic random variable X satisfying Var(X) = 2.
  - (b) Let d > 0. State the Blackwell renewal theorem for d-arithmetic distributions.
  - (c) You are generating a random sequence of alphabets in the following way:
    - Alphabets are picked independently according to the same distribution.
    - The distribution of each alphabet is as follows: with probability <sup>1</sup>/<sub>4</sub>, choose a vowel {A, E, I, O, U} uniformly at random; otherwise (i.e. with probability <sup>3</sup>/<sub>4</sub>), choose one of the 21 consonants uniformly at random.

Let  $\tau$  be the time for the first appearance of MEME in consecutive order. Find  $\mathbb{E}[\tau]$  by applying results for suitable renewal processes carefully.



**Q6** Let  $X_1 = (X_1(t))_{t \ge 0}$  and  $X_2 = (X_2(t))_{t \ge 0}$  be continuous time Markov processes on  $\{0, 1\}$ , with common generator

$$Q = \begin{pmatrix} -\alpha & \alpha \\ \beta & -\beta \end{pmatrix} \qquad \alpha, \beta > 0.$$

Exam code

MATH43020-WE01

Assume that the processes  $X_1$  and  $X_2$  are independent, that is  $X_1(u)$  and  $X_2(v)$  are independent for all  $u, v \ge 0$ . Let  $X(t) = X_1(t) + X_2(t)$  for all  $t \ge 0$ .

- (a) Show that  $X = (X(t))_{t \ge 0}$  is a continuous time Markov process on  $\{0, 1, 2\}$  and find its generator.
- (b) Show that X is an irreducible Markov process.
- (c) Find the stationary distribution of X.
- (d) Find

$$\lim_{t\to\infty} \mathbb{P}[X(t) = 1 \,|\, X(0) = 0]$$

**Q7** At time n = 0, an urn contains 1 blue ball and 1 red ball. At each time n = 1, 2, 3, ..., a ball is chosen at random from the urn and returned to the urn together with a new ball of the same colour. Just after time n, there are n + 2 balls in the urn of which  $B_n$  are blue and  $R_n$  are red. Let

$$M_n = \frac{B_n}{B_n + R_n} = \frac{B_n}{n+2}$$

be the proportion of blue balls in the urn after time n.

- (a) Show that  $M_n$  is a martingale sequence. You should specify the filtration.
- (b) Show that for an integer k with  $1 \le k \le n+1$ ,

$$\mathbb{P}[B_n = k] = \frac{1}{n+1}.$$

(c) Let T be the first time a blue ball is added to the urn. Compute

$$\mathbb{E}\left[\frac{1}{T+2}\right]$$

carefully stating any theorems you use from the course.

#### SECTION C

**Q8** Let  $(Z_n^1, Z_n^2)_{n \ge 0}$  be a two-type time-homogeneous branching process with offspring distribution satisfying

$$f^{1}(s_{1}, s_{2}) := \mathbb{E}\left[s_{1}^{Z_{1}^{1}} s_{2}^{Z_{1}^{2}} \middle| (Z_{0}^{1}, Z_{0}^{2}) = (1, 0)\right] = \frac{1}{4} s_{1} s_{2} + a e^{M(s_{2}-1)} + b$$
  
and 
$$f^{2}(s_{1}, s_{2}) := \mathbb{E}\left[s_{1}^{Z_{1}^{1}} s_{2}^{Z_{1}^{2}} \middle| (Z_{0}^{1}, Z_{0}^{2}) = (0, 1)\right] = \frac{1}{64} (1 + s_{1})^{4} + \frac{1}{8} s_{1} s_{2}^{2} + \frac{5}{8}$$

where  $M \ge 0$  and  $a, b \ge 0$  are some suitable constants such that  $f^1(s_1, s_2)$  is a valid generating function. Determine the condition on (M, a) under which the process becomes extinct with probability 1.