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1. Nonparametric Predictive Inference

Coolen (1998) presented Nonparametric Predictive Inference (NPI) for Bernoulli random quan-
tities, based on a representation of Bernoulli data as outcomes of an experiment similar to that used
by Bayes (1763), with Hill’s assumption A(n) (Hill 1968, 1988) used to derive direct predictive proba-
bilities for future observations based on available data. The lower and upper probabilities presented
by Coolen (1998) have strong internal consistency properties in the theory of interval probability
(Augustin and Coolen 2004, Weichselberger 2001). Due to the use of A(n) in deriving these lower
and upper probabilities, they fit in a frequentist framework of statistics but can also be interpreted
from Bayesian perspective (Hill 1988, Coolen 2006). NPI is also ‘perfectly calibrated’ in the sense of
Lawless and Fredette (2005). In this paper, we briefly give the main results from Coolen (1998), and
we illustrate their use in two recently developed applications.

Suppose that we have a sequence of n + m exchangeable Bernoulli trials, each with ‘success’
and ‘failure’ as possible outcomes, and data consisting of s successes in n trials. Let Y n

1 denote
the random number of successes in trials 1 to n, then a sufficient representation of the data for our
inferences is Y n

1 = s, due to the assumed exchangeability of all trials. Let Y n+m
n+1 denote the random

number of successes in trials n + 1 to n + m. Let Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1 and
0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of notation, let us define

(s+r0

s

)
= 0. Then the NPI-based

upper probability (Coolen 1998) for the event Y n+m
n+1 ∈ Rt, given data Y n

1 = s, for s ∈ {0, . . . , n}, is
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s

)
−
(

s + rj−1

s

)](
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(1)

The corresponding lower probability (Coolen 1998) is derived via the conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . ,m}\Rt. This conjugacy property agrees with the fact that these lower and upper

probabilities are F -probabilities in Weichselberger’s theory of interval probability (Weichselberger
2000, 2001). These lower and upper probabilities also have attractive properties beyond internal
consistency, as the interval created by the lower and upper probability for an event A always contains
the precise empirical probability for A as based on the observed data, and the lower (upper) probability
increases (decreases) as function of n, for constant s/n.



2. Comparison of proportions

To compare two or more independent groups of data, each consisting of a number of successes
and failures, for example to compare effectiveness of different treatments, the general upper proba-
bility (1) and the conjugacy property can be used to derive upper and lower probabilities on events
which directly compare m ≥ 1 future observations from each of the different treatments, enabling both
pairwise and multiple comparisons. For general results on NPI pairwise and multiple comparisons,
and more details on the example presented below, we refer to Coolen and Coolen-Schrijner (2007a).
We briefly illustrate NPI multiple comparisons in Example 1.

Example 1.
Spiegelhalter, et al. (2002) present an analysis of several data sets on mortality in heart operations
on children. We use one of those data sets to illustrate NPI multiple comparisons, without comparing
it to other sources of information or discussing the quality of the data. This data set consists of the
number ni, for i = 1, . . . , 12, of heart operations on children under 1 year old at 12 medical centres,
during the period 1991 until March 1995, and the corresponding number si of mortalities. Table 1
also gives si/ni, together with the NPI multiple comparisons results for m = 10 and m = 50, where
‘i > max j′ denotes the event that the future number of deaths in Centre i is greater than that in
all other centres, from m operations at each centre. An aspect of interest in the original study was
whether the proportion of mortalities at Centre 1 exceeds those at the other centres. Centre 1 has the
highest observed proportion of deaths, and we see that the predictive lower and upper probabilities
clearly indicate that, on the basis of our NPI approach, this centre is the most likely one to lead to
the highest number of deaths in m future heart operations. For smaller m there is a higher chance
of two or more centres leading to the same maximum number of such deaths, hence the differences
between the lower and upper probabilities for events ‘i > max j′ and ‘i ≥ max j′ tend to decrease for
larger m. For m = 50, the imprecision is often greater than for m = 10, although this is not a general
effect, mostly due to the fact that the upper probability for many of these centres gets closer to zero
for larger m.

Table 1: Multiple comparisons 12 centres

m = 10 m = 50
Centre (ni, si) si/ni [P , P ](i > max j) [P , P ](i ≥ max j) [P , P ](i > max j) [P , P ](i ≥ max j)

1 (181,43) 0.2376 [0.177, 0.197] [0.369, 0.397] [0.426, 0.482] [0.526, 0.583]
2 (200,27) 0.1350 [0.033, 0.039] [0.112, 0.128] [0.022, 0.032] [0.041, 0.057]
3 (157,26) 0.1656 [0.061, 0.072] [0.173, 0.196] [0.073, 0.098] [0.114, 0.148]
4 (142,15) 0.1056 [0.017, 0.022] [0.067, 0.082] [0.007, 0.011] [0.014, 0.022]
5 (217,36) 0.1659 [0.060, 0.070] [0.173, 0.193] [0.069, 0.089] [0.110, 0.139]
6 (417,49) 0.1175 [0.021, 0.024] [0.082, 0.092] [0.008, 0.011] [0.017, 0.022]
7 (253,27) 0.1067 [0.016, 0.020] [0.067, 0.078] [0.005, 0.008] [0.011, 0.016]
8 (369,57) 0.1545 [0.048, 0.054] [0.148, 0.163] [0.042, 0.054] [0.073, 0.091]
9 (214,28) 0.1308 [0.030, 0.036] [0.104, 0.120] [0.018, 0.026] [0.034, 0.048]
10 (184,31) 0.1685 [0.064, 0.074] [0.179, 0.201] [0.077, 0.101] [0.121, 0.153]
11 (740,67) 0.0905 [0.009, 0.011] [0.046, 0.052] [0.001, 0.002] [0.003, 0.004]
12 (268,32) 0.1194 [0.022, 0.027] [0.085, 0.098] [0.010, 0.014] [0.020, 0.028]



3. System reliability

We consider inference for reliability of a k-out-of-m system, consisting of m exchangeable com-
ponents such that the system functions if at least k of these components function. We assume that
n such components, also exchangeable with the m in the system, have been tested, of which s func-
tioned satisfactorily. The general upper probability (1) and the conjugacy property can be used to
derive lower and upper probabilities for the event Y n+m

n+1 ≥ k, as this event corresponds to successful
functioning of a k-out-of-m system. We also denote these lower and upper probabilities for the event
that the k-out-of-m system functions successfully, by P (m : k|n, s) and P (m : k|n, s), respectively.
For detailed presentation of this NPI approach for reliability of such systems, see Coolen and Coolen-
Schrijner (2007b). For the NPI lower and upper probabilities for successful functioning of a k-out-of-m
system, the following relation holds

P (m : k|n, s) = P (m : k|n, s + 1)(2)

The result (2) can obviously be used to reduce computational effort, if upper and lower probabilities
are required for all possible values of s. We would also like to emphasize the elegance of this equality,
as it implies that the intervals created by corresponding lower and upper probabilities of successful
system functioning, for s = 0, 1, . . . , n, form a partition of the interval [0, 1]. We illustrate this ap-
proach in Examples 2 and 3.

Example 2.
Consider a series system with 10 exchangeable components (so k = m = 10), and the only information
available is the result of a test of 2 components, also exchangeable with the 10 to be used in the
system. For the three possible values of the number of successes in the tests, s = 0, 1, 2, the NPI
lower and upper probabilities for successful functioning of the system are [P , P ](10 : 10|2, 0) = [0, 1

66 ],
[P , P ](10 : 10|2, 1) = [ 1

66 , 1
6 ] and [P , P ](10 : 10|2, 2) = [16 , 1]. These values illustrate property (2), and

the value 0 (1) of the lower (upper) probability for the case s = 0 (s = 2) reflects that in this case
there is no strong evidence that the components can actually function (fail).

Example 3.
If one aims at testing to demonstrate high reliability, one may only allow the release of a system
for practical use if testing of components revealed zero failures. In risk assessment, it is attractive
to consider reliability requirements in terms of the lower probability of successful functioning of the
system, given the test results on the components. Table 2 presents the minimum number of zero-failure
tests required to achieve a chosen value for the lower probability of successful system functioning, for
k = 8 and m varying from 8 to 12, so one has the option of building redundancy into the system. The
requirement considered is P (m : 8|n, n) ≥ p for different values of p. The main conclusion from Table
2 is that, in order to demonstrate high reliability via zero-failure testing, one requires quite a large
number of successful tests, yet this number can be substantially reduced by building in redundancy.

Table 2: Reliability demonstration: zero-failure tests vs redundancy

m = 8 9 10 11 12
p = 0.75 24 9 6 4 4

0.80 32 11 7 5 4
0.85 46 14 8 6 5
0.90 72 19 11 8 6
0.95 153 30 16 11 9
0.99 792 77 33 21 15



4. Concluding remarks

In this paper, only NPI for Bernoulli quantities has been illustrated. NPI has been developed and
applied for more situations, including lifetime data with right-censored observations and multinomial
data. Such methods typically required slight variations to Hill’s assumption A(n), together with a
different assumed data representation for the latter case. In addition to several statistical inferential
procedures, NPI methods have also been presented for applications in Reliability and in Operations
Research, for example providing decision support methods for replacement of technical units, which
are fully adaptive to process data (Coolen-Schrijner and Coolen 2004). Coolen (2006) provides a
short overview with further references, and also presents NPI as an attractive alternative to so-called
‘objective Bayesian methods’.

NPI needs to be developed further in order to enhance its practical use. In particular, methods
for dealing with covariates must be developed, together with NPI for multivariate data. Generally
speaking, such methods will require careful development of appropriate exchangeability assumptions,
to then be used in a post-data manner in the same spirit as Hill’s A(n), which underlies NPI.
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