

# **EXAMINATION PAPER**

Examination Session: May/June

2025

Year:

Exam Code:

MATH43720-WE01

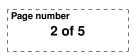
### Title:

# Stochastic Analysis V

| Time:                         | 3 hours |                                                               |
|-------------------------------|---------|---------------------------------------------------------------|
| Additional Material provided: |         |                                                               |
|                               |         |                                                               |
| Materials Permitted:          |         |                                                               |
| Materials i errinted.         |         |                                                               |
| Calculators Permitted:        | No      | Models Permitted: Use of electronic calculators is forbidden. |

| Instructions to Candidates: | Answer all questions.                                                                                    |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------|--|--|
|                             | Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. |  |  |
|                             | Write your answer in the white-covered answer booklet with barcodes.                                     |  |  |
|                             | Begin your answer to each question on a new page.                                                        |  |  |
|                             |                                                                                                          |  |  |
|                             |                                                                                                          |  |  |
|                             |                                                                                                          |  |  |
|                             |                                                                                                          |  |  |
|                             |                                                                                                          |  |  |
|                             |                                                                                                          |  |  |

Revision:



#### SECTION A

**Q1** Let  $(W_t)_{t\geq 0}$  be a Brownian motion in  $\mathbb{R}$ .

- (a) Justify your answers as to whether each of the following stochastic processes is a Brownian motion or not.
  - (i)  $X_t := 2W_{t/4}$
  - (ii)  $Y_t := W_{2t} W_t$
  - (iii)  $Z_t := \sqrt{t}W_1$
- (b) Prove that the following stochastic process is a Brownian motion:

$$B_t := \begin{cases} tW_{1/t}, & t > 0\\ 0, & t = 0 \end{cases}$$

Hint: Carefully discuss the continuity of  $t \mapsto B_t$  at t = 0.

**Q2** (a) Let  $X = (X_n)_{n \in \mathbb{Z}_+}$  be a discrete-time martingale with respect to a filtration  $(\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ , such that  $X_0 = 0$ . Show that

$$\mathbb{E}[X_n^2] = \sum_{k=0}^{n-1} \mathbb{E}[(X_{k+1} - X_k)^2]$$

for each  $n \in \mathbb{N}$ .

Now let  $(Z_n)_{n\in\mathbb{N}}$  be a sequence of independent random variables, such that

$$\mathbb{E}[Z_n] = 0$$
 and  $\operatorname{Var}(Z_n) = \gamma^n$ 

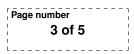
for each  $n \in \mathbb{N}$ , for some  $\gamma \in (0, 1)$ , and let  $\mathcal{F}_n = \sigma(Z_1, Z_2, \ldots, Z_n)$ ,  $n \in \mathbb{Z}_+$ , be the natural filtration of this sequence. Let  $M_0 = 0$ , and

$$M_n = \sum_{k=1}^n Z_k$$

for each  $n \in \mathbb{N}$ .

- (b) Show that  $M = (M_n)_{n \in \mathbb{Z}_+}$  is a martingale with respect to  $(\mathcal{F}_n)_{n \in \mathbb{Z}_+}$ .
- (c) Use the result of part (a) to show that M is bounded in  $L^2$ .
- Q3 In your answers to the following parts, you may use, without proof, the result that any bounded and continuous real-valued martingale M is of finite quadratic variation and  $\langle M, M \rangle$  is the unique continuous, adapted and increasing real-valued process such that  $M^2 \langle M, M \rangle$  is a martingale.
  - (a) Let  $M_t, t \in \mathbb{R}_+$ , be a continuous real-valued local martingale. Prove that there is a unique continuous increasing adapted process  $\langle M, M \rangle$ , vanishing at zero, such that  $M^2 \langle M, M \rangle$  is a continuous local martingale.
  - (b) Show that if  $M_t, t \in \mathbb{R}_+$ , is a continuous and bounded real-valued martingale, then

$$\mathbb{E}\left[(M_t - M_0)^2\right] = \mathbb{E}\left[\langle M, M \rangle_t\right].$$



Q4 (a) Let B be a Brownian motion on  $\mathbb{R}$ , and K be a progressive process on the same filtered probability space satisfying, for every t > 0,

$$\mathbb{E}\bigg[\int_0^t K_s^2\,ds\bigg]<\infty.$$

Denote by  $H^2$  the set of the  $L^2$ -bounded and continuous martingales (i.e., all continuous martingales M satisfying  $\sup_{t \in \mathbb{R}_+} \mathbb{E}[M_t^2] < \infty$ ), and  $H_0^2$  the subset of  $H^2$  vanishing at 0.

Use the stopping technique and stochastic integration theory on  $H_0^2$  for a progressive process, say  $\widetilde{K}$ , satisfying

$$\mathbb{E}\bigg[\int_0^\infty \widetilde{K}_s^2\,ds\bigg]<\infty,$$

to construct the stochastic integral  $\int_0^t K_s dB_s$  for all t > 0.

- (b) Verify that you can use part (a) of this question to define  $M_t = \int_0^t B_s \, dB_s$ .
- (c) Calculate  $\langle M, M \rangle_t$  and  $\mathbb{E}[M_t^2]$ .

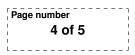
#### SECTION B

- Q5 (a) State the definition that a continuous function  $u: [0,T] \to \mathbb{R}$  has a finite quadratic variation.
  - (b) Let  $u: [0,T] \to \mathbb{R}$  be a  $C^1$ -function. Prove that its quadratic variation is zero.
  - (c) Let  $(W_t)_{t \in [0,T]}$  be a Brownian motion defined on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Define

$$[W]_{\mathbf{t},T} := \sum_{i=0}^{n_{\mathbf{t}}-1} |W_{t_{i+1}} - W_{t_i}|^2,$$

where  $\mathbf{t} = (t_i)_{i=0}^{n_t}$  with  $0 = t_0 < t_1 < \cdots < t_{n_t} = T$  is any partition of [0, T]. Prove that

$$\lim_{|\mathbf{t}|\to 0} [W]_{\mathbf{t},T} = T \quad \text{in} \quad L^2(\Omega, \mathbb{P}).$$



**Q6** Let  $(\xi_i)_{i \in \mathbb{N}}$  be a sequence of independent and identically distributed random variables, such that

 $\mathbb{P}(\xi_i = 1) = p$  and  $\mathbb{P}(\xi_i = -1) = 1 - p$ 

Exam code

MATH43720-WE01

for some  $p \in (0, 1)$ , and let  $\mathcal{F}_n = \sigma(\xi_1, \xi_2, \dots, \xi_n)$ ,  $n \in \mathbb{Z}_+$ , be the natural filtration of this sequence. Let  $S_0 = 0$  and

$$S_n = \sum_{i=1}^n \xi_i$$

for each  $n \in \mathbb{N}$ . Let

$$T = \inf\{n \in \mathbb{Z}_+ : S_n = k\}$$

for some  $k \in \mathbb{N}$ , and let  $X_n = 2^{S_n}$  for each  $n \in \mathbb{Z}_+$ .

- (a) Show that the process  $X = (X_n)_{n \in \mathbb{Z}_+}$  is a martingale with respect to the filtration  $(\mathcal{F}_n)_{n \in \mathbb{Z}_+}$  for a particular value of p, which you should identify.
- (b) State Doob's supermartingale convergence theorem, and then use it to show, with the value of p found in part (a), that the limit

$$\lim_{n \to \infty} X_{n \wedge T}$$

exists almost surely.

(c) Show that this limit is given by

$$\lim_{n \to \infty} X_{n \wedge T} = 2^k \mathbb{1}_{\{T < \infty\}}.$$

(d) Using the result of part (c), prove that

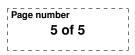
$$\mathbb{P}\Big(\sup_{n\in\mathbb{Z}_+}S_n\geq k\Big)=2^{-k}.$$

- **Q7** Let  $X_t, t \ge 0$ , be a real-valued submartingale such that  $\mathbb{E}[|X_t|] < \infty$  for every  $t \ge 0$ . For some  $t \in (0, \infty)$ , let  $t_n, n = 1, 2, \ldots$ , be a sequence decreasing to t, i.e., such that  $t_n \searrow t$  as  $n \to \infty$ .
  - (a) Use the submartingale downcrossing inequality to prove that

$$X_{t+}(\omega) := \lim_{n \to \infty} X_{t_n}(\omega)$$

exists for almost every  $\omega \in \Omega$ .

- (b) Prove that  $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_{t_n}|] < \infty$ .
- (c) Show that  $X_{t_n}$ , n = 1, 2, ..., is uniformly integrable with respect to expectation.
- (d) Prove that  $\mathbb{E}[|X_{t+}|] < \infty$ .



**Q8** Let  $X_t^x$ ,  $t \in \mathbb{R}_+$ , be the solution of the following stochastic differential equation

$$dX_t^x = -X_t^x dt + dW_t, \qquad X_0^x = x,$$

Exam code

MATH43720-WE01

where  $W_t, t \in \mathbb{R}_+$ , is a standard Brownian motion on  $\mathbb{R}$ , and  $x \in \mathbb{R}$ . For any bounded measurable function  $f \colon \mathbb{R} \to \mathbb{R}$ , let

$$P_t f(x) = \mathbb{E}[f(X_t^x)], \quad t \in \mathbb{R}_+, \ x \in \mathbb{R}$$

(a) Prove, using the Markov property, that for any  $t, s \ge 0$ , and f being bounded and measurable,

$$P_t \circ P_s f = P_{t+s} f.$$

(b) Verify that  $X_t^x$ , t > 0, is given by

$$X_t^x = \exp\{-t\}x + \int_0^t \exp\{-(t-s)\}\,dW_s.$$

And use this to show that for any t > 0,  $X_t^x$  is a Gaussian random variable with mean  $e^{-t}x$  and variance  $\frac{1}{2}(1 - e^{-2t})$ , and

$$P_t f(x) = \frac{1}{\sqrt{\pi(1 - e^{-2t})}} \int_{\mathbb{R}} f(y) \exp\left\{-\frac{(y - e^{-t}x)^2}{1 - e^{-2t}}\right\} dy.$$

(c) Let A be the infinitesimal generator of  $X_t^x$ ,  $t \in \mathbb{R}_+$ . Prove that

$$Af = \frac{1}{2}\frac{d^2}{dx^2}f - x\frac{d}{dx}f$$

when  $f\in C^2$  is bounded and has bounded continuous derivatives up to second order.