

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH4337-WE01

Title:

Uncertainty Quantification IV

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.		
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Write your answer in the white-covered answer booklet with barcodes.		
	Begin your answer to each question on a new page.		

Revision:

SECTION A

- Q1 We wish to design the first run of an expensive 1D computer model f(x) over the input range $x \in [0, 1]$. We set up a standard Bayes Linear emulator, specifying a prior expectation E[f(x)] = 0 and a squared exponential prior covariance structure $Cov[f(x), f(x')] = \sigma^2 \exp\{-|x x'|^2/\theta^2\}$, for given fixed $\sigma, \theta > 0$.
 - (a) Find an expression for the general emulator variance $\operatorname{Var}_D[f(x)]$ at input x assuming a single run has been performed at $x^{(1)}$, even though we have not performed the run yet, and hence do not currently know $D = f(x^{(1)})$.
 - (b) Hence find the location of the first run $x^{(1)}$ that would minimise the integrated emulator variance over the interval [0, 1] i.e. find

$$\underset{x^{(1)} \in [0,1]}{\operatorname{arg\,min}} \int_{0}^{1} \operatorname{Var}_{D}[f(x)] \, dx, \qquad \text{where } D = f(x^{(1)})$$

- (c) Comment on whether your answer to Q1(b) is intuitive.
- Q2 We wish to history match an expensive 1D computer model f(x) over the input range $x \in \mathcal{X}_0 = [0, 1]$. We set up a standard Bayes Linear emulator, specifying an exponential prior covariance structure $\operatorname{Cov}[f(x), f(x')] = \sigma^2 \exp\{-|x - x'|/\theta\}$, with $\sigma^2 = 2^2, \ \theta = 1/3$, and prior expectation $\operatorname{E}[f(x)] = 1$. A single run is performed at the location $x^{(1)} = 0.8$, yielding the output $D = f(x^{(1)}) = -1$.
 - (a) Find an expression for the emulator expectation $E_D[f(x)]$ and variance $Var_D[f(x)]$.
 - (b) The real system y corresponding to f(x) is measured, yielding the observation z = 0.25. Measurement error and model discrepancy are specified to be $\operatorname{Var}[e] = 0.4^2$ and $\operatorname{Var}[\epsilon] = 0.3^2$ respectively. Using your results from Q2(a), explicitly construct the corresponding implausibility measure I(x) for use in the history match.
 - (c) Define the non-implausible region and give a reasonable implausibility cutoff c. Justify your choice of cutoff.

Exam code	ר ו
MATH4337-WE01	
	i i

SECTION B

Q3 We have a computer model f(x) with 2D input $x \in \mathcal{X}_0 = [0, 1]^2$ and scalar output $f \in \mathbb{R}$. In preparation for emulation, we specify the usual squared exponential covariance structure:

$$Cov[f(x), f(x')] = \sigma^2 \exp\{-||x - x'||^2/\theta^2\}$$

for given fixed $\sigma, \theta > 0$.

Imagine that we have performed n runs at the locations $x^{(i)} = (0, b_i), i = 1, ..., n$ with $b_i \in [0, 1]$ yielding output $D = (D_1, ..., D_n)^T = (f(x^{(1)}), ..., f(x^{(n)}))^T$. We specify the prior expectation of f(x) as the general expression E[f(x)]. We now wish to emulate the model at the input location $x = (a, b_1)$.

(a) By considering the above covariance structure, show that for $x = (a, b_1)$ we have

$$\operatorname{Cov}[f(x), D] = e^{-a^2/\theta^2} \operatorname{Cov}[f(x^{(1)}), D]$$

- (b) Use this to evaluate exactly the emulator expectation $E_D[f(x)]$ at the point $x = (a, b_1)$, and show that the only run that it depends on is the first one.
- (c) Find $\operatorname{Var}_D[f(x)]$ at $x = (a, b_1)$ and comment on its form.
- (d) For many expensive computer models f(x) there exists a known boundary \mathcal{K} located at $\mathcal{K} \equiv \{x_1 = 0, x_2 \in [0, 1]\}$, where the function f(x) is analytically solvable and hence known. Hence we can generate arbitrarily large numbers of runs of the form $\{f(x) : x \in \mathcal{K}\}$. Use the above results to argue that we can still update the emulator analytically with respect to the information contained on \mathcal{K} , and hence find the emulator adjusted expectation $\mathcal{E}_K[f(x)]$ and variance $\operatorname{Var}_K[f(x)]$ where K represents a vector of outputs of a large number of n runs evaluated on \mathcal{K} . You must specify carefully any particular points in K that are required.
- (e) Show that the emulator adjusted covariance can be written in the separable form:

$$\operatorname{Cov}_{K}[f(x), f(x')] = R(x_{1}, x'_{1})r(x_{2}, x'_{2})$$

for suitable functions $R(x_1, x'_1)$ and $r(x_2, x'_2)$, which you should identify, where K again represents a vector of outputs of a large number of n runs evaluated on the boundary \mathcal{K} .

(f) Examine the behaviour of $\operatorname{Cov}_K[f(x), f(x')]$ in the limit where both $x_1, x'_1 \to \infty$ but where the difference $x_1 - x'_1$ remains finite. Comment on your answer.

Q4 A Bayes linear emulator with basis functions $g_j(x)$, unknown coefficients β_j and weakly stationary process u(x), takes the form:

Exam code

MATH4337-WE01

$$f(x) = \sum_{j=1}^{p} \beta_j g_j(x) + u(x) = g(x)^T \beta + u(x)$$

Prior specifications for $\beta \equiv (\beta_1, \ldots, \beta_p)^T$ and u(x) are given by:

$$E[\beta] = \mu_{\beta}, \qquad Var[\beta] = \Sigma_{\beta}, \qquad E[u(x)] = 0,$$
$$Cov[u(x), u(x')] = \sigma^2 c(x - x'), \qquad Cov[\beta, u(x)] = 0,$$

where c(x - x') represents the usual squared exponential covariance structure with $\sigma > 0$ and where Σ_{β} is of full rank. We define the model output from n runs to be $D = (f(x^{(1)}), \ldots, f(x^{(n)}))^T$ and also $U = (u(x^{(1)}), \ldots, u(x^{(n)}))^T$ with $\operatorname{Var}[U] \equiv \Omega$ where Ω is an $n \times n$ covariance matrix with individual elements $\Omega_{ij} = \sigma^2 c(x^{(i)} - x^{(j)})$. We also define the $n \times p$ design matrix X with elements $X_{ij} = g_j(x^{(i)})$.

- (a) With the above specifications, show that we can write $D = X\beta + U$.
- (b) Show that the variance of the weakly stationary process u(x) adjusted by the run data D is given by:

$$\operatorname{Var}_{D}[u(x)] = \sigma^{2} - a(x)^{T} \Omega^{-1} a(x) + a(x)^{T} \Omega^{-1} X \operatorname{Var}_{D}[\beta] X^{T} \Omega^{-1} a(x)$$

where you must define the function a(x) but can assume that $\operatorname{Var}_D[\beta] = (X^T \Omega^{-1} X + \Sigma_{\beta}^{-1})^{-1}$. *Hint*: you can use the following matrix identity which states that for matrices A, B, C, G of appropriate dimension:

$$(A + BCG)^{-1} = A^{-1} - A^{-1}B(C^{-1} + GA^{-1}B)^{-1}GA^{-1}$$

- (c) Comment briefly on your answer to $\mathbf{Q4}(b)$ in relation to a simple emulator without regression terms.
- (d) Show that the covariance of the regression terms with the weakly stationary process, adjusted by the run data D, is given by:

$$\operatorname{Cov}_{D}[g(x)^{T}\beta, u(x)] = -g(x)^{T} \operatorname{Var}_{D}[\beta] X^{T} \Omega^{-1} a(x)$$

Hint: you can use the following matrix identity, which states that for matrices A, B, C, G of appropriate dimension:

$$AB (GAB + C)^{-1} = (BC^{-1}G + A^{-1})^{-1}BC^{-1}$$

(e) Use the results of $\mathbf{Q4}(b)$ and $\mathbf{Q4}(d)$ to find an expression for the emulator variance $\operatorname{Var}_{D}[f(x)]$ and hence show that

$$\operatorname{Var}_D[f(x^{(1)})] = 0$$

where $x^{(1)}$ is the location of the first run. Comment on the importance of this answer in relation to emulator evaluation at all known runs.