

EXAMINATION PAPER

Examination Session: May/June

2025

Year:

Exam Code:

MATH4431-WE01

Title:

Advanced Probability IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.	
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.	
	Write your answer in the white-covered answer booklet with barcodes.	
	Begin your answer to each question on a new page.	

Revision:

SECTION A

- **Q1** For fixed constant $\lambda > 0$, let X_1 and X_2 be independent $\text{Exp}(\lambda)$ random variables, and let $X_{(1)}$ and $X_{(2)}$ be the corresponding order statistics.
 - a) Show that $X_{(1)}$ and $X_{(2)} X_{(1)}$ are independent and find their distributions.
 - b) Compute $\mathsf{E}(X_{(2)} | X_{(1)} = x_1)$ and $\mathsf{E}(X_{(1)} | X_{(2)} = x_2)$.
 - c) Compute $\mathsf{E}(X_{(1)})$, $\mathsf{Var}(X_{(1)})$, $\mathsf{E}(X_{(2)})$, and $\mathsf{Var}(X_{(2)})$.
- **Q2** Let r balls be placed uniformly and independently into n boxes. Denote by X_i the number of balls in the *i*th box and by N the number of empty boxes.
 - a) Show that $\mathsf{E}(n^{-1}N) = (1 \frac{1}{n})^r$ and $\mathsf{Var}(n^{-1}N) \to 0$ as $n \to \infty$.
 - b) Find the fraction of the empty boxes in the limit when $r/n \to c > 0$ as $n \to \infty$.
 - c) Show that $\mathsf{P}(X_1 = k) = \binom{r}{k}(n-1)^{r-k}/n^r$ and identify the limit, as $n \to \infty$, of this probability under the assumption of part b).
 - d) Find the probability $\mathsf{P}(X_1 = k_1, X_2 = k_2)$; what happens in the limit $n \to \infty$ under the assumption of part b)?
- Q3 a) Let $X \ge 0$ be a non-degenerate integer-valued random variable with finite second moment, $0 < \mathsf{E}(X^2) < \infty$. Show that

$$\mathsf{P}(X=0) \leq \frac{\mathsf{Var}(X)}{(\mathsf{E}X)^2}.$$

- b) Let X and Y be random variables. Carefully show that $(\mathsf{E}(XY))^2 \leq \mathsf{E}(X^2) \mathsf{E}(Y^2)$.
- c) Let $X \ge 0$ be a non-degenerate integer-valued random variable with finite second moment, $0 < \mathsf{E}(X^2) < \infty$. Show that $\mathsf{P}(X > 0) \mathsf{E}(X^2) \ge (\mathsf{E}X)^2$ and deduce the following improvement of the estimate in a):

$$\mathsf{P}(X=0) \le \frac{\mathsf{Var}(X)}{\mathsf{E}(X^2)}.$$

[**Hint:** Apply the result in b) to $X \equiv XY$ with $Y = \mathbb{1}_{\{X>0\}}$.]

Q4 A rooted tree R_d of index d > 2 is a tree, in which every vertex different from the root r has exactly d neighbours; e.g.,

shows a finite part of R_3 .

- a) Carefully define the site percolation model on R_d .
- b) Prove that $\theta_{\mathsf{r}}^{\mathsf{site}}(p) \equiv \mathsf{P}_p(\mathsf{r} \stackrel{\mathsf{site}}{\longleftrightarrow} \infty) > 0$ if and only if (d-1)p > 1. [**Hint:** Find a recurrence for $\rho_n := \mathsf{P}(\{\mathsf{r} \stackrel{\mathsf{site}}{\longleftrightarrow} \text{ level } n\}^{\mathsf{c}} | \mathsf{r} \text{ is open}).]$
- c) Is it true that $\theta_{r}^{site}(p) = 0$ if and only if $\theta_{v}^{site}(p) = 0$ for each vertex v of R_d ? If so, what is the value of the critical site percolation probability on R_d ?

SECTION B

- **Q5** An *n*-step path s_0, s_1, \ldots, s_n of integers satisfies $|s_{k+1} s_k| = 1$ for $0 \le k \le n 1$. For $x, y \in \mathbb{Z}$, let $N_n(x, y)$ denote the number of *n*-step paths with $s_0 = x$ and $s_n = y$.
 - a) Find a closed formula for $N_n(x, y)$.
 - b) For positive integers a and b, show that the number of n-step paths with $s_0 = a$ and $s_n = b$ that visit 0 equals $N_n(-a, b)$.
 - c) For positive integers a and b, show that the number of n-step paths such that

$$s_0 = 0, \quad s_1 > -a, \quad s_2 > -a, \dots, \quad s_{n-1} > -a, \quad s_n = b$$

equals $N_n(0, b) - N_n(0, 2a + b)$.

- d) If a > b > 0 are integers, show that the number of *n*-step paths such that $s_0 = 0, s_1 < a, s_2 < a, \ldots, s_{n-1} < a, s_n = b$ equals $N_n(0, b) N_n(0, 2a b)$.
- **Q6** Let $(X_n)_{n\geq 1}$ be independent identically distributed random variables with $\mathsf{E}(X_k) = \mu$ and $\mathsf{Var}(X_k) = \sigma^2 < \infty$. Denote $S_n = X_1 + \cdots + X_n$.
 - a) Use Chebyshev's inequality and the sufficient condition of almost sure convergence to show that

$$\frac{1}{m^2}S_{m^2} \equiv \frac{1}{m^2} (X_1 + \dots + X_{m^2}) \xrightarrow{\text{a.s.}} \mu = \mathsf{E}(X_k) \qquad \text{as } m \to \infty.$$

- b) Assuming $X_k \ge 0$, show that $(m+1)^{-2}S_{m^2} \le n^{-1}S_n \le m^{-2}S_{(m+1)^2}$ provided $m^2 \le n \le (m+1)^2$. Use this inequality to show that $\frac{1}{n}S_n \to \mu = \mathsf{E}(X_k)$ almost surely as $n \to \infty$ for non-negative random variables $X_k \ge 0$.
- c) In the general case, decompose into positive and negative part, $X_k = X_k^+ X_k^-$, where $X_k^+ \ge 0$ and $X_k^- \ge 0$ and deduce the strong law of large numbers:

if $S_n = X_1 + \cdots + X_n$ where $(X_k)_{k\geq 1}$ are i.i.d. random variables satisfying $\mathsf{E}((X_k)^2) < \infty$, then $n^{-1}S_n \to \mu = \mathsf{E}(X_k)$ almost surely as $n \to \infty$.

- **Q7** An isolated edge in a graph G is a pair of vertices u, v in G that are adjacent to each other, but to no other vertices in G.
 - a) Calculate the expected number of isolated edges in a binomial random graph $G_{n,p}$.
 - b) Calculate the variance of the number of isolated edges in a binomial random graph $G_{n,p}$.
 - c) Suppose p = p(n) is a function satisfying $np/\log(n) \to c$ as $n \to \infty$, for some constant c > 0.
 - i) Prove that $\mathsf{P}(G_{n,p} \text{ has an isolated edge}) \to 0 \text{ as } n \to \infty \text{ for } c > 1/2.$
 - ii) Prove that $\mathsf{P}(G_{n,p})$ has an isolated edge) $\to 1$ as $n \to \infty$ for 0 < c < 1/2.

Q8 Consider bond percolation on the triangular lattice (see the picture below), with every bond independently open with probability $p \in [0, 1]$.

- a) Carefully define the percolation probability $\theta(p)$; show that it is a non-decreasing function of p and hence define the critical value p_{c} .
- b) Show that $\theta(p) = 0$ for p > 0 small enough; hence deduce that $p_{\sf c} \ge p'$ for some p' > 0.
- c) Show that $\theta(p) > 0$ for 1 p > 0 small enough; hence deduce that $p_{\sf c} \le p''$ for some p'' < 1.