

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH4341-WE01

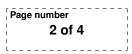
Title:

Spatio-Temporal Statistics

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Materials i erifilited.		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions.	
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.	
	Write your answer in the white-covered answer booklet with barcodes.	
	Begin your answer to each question on a new page.	

Revision:



SECTION A

Q1 (a) Consider the semi-variogram

$$\gamma \left(h \right) = \begin{cases} 0 & \text{if } h = 0\\ \alpha + \beta \left(\frac{3|h|}{2} - \frac{|h|^3}{2} \right) & \text{if } |h| \in (0, 1)\\ \alpha + \beta & \text{if } |h| \ge 1 \end{cases}$$

for $\alpha > 0$ and $\beta > 0$. What are the sill, range, nugget, and partial sill for this covariance model? Justify your answers.

- (b) Let $\{Z(s) : s \in S\}$ with $S = (-\pi, \pi)$ be a Gaussian process with mean function $\mu(s) = m$ where $m \in \mathbb{R}$ is a constant and covariance function $c(s,t) = \frac{1}{2}(|s| + |t| |t s|)$ for $s, t \in S$. Report whether or not the stochastic process $Z(\cdot)$ is weakly stationary, intrinsically stationary, continuous, and everywhere differentiable. Justify your answer.
- (c) Let B be a $n \times n$ symmetric matrix with zero-valued diagonal elements (namely $[B]_{s,s} = 0$ for s = 1, ..., n) and such that (I B) is positive definite, where I denotes the identity matrix. Consider the conditional autoregression Gaussian model on a finite family $S = \{1, ..., n\}, n > 1$, of sites defined by Gaussian local characteristics, with

$$\mathbb{E}\left(Z_t|Z_{\mathcal{S}\setminus t}\right) = \mu + \sum_{s\neq t} \left[B\right]_{s,t} \left(Z_s - \mu\right)$$

and $\operatorname{Var}(Z_t|Z_{S\setminus t}) = 1$ for $t \in S$ for some unknown parameter $\mu \in \mathbb{R}$. Show that the joint distribution of $Z = (Z_1, ..., Z_n)^{\top}$ is Gaussian with mean $\mu \underline{1}$ and covariance matrix $(I - B)^{-1}$. We denote the column vector of ones as $\underline{1} = (1, ..., 1)^{\top}$.

 $\mathbf{Q2}$ Consider the model

$$X_{t} = \frac{5}{6}X_{t-1} - \frac{1}{6}X_{t-2} + \varepsilon_{t} - \frac{1}{2}\varepsilon_{t-1} - \frac{1}{4}\varepsilon_{t-2} + \frac{1}{8}\varepsilon_{t-3}, \ \varepsilon_{t} \sim N(0, \sigma^{2}), \ t \in \mathbb{Z},$$

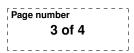
of mixed auto-regressive moving average form of order ARMA(2, 3).

(a) Show that this model contains a parameter-redundancy allowing simplification to a model of reduced order, and that this simplified model can be written in the form

$$X_t = \frac{1}{3}X_{t-1} + \varepsilon_t - \frac{1}{4}\varepsilon_{t-2}.$$

Identify the order of this reduced model.

- (b) Check that the simplified model is stationary, and then compute the stationary variance of the process (in terms of $\sigma > 0$).
- (c) Compute the spectral density function, $S(\nu)$, of this process as a function of $\nu \in [0, \frac{1}{2}]$ and σ . Your final expression should not involve the imaginary unit, i.



SECTION B

Q3 Consider a set of random fields $\left\{ \left(Z_{j}^{\left(u\right)}\left(s\right):s\in\mathcal{S}\right);j=1,...,k;u=1,...,k\right\}$ with

$$Z_{j}^{(u)}(s) = \sum_{p=1}^{k} a_{j,p}^{(u)} w_{p}^{(u)}(s) ,$$

where $\left\{w_p^{(u)}(s)\right\}$ are intrinsic random fields and $\left\{a_{j,p}^{(u)}\right\}$ are known constants. Let $\tilde{\gamma}_{i,j}^{(u)}(h)$ be the cross-variogram function of $Z_i^{(u)}(s)$ and $Z_j^{(u)}(s)$ for u = 1, ..., k.

- (a) Write the definition of the cross-variogram function $\tilde{\gamma}_{i,j}^{(u)}(h)$ of $Z_i^{(u)}(s)$ and $Z_j^{(u)}(s)$ for u = 1, ..., k
- (b) Assume that

$$E\left(w_{p}^{(u)}\left(s\right)\right) = 0$$

$$\operatorname{Cov}\left(w_{p}^{(u)}\left(s\right), w_{q}^{(v)}\left(s+h\right)\right) = \begin{cases} \gamma_{p,q}^{(u)}\left(h\right), & u = v\\ 0 & u \neq v \end{cases}$$

for u = 1, ..., k, p = 1, ..., k and q = 1, ..., k. Show that

$$\tilde{\gamma}_{i,j}^{(u)}(h) = \sum_{p=1}^{k} a_{i,p}^{(u)} \sum_{q=1}^{k} a_{j,q}^{(u)} \gamma_{p,q}^{(u)}(h)$$

(c) Assume that

$$E\left(w_{p}^{\left(u\right)}\left(s\right)\right) = 0$$

Cov $\left(w_{p}^{\left(u\right)}\left(s\right), w_{q}^{\left(v\right)}\left(s+h\right)\right) = \begin{cases} \gamma^{\left(u\right)}\left(h\right), & u = v \text{ and } p = q\\ 0 & u \neq v \text{ or } p \neq q \end{cases}$

for u = 1, ..., k. For u = 1, ..., k, compute the cross-variogram matrix $\tilde{\Gamma}^{(u)}(h)$ of vector

$$\left(Z_{1}^{\left(u\right)}\left(s\right),...,Z_{k}^{\left(u\right)}\left(s\right)\right)^{\top}$$

in the form

$$\tilde{\Gamma}^{(u)}\left(h\right) = B^{(u)}\gamma^{(u)}\left(h\right)$$

and express quantities $B^{(u)}$ as functions of matrix $A^{(u)}$ with $[A^{(u)}]_{i,p} = a^{(u)}_{i,p}$.

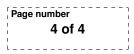
(d) Consider the assumptions in the previous part. Let $\{(Z_j(s) : s \in S); j = 1, ..., k\}$ be a set of random fields on $s \in S$. Let

$$Z_{j}(s) = \mu_{j}(s) + \sum_{u=0}^{m} Z_{j}^{(u)}(s)$$

Show that the cross-variogram matrix of $(Z(s); s \in S)$ where $Z(s) = (Z_1(s), ..., Z_k(s))^{\top}$ is

$$\Gamma(h) = \sum_{u=0}^{m} B^{(u)} \gamma^{(u)}(h)$$

CONTINUED



Q4 Consider the constant (time-invariant) dynamic linear model

$$\begin{split} \mathbf{Y}_t &= \mathsf{F}\mathbf{X}_t + \boldsymbol{\nu}_t, \quad \boldsymbol{\nu}_t \sim N(\mathbf{0},\mathsf{V}), \\ \mathbf{X}_t &= \mathsf{G}\mathbf{X}_{t-1} + \boldsymbol{\omega}_t, \quad \boldsymbol{\omega}_t \sim N(\mathbf{0},\mathsf{W}), \end{split}$$

for *m*-dimensional observation vectors, \mathbf{Y}_t , *p*-dimensional hidden states \mathbf{X}_t , and fully specified matrices $\mathsf{F}, \mathsf{G}, \mathsf{V}, \mathsf{W}$ (of appropriate dimensions). The model is considered for $t = 1, 2, \ldots$, and initialised with $\mathbf{X}_0 \sim N(\mathbf{m}_0, \mathsf{C}_0)$. Given *n* observations $\mathbf{y}_{1:n} = (\mathbf{y}_1, \ldots, \mathbf{y}_n)$, sequential computation of the filtered distributions

$$(\mathbf{X}_t | \mathbf{Y}_{1:t} = \mathbf{y}_{1:t}) \sim N(\mathbf{m}_t, \mathsf{C}_t), \quad t = 1, \dots, n,$$

has been carried out using the Kalman filter. Interest now focuses on computing the smoothing distributions

$$(\mathbf{X}_t | \mathbf{Y}_{1:n} = \mathbf{y}_{1:n}) \sim N(\mathbf{s}_t, \mathbf{S}_t), \quad t = n, \dots, 1.$$

We begin by noting that $\mathbf{s}_n = \mathbf{m}_n$ and $\mathsf{S}_n = \mathsf{C}_n$.

(a) (i) Consider the problem at time t < n, where we have already computed \mathbf{s}_{t+1} , S_{t+1} . Write down the form of the joint distribution of

$$\begin{pmatrix} \mathbf{X}_t \\ \mathbf{X}_{t+1} \\ \end{bmatrix} \mathbf{y}_{1:t}$$

(ii) Use multivariate normal conditioning to show that

$$(\mathbf{X}_t | \mathbf{X}_{t+1}, \mathbf{y}_{1:t}) \sim N\left(\mathbf{m}_t + \mathsf{L}_t [\mathbf{X}_{t+1} - \tilde{\mathbf{m}}_{t+1}], \ \mathsf{C}_t - \mathsf{L}_t \tilde{\mathsf{C}}_{t+1} \mathsf{L}_t^{\mathsf{T}}\right),$$

where $\tilde{\mathbf{m}}_{t+1} = \mathsf{G}\mathbf{m}_t$, $\tilde{\mathsf{C}}_{t+1} = \mathsf{G}\mathsf{C}_t\mathsf{G}^\mathsf{T} + \mathsf{W}$, and $\mathsf{L}_t = \mathsf{C}_t\mathsf{G}^\mathsf{T}\tilde{\mathsf{C}}_{t+1}^{-1}$.

- (iii) Explain why this is also the distribution of $(\mathbf{X}_t | \mathbf{X}_{t+1}, \mathbf{y}_{1:n})$, and then marginalise out \mathbf{X}_{t+1} to obtain expressions for \mathbf{s}_t and \mathbf{S}_t .
- (b) Explain how you would modify the above backward smoothing procedure to instead generate an exact sample from the conditional distribution $(\mathbf{X}_{1:n}|\mathbf{y}_{1:n})$.
- (c) (i) Suppose that we wish to model a monthly (period 12) univariate time series using a dynamic linear model consisting of a locally constant trend and a Fourier-based seasonal effect using two harmonics. How would you structure this model? Give explicit forms for F and G, and suggest an appropriate structural form for W (though this may contain unspecified parameters).
 - (ii) Discuss briefly one approach that could be used to estimate any unspecified parameters in the model. Detailed formulas are not required.