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SECTION A

Q1 Consider an inertial frame defined by the orthogonal basis ei = {e1, e2, e3} and a
rotating frame with the orthogonal basis êi = {ê1, ê2, ê3}. The axis of rotation
for the rotating frame is aligned with ê2 =

√
2/2e2 +

√
2/2e3 and rotates with a

constant angular velocity of Ω = 1. The vectors e1 and ê1 are initially aligned (only
at t = 0).

(a) Find an expression for

(
d

dt
(2ê1 + ê2 − 4ê3)

)
I

(where subscript “I” denotes the

inertial frame). Express your final answer in terms of êi. Recall the relation
between the time derivatives in the rotating and inertial frame(

dX

dt

)
I

=

(
dX

dt

)
R

+ Ω×X.

(b) It can be shown that

e1 = cos(t)ê1 + sin(t)ê3,

e2 =

√
2

2
sin(t)ê1 +

√
2

2
ê2 −

√
2

2
cos(t)ê3,

e3 =

√
2

2
cos(t)ê3 −

√
2

2
sin(t)ê1 +

√
2

2
ê2.

If a particle’s position vector is defined as X = 10 t e2 in the inertial frame,
find its acceleration in the rotating frame.

ED01/2025
University of Durham Copyright

CONTINUED



3 of 6
Page number

MATH44120-WE01
Exam code

Q2 Consider a two-dimensional flow (independent of z) that is in geostrophic balance,

f0ez × v = − 1

ρ0

∇H p,

where v = (u, v) is the horizontal velocity and f0 the constant Coriolis parameter.
Because this flow is divergence-free, we can define a streamfunction ψ such that

u = −∂ψ
∂y
, v =

∂ψ

∂x
.

(a) If v̂(k) and ψ̂(k) are the Fourier transforms of v and ψ respectively, find an ex-
pression for v̂(k)v̂(k)∗ in terms of ψ̂(k). Note that ∗ denotes the complex con-
jugate, and k = (kx, ky) is the 2D wavevector in Fourier space. (Remember that

the Fourier transform of the function f is defined as f̂(k) =
∫∞
−∞ f(x)e−ik·x dx).

(b) Considering that ζ = ∂v/∂x−∂u/∂y is the vertical vorticity, derive an expres-
sion for ζ̂(k)ζ̂(k)∗ in terms of ψ̂(k).

(c) Prove that
Z(kh) = k2

hE(kh),

where

E(kh) =
1

2

∫
Γ(kh)

v̂(k)v̂(k)∗ds, Z(kh) =
1

2

∫
Γ(kh)

ζ̂(k)ζ̂(k)∗ds.

In the above equations, kh =
√
k2
x + k2

y, and the integration is carried over
the circles with the radius kh denoted by Γ(kh). You should clarify all the
mathematical steps you take in this part.

Q3 (a) Show that for magnetic fields of the form B(x, y) = ∇× (A(x, y)ez), magnetic
field lines are curves of constant A.

(b) For B(x, y) =
2y

b2
ex −

2x

a2
ey, where a and b are positive real numbers, find

A(x, y).

(c) Sketch the magnetic field lines for a > b, labelling all axis crossings and indi-
cating the direction of the field.

Q4 (a) Explain what is meant by a perfectly conducting fluid and show that, for such
a fluid, which is also incompressible, the induction equation becomes

∂B

∂t
+ (u · ∇)B = (B · ∇)u.

(b) If u = xex − yey and B(x, y, 0) = y2ex at t = 0, show that under a perfectly
conducting time evolution, B remains of the form B = Bx(y, t)ex and find
B(x, y, t) for t > 0.
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SECTION B

Q5 The two-dimensional viscous non-rotating non-hydrostatic Boussinesq equations are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
, (1a)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ b+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
, (1b)

∂u

∂x
+
∂w

∂z
= 0, (1c)

∂b

∂t
+ u

∂b

∂x
+ w

∂b

∂z
+N2w = ν

(
∂2b

∂x2
+
∂2b

∂z2

)
, (1d)

(which are derived by setting ∂/∂y = 0 and v = 0). We assume ρ0 and ν are
constant. To non-dimensionalise these equations, we consider scalings

x = x∗L, z = z∗H, t = t∗T ,
u = u∗ U , w = w∗(UH/L), p = p∗(ρ0 U2), b = b∗B (2)

where ∗ variables are dimensionless.

(a) Find the appropriate timescale T such that the time derivative of velocity
∂u

∂t

and the advective term u
∂u

∂x
have similar orders.

(b) Find B such that b and
1

ρ0

∂p

∂z
have similar orders.

(c) Using the scalings in (2) and the values of T and B that you found in parts (a)
and (b), non-dimensionalise the equations (1). Your final answer should be in
terms of the following dimensionless parameters

H
L
, Re =

UL
ν

, Fr =
U
NH

.

Note that no other scaling value or dimensionless parameter should remain in
your equations.

(d) Assume
H
L

= O(ε), Re = O(ε−3), Fr = O(1)

with O showing the order of magnitude. For small ε � 1, find the leading
order equations (for all four equations in (1)). Then, rewrite the leading-order
equations in the dimensional form.
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Q6 Consider the (non-rotating) Shallow Water equations with flat bottom

∂v

∂t
+ (v · ∇H)v = −g ∇Hη, (3a)

∂η

∂t
+H ∇H · v +∇H · (ηv) = 0, (3b)

where we set z = 0 at the mean surface level and H denotes the average water
height. We consider the dynamics to consist of a background flow and waves

u = U + εu′, v = V + εv′, η = εη′, (4)

where (U, V ) = (e−ε
2y2 , sin(ε2x)) is the velocity of the background flow and u′, v′

and η′ are the velocity and height variation of the waves. We assume ε to be a small
parameter meaning that the waves terms are smaller than the background flow, and
the background flow slowly varies with x and y (for example dU/dy = O(ε2)).

(a) Substitute (4) into (3) and linearise for the wave terms by neglecting the terms
that are O(ε2) or O(ε3) (in other words, keep the leading order terms).

(b) Find the dispersion relation for the linearised equations (that you derive in
part (a)) by assuming the following wave ansatz

u′ = ũ ei(kxx+kyy−ωt), v′ = ṽ ei(kxx+kyy−ωt), η′ = η̃ ei(kxx+kyy−ωt).

(c) Find the group velocity for each set of waves that you find in part (b).

Q7 Consider a force-free magnetic configuration in which the current density J is zero.

(a) Show that in this case the magnetic field can be written as B = ∇Φ for some
scalar potential Φ which satisfies Laplace’s equation ∇2Φ = 0.

(b) Consider a region V in spherical polar coordinates (r, θ, φ) given by 0 < r0 < r.
If Φ(r, θ) is a Legendre series of the form

Φ(r, θ) =
∞∑
l=0

Rl(r)Pl(cos θ),

find the general form of Rl(r) such that ∇2Φ = 0.

(c) Find B in V satisfying Br(r0, θ, φ) = (5 cos3 θ − 3 cos θ)er and |B| → 0 as
r →∞. Hint: 5s3 − 3s is a solution of the Legendre ODE for suitable l.
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Q8 Consider a layer of fluid lying between two horizontal planes at z = 0 and z = 1. In
such a layer, the non-dimensional linearised equations governing perturbations to a
basic state in incompressible rotating convection can be written as(

∂

∂t
− Pr∇2

)
∇2w′ = RaPr∇2

Hθ − Ta
1
2 Pr

∂ω′z
∂z

,(
∂

∂t
− Pr∇2

)
ω′z = Ta

1
2 Pr

∂w′

∂z
,(

∂

∂t
−∇2

)
θ = w′,

where ω′z is the z-component of the perturbation vorticity ω′ = ∇× u′ and w′ and
θ are the perturbations to the vertical velocity and temperature, respectively. Ra,
Pr and Ta are the non-dimensional parameters governing the system.

(a) Assume that the boundaries are impermeable, free-slip, and held at fixed tem-
perature. By seeking normal mode solutions of the form

w′ = W0 sin(nπz)f(x, y)est,

ω′z = Z0 cos(nπz)f(x, y)est,

θ = Θ0 sin(nπz)f(x, y)est,

where f(x, y) satisfies ∇2
Hf = −k2

hf , show that the dispersion relation for s
can be written as s3 +Bs2 +Cs+D = 0. You should determine B and C and
show that

D = Pr2
[
(k2
h + n2π2)3 − k2

hRa + n2π2Ta
]
.

(b) Show that Ra at the onset of direct (non-oscillatory) convection is given by

Ra =
(k2
h + n2π2)3 + n2π2Ta

k2
h

.

(c) Show that the critical horizontal wavenumber, khc , satisfies

2k6
hc

+ 3π2k4
hc

= π6 + π2Ta.

In the asymptotic limit of Ta → ∞, what is the dependence of khc and the
critical Rayleigh number on Ta?
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