Hints to exercises 11.5, 11.6 (week 18)

- 11.5 I will make a spreadsheet page showing a small simulation.
- 11.6 Down-and-in comes alive when price drops below v before t. Value is $D_i(s, t, K)$ where s > v. Suppose its exercise time is t = n/N and we take j steps per day. Let $t_k = kt/nj$, k = 0, 1, ..., nj and $I_k = 1$ if S(mt/n) < v for any $m \le k/j$ and $I_k = 0$ otherwise (so $I_k = 1$ only if the end-of-day price no later than t_k is below the barrier). Let $V_k(i)$ denote the expected payoff given that $S(t_k) = u^i d^{k-i} S(0)$ (where u, d are the risk-neutral jumps). We have

$$V_k(i) = I_k(pV_{k+1}(i+1) + (1-p)V_{k+1}(i)) + (1-p)(1-I_k)I_{\{u^i d^{k+1-i} \le 0 \le v\}}V_{k+1}(i) .$$

Then $V_0(0)$ is the expected return and hence the price of the option.