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Abstract

Nonparametric predictive inference (NPI) is a power-
ful tool for predictive inference under nearly complete
prior ignorance. After summarizing our NPI approach
for multinomial data, as presented in [8, 9], both for
situations with and without known total number of
possible categories, we illustrate how this approach
can be generalized to deal with sub-categories, en-
abling consistent inferences at different levels of de-
tail for the specification of observations. This ap-
proach deals with main categories and sub-categories
in a logical manner, directly based on the powerful
probability wheel representation for multinomial data
that is central to our method and that ensures strong
internal consistency properties. Detailed theory for
such inferences, enabling for example more layers of
sub-categories as might occur in tree-like data base
structures, has yet to be developed, but is conceptu-
ally straightforward and in line with the illustrations
for more basic inferences presented in this paper.

Keywords. CA model, imprecise Dirichlet model,
nonparametric predictive inference, probability wheel
representation.

1 Introduction

Statistical data in various application areas are often
multinomial, i.e. the observations fall into one of sev-
eral unordered categories. Recently, the current au-
thors have developed a nonparametric predictive in-
ferential approach for such data [8, 9]. This approach
provides lower and upper probabilities for a future ob-
servation, on the basis of observed multinomial data,
and it adds only few modelling assumptions to the
data. The method has been presented both for sit-
uations in which one has no information about the
number of possible categories [8], and for situations
with at most K possible categories [9], where the ad-
ditional knowledge in the latter case leads to less im-
precision for some events of interest. In this paper,

we will refer to the general NPI approach for multi-
nomial data, by Coolen and Augustin [8, 9], as the
‘CA model’1. In the earlier papers, the advantages of
the CA model are discussed and illustrated in detail,
and the resulting lower and upper probabilities are
also compared to those based on Walley’s Imprecise
Dirichlet Model (IDM) [23], which has attracted con-
siderable attention in a variety of application areas
[4].

The CA model fits in the framework of ‘Nonparamet-
ric Predictive Inference’ (NPI) [2, 7], which is gener-
ally based on Hill’s assumption A(n) [18]. However,
for multinomial data, a variation of this assumption
is required, which was introduced by Coolen and Au-
gustin [8] and called ‘circular-A(n)’, and which is very
close in nature to Hill’s A(n) as both are post-data
versions of exchangeability [14]. Coolen [7] illustrated
the natural use of circular-A(n) for circular data.

A key assumption for the CA model as presented be-
fore [8, 9], as well as for most models for multino-
mial data including Walley’s IDM, is that the differ-
ent categories are in no way related. Not only should
the categories not be ordered, but there should also
not be other possible links between some of the cate-
gories. For example, such methods are not fully suited
for situations where two or more categories may be
considered as sub-categories of a larger category, for
example2 one may be interested in situations where
one distinguishes between main colours such as green,
red and blue, but in addition distinguishes between
light-blue and dark-blue within the latter category.
An interesting property, called the Representation In-
variance Principle (RIP), of Walley’s IDM [23] is that
this distinction has no effect on probabilities for events
which do not directly involve ‘blue’, this property does
not hold in general for the CA model [8, 9]. In this pa-

1CA: Circulus Alearius and/or Circular-A(n).
2The use of colours as different categories in illustrative ex-

amples might be considered inappropriate, as one could con-
sider an existing natural ordering of colours, but it has become
somewhat of a tradition in this field following Walley [23].



per, we call categories such as light-blue and dark-blue
‘sub-categories’ of the category blue, and we present
the basic way in which the CA model can deal explic-
itly with such sub-categories.

In Section 2 of this paper, we present an overview of
the CA model as presented before, both for a known
and unknown number of categories [8, 9]. Section 3
illustrates how the CA model should be generalized
in order to deal with sub-categories, which is mostly
explained via an example as the main theory is under
development, and Section 4 provides some concluding
remarks.

2 The CA model

2.1 The basic setting

Hill [18] introduced the assumption A(n) as a basis
for predictive inference in case of real-valued obser-
vations. Suppose we have n observations ordered as
z1 < z2 < . . . < zn, which partition the real-line
into n + 1 intervals (zj−1, zj) for j = 1, . . . , n + 1,
where we use notation z0 = −∞ and zn+1 = ∞.
Hill’s assumption A(n) is that a future observation,
represented by a random quantity Zn+1, falls into
any such interval with equal probability, so we have
P (Zn+1 ∈ (zj−1, zj)) = 1

n+1 for j = 1, . . . , n+1. This
assumption implies that the rank of Zn+1 amongst
the n observed data has equal probability to be any
value in {1, . . . , n+ 1}. This clearly is a post-data as-
sumption, related to exchangeability [14], which pro-
vides direct posterior predictive probabilities [13]. Hill
[18, 19] argued that A(n) is a reasonable basis for infer-
ence in the absence of any further process information
beyond the data set, when actually predicting a future
random quantity. Augustin and Coolen [2] prove gen-
erally that Nonparametric Predictive Inference (NPI)
based on A(n) has strong consistency properties in
the theory of interval probability [22, 24, 25]. Inter-
estingly, as NPI is based on A(n), such inference is
fully in line with ‘perfectly calibrated’ inference along
the lines of Lawless and Fredette [20], who however
restricted attention to precise probability.

In the CA model, multinomial data are represented
as observations on a probability wheel, and hence as
circular data. A straightforward variation of A(n) that
is suitable for inference based on such data, and again
linked to exchangeability of n+ 1 observations, is the
assumption circular-A(n), denoted by A(n)© [7, 8]: Let
ordered circular data x1 < x2 < . . . < xn create n
intervals on a circle, denoted by Ij = (xj , xj+1) for
j = 1, . . . , n − 1, and In = (xn, x1). The assumption
A(n)© is that a future observation Xn+1 falls into each
of these n intervals with equal (classical) probability,

so
P (Xn+1 ∈ Ij) =

1
n
, for j = 1, . . . , n. (1)

Clearly, A(n)© is again a post-data assumption, re-
lated to the appropriate exchangeability assumption
for such circular data, in exactly the same way as A(n)

was related to exchangeability of n+ 1 values on the
real-line. NPI based on A(n)© has the same consistency
properties as shown in [2] for such inference based on
A(n).

In the CA model [8, 9], A(n)© is combined with the as-
sumed underlying representation of multinomial data
as outcomes of spinning a probability wheel. Without
additional assumptions about the probability mass
1/n per interval Ij , the predictive inferences based
on the CA model are again in the form of interval
probabilities [2, 22, 24, 25], where a lower probability
for an event A is represented by P (A), and the cor-
responding upper probability by P (A). Effectively,
the lower probability is the maximum lower bound
for the classical probability for A that is consistent
with the probabilities as assigned by A(n)© and in ac-
cordance with the probability wheel model, according
to De Finetti’s fundamental theorem of probability
[14], and the upper probability is the minimum upper
bound consistent in this way.

The predictive lower and upper probabilities pre-
sented in [8, 9], and reviewed in this section, are based
on an underlying assumed model, ensuring that they
not only make sense for one specific set of data, which
they do being F -probability [24, 25] and due to the
fact that they bound the observed relative frequen-
cies, but they are also consistent if more observations
are added to the data. We now give a brief summary
of the key aspects of this model and its properties.

The CA model underlying the nonparametric predic-
tive lower and upper probabilities presented below, is
based on a probability wheel representation, with each
observation category represented by a single segment
of the probability wheel. The idea of such a proba-
bility wheel is as follows (see [15] for use of the same
concept as a reference experiment underlying subjec-
tive probability). An arrow, fixed at the center of a
circle, spins around, such that the arrow is equally
likely to stop at any segment of the same size, where
a segment is an area between two lines from the cen-
ter of the circle to its circumference. In our model
for multinomial data, we assume explicitly that each
possible observation category is represented by only
a single segment on the circle. Even more, we as-
sume that there is no natural (or assumed) ordering
of the observation categories, and therefore also no
such ordering of the segments on the circle. Clearly,
if we had perfect knowledge of the sizes of all seg-



ments on the probability wheel, we would have full
knowledge of the probability distribution for future
observations from this multinomial setting. The CA
model can deal both with situations where the num-
ber of possible categories is unknown [8] and where it
is known that there are K possible categories [9], and
it only assumes a finite number of exchangeable multi-
nomial observations, A(n)© , and the probability wheel
representation. As this probability wheel is only an
abstract model, we have no information about the
configuration of different segments on it. This is im-
portant for our nonparametric predictive inferences
based on A(n)© once we consider unions of two or more
categories, and adds to imprecision of our inferences,
in the sense that our lower and upper probabilities
are optimal bounds over all configurations of the pos-
sible segments on the probability wheel. In Section 3
we change this perspective a little, by allowing cate-
gories to be subdivided into sub-categories, in such a
way that both inferences at the category and at the
sub-category level can be considered. We will show
how the CA model can deal with sub-categories by
explicitly representing sub-categories within the cor-
responding category in the probability wheel repre-
sentation. Each sub-category is again assumed to be
represented by a single segment on the probability
wheel.

When we combine the concept of a probability wheel,
with each observation category represented by a single
segment, with the assumption A(n)© , on the basis of n
observations, then we can represent this situation as
if the n observations are represented by n lines, which
partition the circle into n equally sized slices, repre-
senting that the next observation is equally likely to
fall into each one of these slices. The assumption that
each observation category is represented by only one
segment on the probability wheel, implies that the
lines representing observations in the same category
are ‘next to each other’. For example, if precisely two
observations fall into one category, then our current
inferences with regard to the next observation falling
into this category, are based on the current represen-
tation with two lines next to each other which both
represent this category, and the other lines, in case of
more than 2 observations, representing different cat-
egories. Under the assumption A(n)© , the probability
1
n for the line on the probability wheel corresponding
to the next observation to be in between the two lines
representing these observations in the same category,
is the lower probability that the next observation be-
longs to that same category as well. For the upper
probability, we consider all possible configurations of
segments on the probability wheel, which are consis-
tent with the observations and their corresponding
lines on the wheel. The upper probability is then the

maximum amount of probability, under A(n)© and these
data and configurations, that can be assigned to the
segments corresponding to the event of interest.

The assumption that each observation category is rep-
resented by a single segment on the probability wheel
is crucial to the imprecision in the lower and upper
probabilities, and is essential as without this assump-
tion the CA model would lead to vacuous lower and
upper probabilities for all non-trivial events.

2.2 Inference for an unknown number of
categories

Our inferences in this paper are restricted to a single
future observation, which is assumed to be exchange-
able with the n observations so far. We will refer to
such a future observation as the ‘next observation’,
and will denote it by Yn+1. We will assume that each
observation can be assigned to a category with cer-
tainty, but we do not require these categories to be
defined prior to the observations. We assume that
available data consist of nj observations in category
cj , for j = 1, . . . , k, with

∑k
j=1 nj = n. If the cat-

egories are defined upon observation, we have that
nj ≥ 1, and hence that 1 ≤ k ≤ n. We could include
further specifically defined categories to our data de-
scription, to which no observations belong, but doing
so will not influence any of our inferences (as is eas-
ily confirmed), so we will not consider this possibility
further. For the general setting with unknown total
number of possible categories, we must include nota-
tion for new, as yet unseen, categories. We distin-
guish between Defined New categories, of which we
need to take the possibility of having several differ-
ent such categories into account, denoted by DNi for
i = 1, . . . , l for l ≥ 1, and the possibility that the next
observation belongs to any not yet observed category
(including categories DNi), which we describe as an
Unobserved New outcome and denote as Yn+1 = UN .
By allowing l ≥ 0 and 0 ≤ r ≤ k in this notation, we
can define two types of events that comprise the most
generally formulated events that need to be consid-
ered for Yn+1 in our multinomial setting. These two
general events are

Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi (2)

and

Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi (3)

Excluding one or more defined new categories in the
event of interest, as in (2), can only affect our infer-
ences for events including UN .



The general CA model results for nonparametric pre-
dictive inference for the next observation, Yn+1, based
on multinomial data, with complete absence of knowl-
edge on the number of possible categories apart from
the information provided by n > 0 observations, and
based on A(n)© and the probability wheel model rep-
resentation, were presented in [8]. For the first of the
general events, the lower probability3 is

P (Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi) =

1
n

(
r∑
s=1

njs − r

)
, for k ≥ 2r

1
n

(
r∑
s=1

njs − r + max(2r − k − l, 0)

)
,

for r ≤ k ≤ 2r

(4)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi)

=
1
n

(
r∑
s=1

njs + k − r

)
(5)

For the second of these general events, the lower prob-
ability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi) =
1
n

(
r∑
s=1

njs − r

)
(6)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi) =

1
n

(
r∑
s=1

njs + k − r

)
, for r ≤ k ≤ 2r,

1
n

(
r∑
s=1

njs + r + min(k − 2r, l)

)
,

for k ≥ 2r

(7)

2.3 Inference with a known number of
possible categories

If we assume, for the same multinomial setting, that
there is a known number of possible categories, de-
noted by K, then this extra assumption has an ef-
fect on the lower and upper probabilities in the CA

3All probabilities in this paper are predictive given the first
n observations, we do not explicitly mention the dependence
on the first n observations in the notation.

model [9]. We restrict attention to K ≥ 3, as for
the binomial situation with K = 2 NPI can be based
on an assumed data representation on a line, as pre-
sented by Coolen [6], which leads to slightly less im-
precision than a representation on a circle as in this
paper. We can now denote the K ≥ 3 possible cat-
egories by C1, . . . , CK , even if their precise definition
might only be possible following observations. With-
out loss of generality, we assume that the first k of
these, C1, . . . , Ck for 1 ≤ k ≤ K, have already been
observed and the last K − k, Ck+1, . . . , CK have not
yet been observed. Let nj be the number of observa-
tions in Cj , so nj ≥ 1 for j ∈ {1, . . . , k} and nj = 0
for j ∈ {k + 1, . . . ,K}, and n =

∑k
j=1 nj . The two

general events of interest introduced before, when K
was not known, are now reduced to a single general
event,

Yn+1 ∈
⋃
j∈J

Cj (8)

with J ⊆ {1, . . . ,K}, but except where mentioned
explicitly we exclude the trivial events J = ∅ and
J = {1, . . . ,K} from our considerations. Let OJ =
J∩{1, . . . , k} denote the index-set for the categories in
the event of interest that have already been observed,
and UJ = J∩{k+1, . . . ,K} the corresponding index-
set for the categories in the event of interest that have
not yet been observed. Let r be the number of ele-
ments of OJ and l the number of elements of UJ , so
0 ≤ r ≤ k and 0 ≤ l ≤ K − k. This implies that
k − r observed categories and K − k − l unobserved
categories are not included in the event of interest.

The lower and upper probabilities for event (8), ac-
cording to the CA model with K known, are [9]

P (Yn+1 ∈
⋃
j∈J

Cj)

=
1
n

∑
j∈OJ

nj − r + max(2r + l −K, 0)

 (9)

and

P (Yn+1 ∈
⋃
j∈J

Cj)

=
1
n

∑
j∈OJ

nj − r + min(2r + l, k)

 (10)

For the two trivial events, the NPI-based lower and
upper probabilities are obvious. If J = {1, . . . ,K},
the upper probability of event (8) is equal to 1, in
line with (10), and also the lower probability (9) is
trivially defined as 1, which is fully in line with the
probability wheel representation which underlies the



CA model. Similarly, if J = ∅, the lower probability
of event (8) is equal to 0, in line with (9), and the
upper probability (10) is defined as 0. In our further
discussion, we will not explicitly mention these trivial
events anymore. At the end of this section, we briefly
illustrate (9) and (10) via an example, which will be
generalized to include sub-categories in Section 3.

2.4 Fundamental properties of the inferences

To derive all the above lower and upper probabilities,
we consider all possible configurations σ on the prob-
ability wheel, apply A(n)© to each of these to obtain
lower and upper predictive probabilities Pσ(·) and
Pσ(·), and then take the lower and upper envelope
with respect to the set Σ of all configurations [8, 9].
In case of known K, there are fewer configurations on
the probability wheel possible for some events of in-
terest, but never more, than when no maximum num-
ber of possible categories is known or assumed, hence
lower and upper probabilities can be less imprecise if
K is known then for the corresponding event in the
more general case, but they can never be more im-
precise. Actually, such lower and upper probabilities
are nested in the logical manner, as the optimization
procedures to derive the lower and upper probabilities
also take all configurations into account correspond-
ing to known K in the case of an unknown number
of categories. All these lower and upper probabilities
satisfy a number of important and attractive proper-
ties [8, 9]: (a) they satisfy the conjugacy property in
interval probability theory, and beyond that they are,
by applying arguments along the line of [1] (see also
[12]), actually F -probability in the sense of Weich-
selberger [24, 25] and they are coherent in the sense
of Walley [22]; (b) Corresponding lower and upper
probabilities always contain the empirical probability
for the event of interest; (c) in the limiting situation
with (n → ∞), corresponding lower and upper prob-
abilities become identical. The properties named in
(a) imply that the CA model provides sound interval-
probabilistic statistical inferences, with strong inter-
nal consistency properties. Properties (b) and (c) en-
sure that these inferences are sensible from classical
statistical (‘frequency’) perspective. Convenient ex-
pressions to calculate the lower and upper expecta-
tions as simply weighted sums instead of solutions to
linear optimization problems are presented in [9].

Properties of the CA model have been discussed in
detail before, both for the situations with an un-
known total number of possible categories [8] and
with at most K possible categories [9], in those pa-
pers the resulting inferences were also compared with
corresponding inferences based on Walley’s Imprecise
Dirichlet Model (IDM) [23]. We advocate in particu-

lar the fact that the inferences from the CA model do
not generally satisfy Walley’s ‘Representation Invari-
ance Principle’ [23], as there are particular situations
where for example the number of different categories
observed so far would logically have an impact on pre-
dictive inference for some events of interest, including
events involving categories that have not yet been ob-
served. The CA model provides an attractive alter-
native to the IDM, and is particularly different on
details which were remarked upon by many discus-
sants of Walley’s paper [23]. Of course, in situations
with substantial data available and a limited number
of categories, inferences based on the CA model and
the IDM are very similar, in the limit these all agree
with empirical probabilities converging to the under-
lying probabilities (derived from the sizes of the seg-
ments). An obvious advantage of the IDM is the fact
that it is directly based on a parametric model, with a
class of priors used in a similar manner as common in
robust Bayesian methods [3]. This implies that infer-
ences can be both in terms of the model parameters
and of the future observations, the latter via the class
of posterior predictive distributions corresponding to
the class of priors chosen [4]. However, as many infer-
ences can be formulated predictively in an attractive
and natural manner [7, 16], this apparent advantage
of the IDM over the CA model does not hinder appli-
cability of the latter too much.

2.5 An illustrative example

Example 1 briefly illustrates multinomial NPI with a
known number of categories, hence formulae (9) and
(10) are used.

Example 1.
Suppose that there are K = 6 possible categories,
namely Blue, Red, Yellow, Green, White, Other,
henceforth also indicated by their first letter. Sup-
pose that n = 9 observations are available, with the
following numbers per category: B − 3, R− 1, Y − 2,
G−3, W−0, O−0. We illustrate NPI for the 10th ob-
servation, Y10, under the usual assumptions for NPI
for multinomial data, as discussed in this section and
in more detail in [8, 9]. Some lower and upper proba-
bilities for the events concerning Y10 are given in Table
1, it is easy to check that these results illustrate (9)
and (10).

Y10 ∈ {·} [P , P ]
B [2/9, 4/9]
B,R [2/9, 6/9]
B,R, Y [3/9, 7/9]
B,R, Y,G [7/9, 1]
B,R, Y,G,W [8/9, 1]

Table 1. Some lower and upper probabilities (Ex. 1)



For the illustration of our inferences by this exam-
ple it is helpful to look at the increasing sequence
of events described in Table 1. As a consequence of
Theorem 2 in [9], where two-monotonicity of P (·) was
proven, there exists a “least favorable configuration”
producing all the lower probabilities of the elements
of the sequence as well as a “most favorable configu-
ration” related to all the upper probabilities. For the
lower probability note that the probability assigned
to a colour that has been observed nj − 1 times is at
least (nj − 1)/n. This already gives the whole contri-
bution of the colour to the lower probability as long as
there are enough colours not in the event of interest
to separate the segments, in order to avoid having to
attribute further probability mass 1/n to the segment
connecting two neighbouring colours in the event of
interest. Consequently, we obtain the lower proba-
bilities by the following configuration, where B and
R are separated by O and R and Y by W , while Y
and G can not be separated anymore, and so addi-
tional masses contribute to the lower probability of
the event {B,R, Y,G}, i.e. its lower probability ex-
ceeds

∑
j∈OJ nj − r.

B
BB

G

G

G Y
Y W

R

O

B
BB

Y

Y

R G
G

G

P (B) :
B

BB

G

G

G Y
Y

R

P (B,R,Y,G) :
B

BB

G

G

G Y
Y

R

P (B) :
B
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Y

Y

R G
G

G

P (B,R) :
B

BB

Y

Y

R G
G

G

Figure 1. Configurations leading to the lower
and upper probabilities in Example 1

Similar arguments apply to the derivation of the up-
per probability. The main difference is that we now
want to assign as much probability mass as possible to
the colours in the event of interest, and so we assume
that not yet observed colours that are also not in the
event of interest do not occur on the probability wheel
at all. Again we separate the colours in the event of
interest as far as possible, but now with the aim to
add probability mass 1/n as much as possible. This
leads to the configuration at the bottom of Figure 1.

3 Sub-categories

3.1 The modelling of sub-categories

In this section we present the basic principle for deal-
ing with sub-categories in the CA model, and we il-
lustrate this via a basic example. The highest level
of categories, in line with the categories as presented
in Section 2, will occasionally be referred to as ‘main
categories’, where it is relevant to distinguish these
from sub-categories. It is assumed that a main cate-
gory might be divided into several sub-categories, in
such a way that sub-categories are not overlapping
and that each sub-category is only related to a single
main category. We will assume that each observation
belongs to a single main category, and where applica-
ble also to a single sub-category. Such a setting with
sub-categories appears, for example, in hierarchical
classifications (e.g.[17]). As for the basic CA model
(Section 2), both variations with known and unknown
total number of possible sub-categories per main cat-
egory can be dealt with, we restrict our discussion
mostly to situations where these numbers are known.
We briefly discuss some generalizations in Section 4.

The general principle for dealing with sub-categories
is as follows. Each main category is assumed to be
represented, in the CA model [8, 9], by a single seg-
ment on a probability wheel, with no information
about the configuration of all segments representing
observed and other relevant categories (those that
play a role in predictions). Lower and upper pre-
dictive probabilities for the next observation, based
on the CA model, are computed by combining this
assumed representation with the appropriate A(n)© as-
sumption, and via minimization and maximization,
respectively, over all configurations that are possible
for the given data and categories considered. Sup-
pose now that a particular category (e.g. ‘Blue’) is
divided into sub-categories (e.g. ‘Light Blue’, ‘Dark
Blue’, ‘Other Blue’), then this is included in the prob-
ability wheel representation underlying the CA model
by assuming that the single segment representing the
main category is divided into sub-segments, where
it is again assumed that each sub-category is repre-
sented by a single sub-segment. We have no knowl-
edge, and wish to make no assumptions, about any
particular ordering of such sub-segments, hence for
events involving one or more sub-segments, the pre-
dictive lower and upper probabilities are again de-
rived via the usual A(n)© assumption, which remains
unaffected by the appearance of sub-categories, and
minimization and maximization over all possible con-
figurations, now also considering all possible config-
urations of sub-categories within each corresponding
main category. Of course, if one has at least two main



categories for which observations are available, then
the segments representing the sub-categories of one
main category do not form the full circle of the prob-
ability wheel, so the combinatorical arguments and
computations involved with the sub-categories differ
slightly from those for the main categories, yet the
principle is straightforward. Note that, if one were
to add a new single ‘higher-level’ category, with the
main categories all considered to be sub-categories
of this higher-level category, than this makes no dif-
ference to the CA model inferences as via the opti-
misation over all possible configurations that single
‘higher-level’ category would have no effect whatso-
ever. It is again possible, as for the events in Section
2 which only considered one level of categories, to
derive general expressions for lower and upper proba-
bilities for general events, these have yet to be derived
and hence they will be presented at a later stage. It is
easily seen that the key properties for NPI for multi-
nomial data discussed in Section 2, including the F -
probability property and coherence, can again be rig-
orously proven in the same way as was done in [9],
when sub-categories are included in the model.

We illustrate the general and natural manner in which
the CA model can deal with sub-categories in Exam-
ple 2. For ease of presentation, we restrict attention
in this example to a situation with known number K
of possible categories [9], as we focus on inferences in-
volving sub-categories. For the case with an unknown
number of possible categories, the manner in which
the CA model enables sub-categories to be taken into
account is identical. We also mostly consider only
the case of a known number of sub-categories, this
can be generalized to an unknown number of sub-
categories in a manner that logically combines the
presented way for dealing with sub-categories and the
general method for dealing with an unknown total
number of categories [8]. As a final restriction to
keep presentation at a basic level, we only consider
sub-categories of a single main category, of course sub-
categories of other main categories are dealt with in
the same manner, and one can, for example, generally
also consider predictive inference for events involving
sub-categories of different main categories. Detailed
general results for all such situations will be presented
elsewhere.

3.2 Example continued

Example 2.
As in Example 1, suppose that there are six possible
categories, Blue, Red, Yellow, Green, White, Other,
also indicated by their first letter. In addition, let us
assume that observations in Blue are further speci-
fied in the sub-categories Light Blue (LB), Dark Blue

(DB), or Other Blue (OB). Suppose that 9 obser-
vations are available, with the following numbers per
(sub-)category: LB−1, DB−2, OB−0, R−1, Y −2,
G − 3, W − 0, O − 0. Of course, these data still im-
ply that there are 3 observations in the main category
B, so the lower and upper probabilities for the event
Y10 = B are as before,

[P , P ](Y10 = B) = [2/9, 4/9]

If we consider events such that Y10 belongs to a single
sub-category, the resulting lower and upper probabili-
ties are no different from what they would have been if
these sub-categories had been main categories, as each
is still represented by a single segment on the proba-
bility wheel. However, for events involving the union
of two sub-categories, the possible configurations of
all three sub-categories LB,DB,OB within the main
category B must be taken into account. For example,
the upper probability for the event Y10 ∈ {LB,OB}
corresponds to the configurations where DB separates
LB,OB within the main category B, while it is irrel-
evant where B is in the overall configuration with re-
gard to the other main categories, as this is only rele-
vant when events involving unions of main categories
are considered, or, as we will discuss later, unions
of one or more main categories and sub-categories of
other main categories. This separation of LB,OB
ensures that of the probability masses that have to
be in the main category B, namely two probabili-
ties of 1/9 each, only the probability 1/9 between the
two lines representing DB observations has to be as-
signed to DB, and as LB and OB are on the two ex-
treme sides within the category B, they can now be
assigned maximum probabilities of 2/9 and 1/9, re-
spectively. Hence, the upper probability for the event
Y10 ∈ {LB,OB} is 3/9. The lower probability for this
event is 0, as it is easily seen that it is possible (for
several configurations) that no actual segment of the
probability wheel as created by the data and reflect-
ing the probability masses as assigned by A(n)© in the
CA model, [8, 9] must belong to either LB or OB.
With similar derivations the lower and upper proba-
bilities presented in Table 2 are derived (see also the
example in Figure 2).

The last event in Table 2 is, of course, identical to
Y10 = B. If we had introduced multiple ‘Other Blue’
sub-categories (OBi), with no observations for each
as yet, then the upper probability that Y10 was in any
of such sub-category would be equal to 2/9 in case
of two such OBi, and 3/9 in case of three or more
of such OBi, the latter case in agreement with the
possible use of UN (see Section 2 and [8]) for such
sub-categories if we had not made any assumptions
on the number of sub-categories of Blue.



Y10 ∈ {·} [P , P ]
LB [0, 2/9]
DB [1/9, 3/9]
OB [0, 1/9]
LB,DB [1/9, 4/9]
LB,OB [0, 3/9]
DB,OB [1/9, 4/9]
LB,DB,OB [2/9, 4/9]

Table 2. Some lower and upper probabilities (Ex. 2)

P (LB ∪DB) =

OB

LB
DBDB

R

Y

Y G
G

G =
1
9
,

P (LB ∪DB) =
LB

DBDB

R

Y

Y G
G

G =
4
9
.

Figure 2. On the lower and upper probability of
LB ∪DB

Let us also briefly consider unions of these sub-
categories with other main categories. It should be
emphasized that considering the information at sub-
category level within the main category Blue, or just
at the main category level, has no effect whatsoever
on events which do not involve B or any of its sub-
categories, due to the fact that all considerations of
more detailed configurations to deal with the sub-
categories only took account of the segment repre-
senting Blue, and did not affect the configurations
at main categories level. Lower and upper probabil-
ities for events such as Y10 ∈ {DB,Y } are derived
as usual, as a single sub-category is involved they are
identical to corresponding lower and upper probabili-
ties that would correspond to the situation with DB
considered as a main category, so this event has lower
probability 2/9 and upper probability 6/9. If more
sub-categories of the same main category are included
in the event of interest, then the same considerations
as discussed above must be taken into account, so all
configurations of the sub-categories within the main
category must be included in the analysis. For such
events including other main categories, however, we
must combine this with the configurations at the main
categories level, which again becomes mainly impor-
tant in the case of a known total number of main cat-
egories and events involving more than half of these
[9]. For example, the lower probability for the event
Y10 ∈ {LB,OB,R,G,W,O} is equal to 3/9, as only
the main category Y and sub-category DB are not
included, and as long as Y and DB are not next to

each other in the configuration, they can both get a
maximum of 3 segments assigned out of the 9 in which
the observations have divided the probability wheel,
where each such segment represents predictive prob-
ability 1/9. The upper probability for this event is
7/9, as all but two segments can be assigned to all
(sub-)categories in this event of interest. Of course,
this also illustrates the conjugacy property with re-
gard to the complementary event Y10 ∈ {DB,Y }
considered above. For this event involving 2 of the
3 specified sub-categories of B, and 4 of the 5 main
categories other than B, clearly there are no possi-
ble configurations with all these 6 (sub-)categories
included in the event separated from each other by
other categories with each at least one observation in
them. If this last situation were the case, the up-
per probability would have been identical to the sum
of the upper probabilities of the events Y = X with
X ∈ {LB,OB,R,G,W,O} [9].

To emphasize the difference between sub-categories
and main categories, let us compare the event Y10 ∈
{LB,DB}, which has lower and upper probabilities
1/9 and 4/9, with the event Y10 ∈ {R, Y }. For both
sets of (sub-)categories in these events, we have one
(sub-)category with a single observation, and one with
two observations. However, the lower and upper prob-
abilities for the event Y10 ∈ {R, Y } are equal to 1/9
and 5/9, so this upper probability is larger than that
for Y10 ∈ {LB,DB}. This results from the fact that
the main categories R and Y can be fully separated, in
the configurations for the probability wheel represen-
tation, by categories with positive numbers of obser-
vations in them, whereas the sub-categories LB and
DB can only be separated by OB, in which there are
no observations. If one of the observations in G had
actually been in OB, then both these events consid-
ered here would have had the same upper probability
5/9.

It will be clear from this example that the CA model,
as before, does not satisfy Walley’s ‘Representation
Invariance Principle’ (RIP) [23], a fact which we have
commented on in detail before [8, 9], and which we
do perceive as an advantage of our model. One could
argue, however, that the fact that, in the CA model, it
does not matter whether one uses information at main
category level, or at sub-category level, as long as this
category is not involved in the event of interest, is very
close in nature to the underlying idea of Walley’s RIP.

4 Concluding remarks

In this paper we have reviewed the CA model as pre-
sented so far [8, 9], and we have outlined the general
manner in which the CA model can deal with data at



sub-category level, to get consistent inferences at both
main and sub-category levels. Detailed expressions for
lower and upper probabilities, for general events in a
variety of situations with regard to assumed knowl-
edge of numbers of (sub-)categories will be presented
elsewhere, but all follow the basic concept outlined in
Section 3 and illustrated in Example 2. This general-
ization of the CA model is of great practical use, as
interest is often explicitly at sub-category levels, with
potentially even more layers of sub-categories play-
ing a role. As long as such different layers are rep-
resentable by tree structures, the same approach as
outlined here can be used, guaranteeing strong inter-
nal consistency of inferences at varying levels due to
the use of the probability wheel representation. It re-
mains important here that no actual ordering of (sub-
)categories is known. If one wishes to use a multino-
mial approach with categories ordered, as for example
Coolen [5] did for lifetime data on the basis of Wal-
ley’s IDM, then the CA model with the probability
wheel representation might not be suitable. In par-
ticular if one models time categories, with a natural
one-dimensional ordering, the general framework of
NPI offers more suitable modelling opportunities, as
Coolen and Yan [10] presented for grouped lifetime
data, using another variation of Hill’s A(n) for deal-
ing with right-censored data [11].

Throughout this paper, and in [8, 9], we assume to
have perfect information on each observation, that is
we know with certainty which unique (sub-)category
it belongs to. If only partial information is available,
in the sense that it is only known for a particular
observation to belong to a subset of (sub-)categories
[21, 27], then the CA model is easily adapted to deal
with such information in a consistent manner, taking
all possibilities of the values of that particular obser-
vation into account and again optimizing over all pos-
sible corresponding configurations of the observations
on the probability wheel. However, all such general-
izations make it harder to derive general expressions
for the lower and upper probabilities for events of in-
terest, as the combinatorial problems in deriving ana-
lytic solutions of the optimization processes involved
become ever more complex.

In the CA model, as in NPI in general [2, 7], updating
in the light of new observations is straightforward, as
simply new lower and upper probabilities are calcu-
lated on the basis of the entire data set. Conditioning,
however, is more complex [2], where conditioning is
understood as taking additional information into ac-
count on the particular random quantity of interest,
in contrast to information in the form of further ob-
served exchangeable random quantities in updating.
Generalization of the classical, precise probabilistic,

concept of conditioning is acknowledged to be a com-
plex issue in theory of lower and upper probability
[24, 26], and this is not any different in conditioning
within the CA model. For example, suppose that for
the situation in Example 2, one learns that Y10 is ac-
tually Blue, but that one then is interested in which
of the three specified sub-categories it belongs to. Fol-
lowing the basics of the NPI approach, and of the CA
model, a correct way of arguing is that of the nine
observations so far, only three can still be assumed to
satisfy the post-data exchangeability assumption that
is key for any inference based on A(n) and its varia-
tions such as A(n)© , namely the three already observed
Blue outcomes, of which one was LB and two were
DB, with OB as only other sub-category assumed.
Hence, instead of considering Y10 with a post-data
exchangeability assumption with 9 available observa-
tions, one should now redefine the random quantity
of interest as, say, Ỹ4, with 3 observations available,
and (if deemed appropriate) one can use A(n)© with the
three sub-categories now functioning as main cate-
gories, in which case the lower and upper probabili-
ties for events involving Ỹ4 are easily derived using (9)
and (10). Generally, the lower and upper probabilities
for Ỹ4 derived in this manner are not proportional to
those for the corresponding events involving Y10 and
based on all 9 observations, before taking the infor-
mation Y10 = B into account. Although this is not a
surprise due to the complex general nature of condi-
tional lower and upper probabilities, detailed study of
properties of such conditioning within the CA model
is an important topic for future research.
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