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Abstract

Complex systems and networks, such as grid systems and transportation networks, are
backbones of our society, so performing RAMS (Reliability, Availability, Maintainabil-
ity, and Safety) analysis on them is essential. The complex system consists of multiple
component types, which is time consuming to analyse by using cut sets or system signa-
tures methods. Analytical solutions (when available) are always preferable than simulation
methods since the computational time is in general negligible. However, analytical solu-
tions are not always available or are restricted to particular cases. For instance, if there ex-
ist imprecisions within the components’ failure time distributions, or empirical distribution
of components failure times are used, no analytical methods can be used without resorting
to some degree of simplification or approximation. In real applications, there sometimes
exist common cause failures within the complex systems, which make the components’
independence assumption invalid.

In this dissertation, the concept of survival signature is used for performing reliability
analysis on complex systems and realistic networks with multiple types of components. It
opens a new pathway for a structured approach with high computational efficiency based
on a complete probabilistic description of the system. An efficient algorithm for evaluating
the survival signature of a complex system bases on binary decision diagrams is introduced
in the thesis.

In addition, the proposed novel survival signature-based simulation techniques can be
applied to any systems irrespectively of the probability distribution for the component fail-
ure time used. Hence, the advantage of the simulation methods compared to the analytical
methods is not on the computational times of the analysis, but on the possibility to analyse
any kind of systems without introducing simplifications or unjustified assumptions. The
thesis extends survival signature analysis for application to repairable systems reliability
as well as illustrates imprecise probability methods for modelling uncertainty in lifetime
distribution specifications.

Based on the above methodologies, this dissertation proposes applications for calcu-
lation of importance measures and performing sensitivity analysis. To be specific, the
novel methodologies are based on the survival signature and allow to identify the most
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critical component or components set at different survival times of the system. The impre-
cision, which is caused by limited data or incomplete information on the system, is taken
into consideration when performing a sensitivity analysis and calculating the component
importance index.

In order to modify the above methods to analyse systems with components that are
subject to common cause failures, α-factor models are presented in this dissertation. The
approaches are based on the survival signature and can be applied to complex systems
with multiple component types. Furthermore, the imprecision and uncertainty within the
α-factor parameters or component failure distribution parameters is considered as well.

Numerical examples are presented in each chapter to show the applicability and effi-
ciency of the proposed methodologies for reliability and sensitivity analysis on complex
systems and networks with imprecise probability.
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Chapter 1

Introduction

1.1 Overview

Reliability engineering deals with the construction and study of reliable systems. The first
example of reliability calculation and estimation can be found in [1], which studied the
probability for humans surviving to different ages. At the onset of World War II, with
statistics theory and mass production well established, reliability engineering was ready
to emerge [2].

Weibull proposed a statistical distribution function of wide applicability in [3], which
is a standard tool for reliability applications. Birnbaum firstly put forward the importance
measure in [4], which can be used to rank components in a system according to how
important they are. Barlow and Proschan proposed the mathematical theory for reliability
[5], which is one of the standard texts in the reliability engineering field.

Nowadays reliability engineering is used in a wide range of applications in complex
systems and networks, which are series of components interconnected by communication
paths. The analysis of these systems becomes more and more important as they are the
backbones of our societies. Examples include the Internet, social networks of individu-
als or businesses, transportation networks, power plant systems, aircraft and space flights,
metabolic networks, and many others. Since the breakdown of a system may causes catas-
trophic effects, it is essential to be able to assess the reliability and availability of these
systems.

Uncertainty is an unavoidable component affecting the behaviour of systems and more
so with respect to their limits of operation. In spite of how much dedicated effort is put into
improving the understanding of systems, components and processes through the collection
of representative data, the appropriate characterisation, representation, propagation and

1



interpretation of uncertainty will remain a fundamental element of the reliability analysis
of any complex systems [6].

By studying the survival function of the complex systems and networks, the engineers
can know the performance of them at different times. By using component importance
measures, it is possible to draw conclusions about which component or components set
is the most important to the whole system. By researching on the configuration and the
lifetime of components, experts can design for reliability of the complex networks and
systems. By considering uncertainty within the system, insights into the analysis outcomes
can be produced which can be used meaningfully by decision-makers.

1.2 Problem Statement

The study of the reliability of complex systems, particularly systems with structures that
cannot be sequentially reduced by considering alternative series and parallel subsystems,
is a subject which has attracted much attention in the literature and which is of obvious im-
portance in many applications [7]. A system is a collection of components whose proper
function leads to the coordinated functioning of the system. In reliability analysis, it is
therefore important to model the relationship between various items as well as the relia-
bility of the individual components, to determine the reliability of the system as a whole.

Traditionally, the reliability analysis of systems is performed adopting different well-
known tools such as reliability block diagrams, fault tree and success tree methods, failure
mode and effect analysis, and master logic diagrams [8]. The main limitation to applying
these traditional approaches to large complex systems is the complex and tedious calcula-
tions to find minimal path sets and cut sets.

In recent years, the system signature has been recognised as a useful tool to quan-
tify the reliability of systems consisting of independent and identically distributed (iid)
or exchangeable components with respect to their random failure times [9] [10]. It can
be said that such systems only have “components of one type”. The system signature en-
ables full separation of the system structure from the component probabilistic failure time
distribution when deriving the system failure time distribution.

However, attempting to generalise the system signature to systems with more than one
component type is not really possible as it requires the computation of the probabilities
of different order statistics of the different failure time distributions involved [11], which
tends to be intractable.

Most complex systems, such as automobiles, communication systems, aircraft, aircraft
engine controllers, printers, medical diagnostics systems, helicopters, train locomotives,
etc., are repaired and are not replaced when they fail [12]. To be specific, a complex
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repairable system is a system that can be restored to an operating condition following a
failure [13]. Similarly, the repairable components are those that are not replaced following
the occurrence of a failure; rather, they are repaired and put into operation again. There-
fore, it is essential to perform reliability analysis on complex repairable systems in the real
application area.

Component importance measurement allows to quantify the importance of system
components and identify the most “critical” component. It is a useful tool to find weak-
nesses in systems and to prioritise reliability improvement activities. Birnbaum [4] pro-
posed in 1969 a measure to find the reliability importance of a component, which is ob-
tained by partial differentiation of the system reliability with respect to the given compo-
nent reliability. An improvement or decline in reliability of the component with the highest
importance will cause the greatest increase or decrease in system reliability. Several other
importance measures have been introduced [14]. Improvement potential, risk achievement
worth, risk reduction worth, criticality importance and Fussell-Vesely’s measure were all
reviewed in Ref. [15] [16] [17] [18]. To conduct reliability importance of components
in a complex system, Wang et al. [19] introduced and presented failure criticality index,
restore criticality index and operational criticality index. Zio et al. [20] [21] presented
generalised importance measures based on Monte Carlo simulation. The component im-
portance measures can determine which components are more important to the system,
which may suggest the most efficient way to prevent system failures.

However, the traditional importance measures mainly focus on non-repairable systems,
and mainly concern reliability importance of individual components. In many practical
situations it is of interest to evaluate the importance of a set of components instead of just
an individual component.

Some of the importance measures can be computed through analytical methods, but
limited to systems with few components. Traditional simulation methods provide no easy
way to compute component importance [19]. In addition, in the case of imprecision in
component failures, the simulation approaches become intractable.

As an intrinsic feature, practical systems involve uncertainties to a significant extent.
Since the reliability and performance of systems are directly affected by uncertainty, a
quantitative assessment of uncertainty is widely recognised as an important task in practi-
cal engineering [22]. The obvious pathway to a realistic and powerful analysis of systems
is a probabilistic approach.

Most existing models assume that there are precise parameter values available, so the
quantification of uncertainty is mostly done by the use of precise probabilities [23]. How-
ever, due to lack of perfect knowledge, imprecision within the component failure times
or their distribution parameters can not be ignored. Hence, the sensitivity analysis for the
whole system is affected by the epistemic uncertainty [24].
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In order to deal with the uncertainty, the Dempster-Shafer approach to represent un-
certainty was articulated by Dempster [25] and Shafer et al. [26]. Troffaes et al. [27] pre-
sented a robust Bayesian approach to modelling epistemic uncertainty in common-cause
failure models. Tonon [28] used random set theory to propagate epistemic uncertainty
through a mechanical system. Helton et al. [29] combined sensitivity analysis with evi-
dence theory to represent epistemic uncertainty. Fuzzy set theory is also proposed to deal
with uncertainty in [30] [31]. An integrated framework to deal with scarce data, aleatory
and epistemic uncertainties is presented by Patelli et al. [32], and OpenCossan is an effi-
cient tool to perform uncertainty management of large finite element models [33].

On top of the above methods, Williamson and Downs [34] introduced interval-type
bounds on cumulative distribution functions, which is called “probability boxes” or “p-
boxes” for short. The use of p-boxes in risk analysis offers many significant advantages
over traditional probabilistic approaches because it provides convenient and comprehen-
sive ways to handle several of the most practical serious problems faced by analysts [35].
For example, Karanki et al. [36] expressed uncertainty analysis based on p-boxes in prob-
abilistic safety assessment. Evidential networks for reliability analysis and performance
evaluation of systems with imprecise knowledge was introduced by Simon and Weber
[37]. In order to make a quantification of margins and uncertainties, Sentz and Ferson
[38] presented probabilistic bounding analysis (PBA), which also can be used to perform
the sensitivity analysis of systems. This approach represents the uncertainty about a prob-
ability distribution by a set of cumulative distribution functions lying entirely within a pair
of bounding distributions [39].

Dependence among failures might affect considerably the reliability of a system, and
it is a relationship that causes multiple components to fail simultaneously, which exists
widely in complex systems [40]. Dependence represents a common feature of compo-
nent failures that needs to be modelled appropriately for a realistic analysis of systems
and networks. The proper consideration and modelling of CCFs are essential in complex
systems reliability analysis as they may have a large effect on the systems’ overall func-
tionality. Often the assumption that the component failures are independent is considered
in classical reliability analysis on systems. However, CCFs make this simplification not
realistic. What is more, CCFs have been shown to decrease the reliability and availability
of complex systems [41]. Therefore, common cause failures are extremely important in
reliability assessment and must be given adequate treatment to minimise overestimation
of systems’ performances.

A number of parametric models have been developed for common cause failures over
the last decades. For instance, Rasmuson and Kelly [42] reviewed the basic concepts of
modelling CCFs in reliability and risk studies. One of the most commonly used single
parameter models defined by Fleming [43] is called the β-factor model, which is the first
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parameter model applied to common cause failures in risk and reliability analysis. Then,
he generalised the β-factor model to a multiple Greek letter model in 1986 [44]. The α-
factor model originally proposed by Mosleh et al. [45] develops CCFs from a set of failure
ratios and the total component failure rate.

Recently, based on the α-factor model, Kelly and Atwood [46] presented a method
for developing Dirichlet prior distributions that have specified marginal means. A robust
Bayesian approach to modelling epistemic uncertainty in the imprecise Dirichlet model
has been discussed by Troffaes et al. [27]. Coolen and Coolen-Maturi [47] present a non-
parametric predictive inference for system reliability following common cause failures of
components but limited to systems with exchangeable or a single type of components.
Here, the work presented in Ref [47] is extended to perform reliability analysis on com-
plex systems by considering CCFs among components belonging to different types; the
proposed approach is based on the survival signature [48].

This dissertation mainly uses the survival signature methodology, which is associated
with a survival analysis of systems [49]. Survival analysis has important applications in
biology, medicine, insurance, reliability engineering, demography, sociology, economics,
etc. In engineering, survival analysis is typically referred to as reliability analysis, and the
survival function is then called reliability function. This survival function or reliability
function quantifies the survival probability of a system at a certain point in time.

System signature has been recognised as an important tool to quantify the reliability of
systems. However, the use of the system signature is associated with the assumption that
all components in the system are of the same type.

Generally, in reliability problems for large-scale real-world systems and networks,
simulation tools are required in order to provide reliability metrics. It is therefore impor-
tant to put forward the efficient simulation methods which only use the survival signature.
These methodologies do not need to use the entire structure function of the systems, which
will provide a new insight into the system reliability.

Parameter uncertainties and imprecisions are generally epistemic in nature due to the
lack of knowledge or data, or the unknown relationship between components (e.g., poor
understanding of accident initiating events or coupled physics phenomena, lack of data to
characterise experiment processes, random errors in measuring and analytic devices), all
of them make it difficult to characterise probabilistically the failure time of components.
Since the reliability and performance of systems are directly affected by uncertainties and
imprecisions, a quantitative assessment of uncertainty is widely recognised as an important
task in engineering [50].

Simulation approaches are used to investigate large and complex systems and to obtain
numerical solutions where analytical solutions are not available. In particular, simulation
methods allow the explicit consideration of the effect of uncertainty and imprecision on

5



the system under investigation, providing a powerful tool for risk analysis, which allows
better decision making under uncertainty. Simulation methods can be used to identify
problems before implementation, evaluate ideas, identify inefficiencies and understand
why observed events occur.

The use of simulation methods for system reliability has many attractive features. Gen-
erally, they can be used for the sensitivity analysis of multi-criteria decision models [51],
to optimise models with rare events [52] and to perform multi-attribute decision making
[53].

Most of the current simulation methods are based on Monte Carlo simulation and
structure function. By generating the state evolution of each component, the structure
function is computed to determine the state of the system. However, the calculation of the
structure function usually requires the calculation of all the cut-sets and for large systems
it is a challenging and error-prone task (see e.g. [54]). Moreover, the structure function
is in a Boolean format and can only be used to identify a specific output of the system.
Of course, more structure function can be used to match all the possible status of the
system, at the cost of significantly increasing the time required by the analysis. Instead,
the survival signature is a summary of the structure function, that is sufficient for basic
reliability inferences (e.g. determining the system reliability function). In particular, for
very large scale systems and networks, storing only the survival signature and not the
entire structure function is clearly advantageous.

In a nutshell, in practical cases there are five specific challenges that need to be ad-
dressed to obtain realistic results.

• First, the complexity of the system needs to be reflected in the numerical model.
This goes far beyond a model based on a set of components with simple connections
between them. For instance, there may be several different types of components in
the same system. The variety of the components in the large size of real-life systems
makes it difficult to predict the system lifetime and reliability, especially when they
exit uncertainty characteristics.

• Second, when modelling failure time data, there is a distinction that needs to be
made between one-time-use (or non-repairable) and multiple-time-use (or repairable)
systems. When a non-repairable system fails, engineers simply replace it with a new
system of the same type. In real engineering applications, however, there will be al-
ways repairable complex systems to be analysed.

• Third, the analysis of repairable systems leads to component importance measures,
which are essential to find out the most “critical” component or components set
within the repairable system.
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• Fourth, when quantifying the system survival probability, it should be evident that
the components will not always fail independently. A single common cause can
affect many components at the same time, which is a common character for complex
engineering systems.

• Fifth, the available information for the quantitative specification of the uncertainties
associated with the components is often limited and appears as incomplete informa-
tion, limited sampling data, ignorance, measurement errors and so forth. Therefore,
it is important to consider imprecision during the whole system reliability analysis
period.

1.3 Aims and Objectives

The present work contributes towards a solution to the above challenges and the aim of
the research project is to perform efficient reliability and sensitivity analysis on complex
systems and networks with imprecise probability. The proposed approaches can be used
in large systems with multiple component types, which exist widely in the reality. Also,
it opens up a new perspective to reliability and component importance measures of such
kind systems, as well as considering the common cause failures within the system.

All in all, the main objectives of the research project can be generalised as:

• To propose a general method to analyse the complex systems and networks. Efficient
simulation approaches based on survival signature are used to estimate the reliability
of systems. This is very important when considering large systems, since they can
only be analysed by means of simulation. The proposed simulation approaches are
generally applicable to any system configuration.

• To consider the reliability of systems with repairable components. An algorithm
based on the survival signature is introduced to analyse the repairable systems. This
method is efficient as it is based on the survival signature instead of estimating all the
cut sets of the system, and Monte Carlo simulation is used to generate the repairable
components’ transition times.

• To take the indeterminancy and vagueness into consideration when analysing the
network system. The proposed approach in the thesis allows us explicitly to include
imprecision and vagueness in the characterisation of the uncertainties of system
components. The imprecision characterises indeterminacy in the specification of
the probabilistic model. That is, an entire set of plausible probabilistic models is
specified using set-values (herein, interval-valued) descriptors for the description of
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the probabilistic model. The cardinality of the set-valued descriptors reflects the
magnitude of the imprecision and, hence, the amount and quality of information
that would be needed in order to specify a single probabilistic model with sufficient
confidence.

• To rank the importance degree of components in precise and imprecise systems. For
this purpose, a component importance measure is implemented to identify the most
“critical” components of a system taking into account the imprecision in their char-
acterization. Specifically, a new component importance measure is introduced as
the relative importance index (RI). Through simulation methods based on survival
signature, upper and lower bounds of the survival function of the system or relative
importance index can be efficiently obtained. On this basis, the survival function of
the system and the importance degree of components can be quantified.

• To analyse the reliability of complex systems with common cause failures. The stan-
dard α-factor model is extended to a general α-factor model. Both models are based
on the survival signature, and allow us to distinguish between the total failure rate
of a component and the common cause failures modelled by α-factor parameters.

1.4 Structure of Thesis

This thesis is organised such that each chapter addresses one main inference problem, and
is related to papers that have been published. The theoretical background of the thesis is
briefly introduced in Chapter 2. Subsequently, Chapter 3 performs non-repairable system
reliability analysis by survival signature-based analytical method and simulation method
respectively. Then an efficient simulation method is proposed to analyse the repairable
systems in Chapter 4. In Chapter 5, some novel component importance measures are
presented. After that, common cause failures within the complex systems are studied
in Chapter 6. Finally, Chapter 7 closes the thesis with conclusions and suggestions for
future work, to summarise the presented work and indicate directions for potential future
developments.
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Chapter 2

Theoretical Background

2.1 Introduction

A system is a collection of components, and the reliability of a system can be defined as
the probability that the system functions as provided by the given state of its components
[55].

In this Chapter, the definitions of state vector x, structure function φ(x), the minimum
path sets P and the minimum cut sets C are discussed. All of these help people to un-
derstand the reliability of coherent systems. However, when the number of components
increases, the application of structure function tends to be of limited use.

For complex systems and networks with large numbers of components, the system sig-
nature has been introduced recently to simplify quantification of reliability for systems and
networks. The main disadvantage of system signature, however, is the strict assumption
that all the components within the system are of the same type, which is not applicable
to most real world systems. In order to overcome the limitation of the system signature,
survival signature is presented to perform reliability analysis on systems with multiple
component types. The usefulness of the tools in system reliability is discussed in this
Chapter.

2.2 State Vector and Structure Function

Component reliability has may connotations. In general, it refers to a component’s ca-
pacity to perform an intended function. The better the component performs its intended
function, the more reliable it is. The systems and networks are series of components in-
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terconnected by communication paths. Therefore, the reliability of systems and networks
is dependent on the performance of their components. Now we consider the definitions of
component state vector and system structure function, as well as the relationship between
them.

2.2.1 Component State Vector

The state vector gives the state of each component in the system.
Suppose there is one system formed by m components. Let the state vector of compo-

nents be x = (x1, x2, ..., xm) ∈ {0, 1}m with xi = 1 if the ith component is in working
state and xi = 0 if not.

2.2.2 System Structure Function

The structure function of a system gives the overall state of the system. To be specific, the
structure function indicates whether the system as a whole works or not.

Let φ = φ(x) : {0, 1}m → {0, 1} define the system structure function, i.e., the sys-
tem status based on all possible x. φ is 1 if the system functions for its corresponding
components state vector x and 0 if not.

2.2.3 Relationship between State Vector and Structure Function

Now let us study the structural relationship between a system (structure function) and its
components (state vector).

Series System: A system that is working if and only if all the components are func-
tioning is called a series system, which can be illustrated by the reliability block diagram
in Figure 2.1.

1 2 m...

Figure 2.1: Series system with m components.

The structure function for this system is given by

φ(x) = x1 · x2 · ... · xm =
m∏
i=1

xi (2.1)
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Parallel System: A system that is working if and only if at least one component is
functioning is called a series system. The corresponding block diagram is shown in Figure
2.2.

1

2

m
...

Figure 2.2: Parallel system with m components.

The system structure function is given by

φ(x) = 1− (1− x1)(1− x2)...(1− xm) = 1−
m∏
i=1

(1− xi) (2.2)

Coherent System: A system is coherent if the structure function φ(x) is not decreas-
ing in any of the components of x. The system functioning, therefore, cannot be improved
by worse performance of one or more of its components. The coherent system has another
characteristic that φ(0) = 0 and φ(1) = 1, so the system fails if all its components fail and
it functions if all its components function. We mainly focus on coherent systems in this
thesis, as it is reasonable for most of the real world systems and networks.

2.3 Computing System Reliability

Assessment of the reliability of a system from its components is one of the most impor-
tant aspects of reliability engineering. In reliability analysis, it is essential to model the
relationship within components to determine the reliability of the system and network as
a whole.
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2.3.1 Simple System

Once the system structure function φ(x) is known, the reliability of the system, which is
also called survival function, can be calculated. Let pi be the reliability of the component
i, while R is the corresponding reliability of the system, and assume that components
function independently.

Reliability of a Series System: For a series structure the system functioning means
that all the components function, hence

R = P (φ(x) = 1) = P (
m∏
i=1

xi = 1) = P (x1 = 1, x2 = 1, ..., xm = 1)

=
m∏
i=1

P (xi = 1) =
m∏
i=1

pi (2.3)

Reliability of a Parallel System: Similarly, the reliability of a parallel structure sys-
tem is given by

R = 1−
m∏
i=1

(1− pi) (2.4)

2.3.2 Parallel-Series System

In the engineering world, most practical systems are not series or parallel, but exhibit some
hybrid combination of the two. This kind of system is called a parallel-series system, an
example of which can be seen in Figure 2.3.

1

2

3
Figure 2.3: Complex parallel-series system.
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Reliability of a Complex Parallel-Series System: A complex parallel-series system
can be analysed by separating it into the simple parallel and series parts and then calculat-
ing the survival function for each part individually.

For example, the reliability of the parallel-series system in Figure 2.3 is given by

R = p1 · (1− (1− p2)(1− p3)) = p1p2 + p1p3 − p1p2p3 (2.5)

2.3.3 Non-Parallel-Series System

Another type of complex system is one that is neither series nor parallel, nor parallel-
series. Figure 2.4 shows an example of such a system.

1

2

3

4

5
Figure 2.4: Complex non-parallel-series system.

Reliability of a Complex Non-Parallel-Series System: Minimum path set method
and minimum cut set method are commonly used in reliability analysis for complex non-
parallel-series systems.

For a coherent system, a set of components P is called as a path set if the system
functions whenever all the components in the set P work. A minimum path is a set of
components that comprise a path, but the removal of any one component will cause the
resulting set to not be a path [56].

The minimum path sets of the complex system in Figure 2.4 are P1 = {1, 4}, P2 =

{2, 5}, P3 = {1, 3, 5} and P4 = {2, 3, 4}.
If a system has n minimum path sets denoted by P1, P2, ..., Pn, then the system relia-

bility is obtained from

P [system success] = P [P1

⋃
P2

⋃
...
⋃
Pn] (2.6)
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Therefore, the reliability function of the system in Figure 2.4 can be calculated as

P [system success] = P [(xw1
⋂
xw4 )

⋃
(xw2

⋂
xw5 )

⋃
(xw1

⋂
xw3
⋂
xw5 )

⋃
(xw2

⋂
xw3
⋂
xw4 )

= [p1p4 + p2p5 + p1p3p5 + p2p3p4]

−[p1p2p4p5 + p1p3p4p5 + p1p2p3p4

+p1p2p3p5 + p2p3p4p5 + p1p2p3p4p5]

+[p1p2p3p4p5 + p1p2p3p4p5 + p1p2p3p4p5

+p1p2p3p4p5]− [p1p2p3p4p5] (2.7)

where pi means the probability that component i is working.

Similarly, a set of components C is called as a cut set if the system fails whenever
all the components in the set C fail. While a minimum cut is a set of components that
comprise a cut, but the removal of any one component from the set causes the resulting set
to not be a cut [56].

So the minimum cut sets of the complex system in Figure 2.4 are C1 = {1, 2}, C2 =

{4, 5}, C3 = {1, 3, 5} and C4 = {2, 3, 4}.
System reliability can also be determined through the minimum cut sets. Suppose

there is a system with n minimum cut sets which denoted by C1, C2, ..., Cn, then the
system reliability is given by

P [system failure] = P [C1

⋃
C2

⋃
...
⋃
Cn] (2.8)

Thus, the reliability function of the system in Figure 2.4 can be calculated as

P [system failure] = P [(xf1
⋂
xf2)

⋃
(xf4

⋂
xf5)

⋃
(xf1

⋂
xf3
⋂
xf5)

⋃
(xf2

⋂
xf3
⋂
xf4)

= [q1q2 + q4q5 + q1q3q5 + q2q3q4]

−[q1q2q4q5 + q1q2q3q5 + q1q2q3q4

+q1q3q4q5 + q2q3q4q5 + q1q2q3q4q5]

+[q1q2q3q4q5 + q1q2q3q4q5 + q1q2q3q4q5

+q1q2q3q4q5]− [q1q2q3q4q5] (2.9)
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where qi means the probability that component i fails.

2.4 Signature

The above subsections have discussed component state vector x, system structure function
φ(x), minimum path set P and minimum cut set C. All of these help people to understand
the characteristics of coherent systems and system reliability.

However, for complex systems with many components, the computation of structure
function becomes algebraically cumbersome. In recent decades, system signature has been
proven to be a powerful tool for quantification of reliability on a coherent system.

2.4.1 System Signature

The definition of system signature is given by Samaniego in [9]. Suppose that there is a
coherent system with m components, and assume that the failure times of all the compo-
nents are independent and identically distributed (iid). The system signature S is defined
as a m-dimensional vector whose ith component si represents the probability that the ith
component failure causes the system to fail.

Let Ts > 0 be the random failure time of the system and Ti:m be the ith order statistic
of the m component failure times for i = 1, 2, ...,m, where T1:m < T2:m < ... < Tm:m. So
Ts = Ti:m means that the system fails at the moment of the ith component failure.

The signature of the ith component can be expressed by

si =
ni
m!

(2.10)

where i = 1, 2, ...,m, ni is the number of orderings for which the ith component failure
causes system failure, si ∈ [0, 1] and

∑m
i=1 si = 1.

For instance, the system signature of the series system in Figure 2.1 is S = (1, 0, ..., 0),
while for the parallel system in Figure 2.2, the system signature is S = (0, 0, ..., 1). For the
complex system in Figure 2.3, the ordered component failure times can be seen in Table
2.1.

Therefore, the signature of this system is S = (2
6
, 4
6
, 0) = (1

3
, 2
3
, 0).

Note that the system signature only relies on the permutation of the m! ordered com-
ponent failure times instead of depending on the failure time distribution. Therefore, the
biggest advantage of the system signature is the separation between the system structure
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Table 2.1: Ordered component failure times for the system in Figure 2.3.
ordered component failure times order statistic equal to system failure time Ts

T1 < T2 < T3 T1:3
T1 < T3 < T2 T1:3
T2 < T1 < T3 T2:3
T2 < T3 < T1 T2:3
T3 < T1 < T2 T2:3
T3 < T2 < T1 T2:3

and the components’ failure time distribution. However, the disadvantage of system sig-
nature is also clear as it can only be used under the iid assumption, which means all the
components within the system have to be the same type.

2.4.2 Survival Signature

In order to overcome the limitations of the system signature, Coolen and Coolen-Maturi
[48] proposed the survival signature as an improved concept, which does not rely on the
restriction to one component type anymore. Specifically, the characteristics of the com-
ponents do not need to be independently and identically distributed (iid). In the case of a
single component type, the survival signature is closely related to the system signature.

Recent developments have opened up a pathway to perform a survival analysis using
the concept of survival signature even for relatively complex systems. Coolen et al. [11]
have shown how the survival signature can be derived from the signatures of two sub-
systems in both series and parallel configurations, and they developed a non-parametric
predictive inference scheme for system reliability using the survival signature [57]. Aslett
developed a Reliability Theory package which was used to calculate the survival signature
[58] and analysed system reliability within the Bayesian framework of statistics [59]. Feng
et al. [60] deals with the imprecision within the system by analytical and numerical ways
respectively, and new component importance measures are presented in this paper. Patelli
et al. [61] [62] proposed efficient simulation approaches, which were based on survival
signature for reliability analysis on a large system. An imprecise Bayesian non-parametric
approach by using sets of priors to system reliability with multiple types of components
is developed by Walter et al. [63]. Coolen and Coolen-Maturi [64] linked the (imprecise)
probabilistic structure function to the survival signature.

Survival Signature for Single Component Type: The survival signature for a system
with just one type of components, which can be denoted by Φ(l), for l = 1, 2, ...,m is
the probability that a system functions given that there are exactly l of its components
functioning. It can be expressed as
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Φ(l) = P (system functions | l components are working) (2.11)

For a coherent system with m components, it follows that Φ(0) = 0 and Φ(m) = 1.
If exactly l components function, then in the state vector x, there are precisely l of the xi
with xi = 1, and all the remaining xi = 0. For instance, if the system has m components
overall, then there are

(
m
l

)
different state vectors representing the system in this state.

Letting Sl be the set of these state vectors, it can be known that |Sl| =
(
m
l

)
.

The survival signature for a system with one type of independent and identically dis-
tributed components can be expressed by

Φ(l) =

∑
x∈Sl

φ(x)

|Sl|
=

(
m

l

)−1 ∑
x∈Sl

φ(x) (2.12)

It can be seen from the above equation that the survival signature is the sum of the
structure functions for all relevant state vectors, divided by the number of such state vec-
tors.

In fact, for a system with m components of a single type, the survival signature is
similar in nature to the system signature. Coolen et al [48] derived a relationship between
survival signature and system signature as follows

Φ(l) =
m∑

j=m−l+1

sj (2.13)

where Φ(l) is the survival signature with exactly l functioning components, while si is the
system signature for the component that fails at the ith stochastic ordering.

Example: Take the system in Figure 2.3 for instance, assume that all the three com-
ponents are in the same type. In the case that l = 2, the survival signature can be obtained
by Equation 2.12 as Φ(2) =

(
3
2

)−1
× 2 = 2

3
.

As calculated before, the signature of this parallel-series system is S = (1
3
, 2
3
, 0). Ac-

cording to Equation 2.13, Φ(2) =
∑3

2 si = s2 + s3 = 2
3

+ 0 = 2
3
, which is the same result

as before.
Survival Signature for Multiple Component Types: Now consider a system with

K ≥ 2 types of m components, with mk indicating the number of components of each
type and

∑K
k=1mk = m. It is assumed that the failure times of the same component type

are independently and identically distributed (iid) or exchangeable. The components of
the same type can be grouped together because of the arbitrary ordering of the components
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in the state vector, which means that a state vector can be written as x = (x1, x2, ..., xK),
with xk = (xk1, x

k
2, ..., x

k
mk

) representing the states of the components of type k.
Coolen et al. [48] introduced the survival signature for such a system, denoted by

Φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for k = 1, 2, ..., K, which is defined to be the
probability that the system functions given that lk of its mk components of type k work,
for each k ∈ {1, 2, ..., K}. There are

(
mk

lk

)
state vectors xk with precisely lk components

xki equal to 1, so with
∑mk
i=1 x

k
i = lk (k = 1, 2, ..., K), and Sl1,l2,...,lK denotes the set of all

state vectors for the whole system.
Assuming that the random failure times of components of the different types are fully

independent, and in addition the components are exchangeable within the same component
types, the survival signature can be rewritten as

Φ(l1, ..., lK) = [
K∏
k=1

(
mk

lk

)−1
]×

∑
x∈Sl1,l2,...,lK

φ(x) (2.14)

Example: Consider a typical complex bridge system shown in Figure 2.5, which con-
sists of m = 6 components belonging to K = 2 different types, with m1 = 3 and m2 = 3.
Therefore, the survival signature Φ(l1, l2) must be specified for all l1 ∈ {0, 1, 2, 3} and
l2 ∈ {0, 1, 2, 3}. The state vector of the system is x = (x11, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3).

1 2

3
4

5

6
1

1 1

2

2

2
Figure 2.5: A typical complex bridge system with two types of components: the number
outside the box is the component index, while the number inside the box represents the
component type.

Now let us calculate the survival signature of Φ(1, 2) in detail. According to the defi-
nition of survival signature, Φ(1, 2) is the probability that the system works if precisely 1
component of type one and 2 components of type two function, which means considering
the state vectors with x11 + x12 + x13 = 1 and x21 + x22 + x23 = 2. There are altogether(
3
1

)(
3
2

)
= 9 such state vectors. However, only one of them can make the system work.
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To be specific, only x = (1, 0, 1, 0, 0, 1), which means component 1, component 3 and
component 6 function, can lead the system to works.

Since there is an assumption that the components within the same type are independent
and identically distributed, while the components belonging to different types are indepen-
dent, all these 9 state vectors are equally likely to occur, so Φ(1, 2) = 1

9
. The other results

of survival signature can be calculated in a similar way, and can be seen in Table 2.2.

Table 2.2: Survival signature of the system in Figure 2.5
l1 l2 Φ(l1, l2)
0 0 0
0 1 0
0 2 0
0 3 0
1 0 0
1 1 0
1 2 1/9
1 3 1/3
2 0 0
2 1 0
2 2 4/9
2 3 2/3
3 0 1
3 1 1
3 2 1
3 3 1

2.5 Numerical Tools

2.5.1 R Package

Recently, the “ReliabilityTheory” R package proposed by Aslett [58] [65] makes it con-
venient to calculate the survival signature for a complex system with multiple component
types.

This package is an enumerative algorithm for which each possible state vector is evalu-
ated in turn. Since there are altogether 2m possible component state vectors for the system,
the computational expense of this approach grows exponentially as m increases. Thus, it
becomes time consuming or infeasible to calculate the survival signature for large scale
complex systems.
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In summary, a new method is required to calculate the survival signature of large and
complex real world systems and networks.

2.5.2 An Efficient Algorithm for Calculating Survival Signature of

Complex Systems

The algorithm collaborates with Reed in this part is based on the work of Reed in [66].
The state vector count or survival signature values for a system, such as a lifeline network,
can be represented by a multidimensional array. The values stored at index (l1, ..., lK) of
the array stores the value corresponding to l1, ..., lK components of types 1 toK surviving.
However, computing these arrays using enumerative methods becomes quickly infeasible
since the number of state vectors to consider is equal to 2m and therefore the computational
complexity grows exponentially with the number of components in the network. An ef-
ficient algorithm for computing the multidimensional array representation of the survival
signature for a system, based on the use of the reduced ordered binary decision diagrams
(BDD) data structure, is proposed.

A BDD [67] is a data structure in the form of a rooted directed acyclic graph which
can be used to compactly represent and efficiently manipulate a Boolean function. It
is based upon Shannon decomposition theory [68]. The Shannon decomposition of a
Boolean function f on Boolean variable xi is defined as f = xi ∧ fxi=1 + xi ∧ fxi=0

where fxi=v is f evaluated with xi = v. Each BDD contains two terminal nodes that
represent the Boolean constant values 1 and 0, whilst each non-terminal node represents
a subfunction g, is labelled with a Boolean variable v and has two outgoing edges. By
applying a total ordering on the m Boolean variables for function f by mapping them to
the integers x0, ..., xm−1, and applying the Shannon decomposition recursively to f , it can
be represented as a binary tree with m + 1 levels. Note that the chosen ordering can have
a significant influence on the size of the BDD [69]. Each intermediate node, referred to as
an if-then-else (ite) node, at level l ∈ {0, ...,m− 1} (where the root node is at level 0 and
the nodes at levelm−1 are adjacent to the terminal nodes) represents a Boolean function g
on variables xl, xl+1, ..., xm−1. It is labelled with variable xl and has two out edges called
1-edge and 0-edge linking to nodes labelled with variables higher in the ordering. 1-edge
corresponds to xl = 1 and links to the node representing gxl=1, whist 0-edge corresponds
to xl = 0 and links to the node representing gxl=0. In addition, the following two reduction
rules are applied. Firstly, the isomorphic subgraphs are merged; and secondly, any node
whose two children are isomorphic is eliminated.

Complement edges [70] are an extension to standard BDDs that reduce memory size
and the computation time. A complement edge is an ordinary edge that is marked to
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indicate that the connected child node (at a higher level) has to be interpreted as the com-
plement of its Boolean function. The use of complement edges is limited to the 0-edges to
ensure canonicity.

The BDD representing the system structure function for a network can be computed
in various ways, e.g. from its cut-sets or network decomposition based methods [71]. In
order to show the implementation of the approach, a simple network with 4 nodes and 4
edges is considered and shown in Figure 2.6.

Figure 2.6: A simple network with
4 nodes and 4 edges.

Figure 2.7: BDD for the simple network from
Figure 2.6.

The corresponding BDD representing the structure function of this network, where the
dashed edges represent 0-edges (marked with -1 if complemented) and solid edges repre-
sent 1-edges, is shown in Figure 2.7. The survival signature from a BDD representation
of the system structure function for a network can then be calculated through the iterative
algorithm described by Figure 2.8.

The number of operations performed during the execution of the algorithm grows ap-
proximately linearly with the number of nodes in the BDD. In general, the BDD repre-
sentation of the structure function for a network has far fewer nodes than 2m nodes. It is
therefore far more computationally efficient than using enumerative algorithms.
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Figure 2.8: Algorithm for computing signature from the BDD representation of a system
structure function.
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2.5.3 OpenCossan

The OpenCossan engine is an invaluable tool for uncertainty quantification and manage-
ment [72]. All the algorithms and methods have been coded in a Matlab toolbox allowing
numerical analysis, reliability analysis, simulation, sensitivity, optimization, robust design
and much more.

This thesis uses OpenCossan codes for uncertainty quantification and reliability anal-
ysis on the complex systems.
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Chapter 3

Complex System Reliability Analysis

Based on Survival Signature

3.1 Introduction

Most systems consist of multiple types of components in reality, contravening the iid
assumption of system signature. It would be difficult to use system signature to assess
the reliability of this kind of systems, because it is hard to find rankings of order statistics
of component failure times of different types. Therefore, survival signature is recognised
as a better method to perform reliability analysis on complex systems and networks with
multiple component types.

In this Chapter, a reliability approach based on the survival signature is proposed to
analyse systems and networks with multiple types of components. The proposed approach
allows us to include explicitly imprecision and vagueness in the characterisation of the
uncertainties of system components. The imprecision characterises indeterminacy in the
specification of the probabilistic model. That is, an entire set of plausible probabilistic
models is specified using set-values (herein, interval-valued) descriptors for the descrip-
tion of the probabilistic model. The cardinality of the set-valued descriptors reflects the
magnitude of imprecision and, hence, the amount and quality of information that would
be needed in order to specify a single probabilistic model with sufficient confidence.

In Section 3.2, the reliability assessment on systems with multiple component types
is discussed. The method is based on the survival signature, which not only holds the
merits of system signature, but is suitable for analysing large and complex systems and
networks. Then, Section 3.3 takes uncertainty within the system into account. Both ana-
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lytical methods and simulation methods are used to deal with the imprecision. After that,
two survival signature-based Monte Carlo simulation methods are proposed to evaluate
the system reliability in an efficient way in Section 3.4. The proposed approaches of the
improved survival signature are demonstrated by some examples in Section 3.5.

3.2 Reliability Assessment on Complex System with Mul-

tiple Component Types

Now let us quantify reliability for a system with multiple component types. Assume that
Ck(t) ∈ {0, 1, ...,mk} denotes the number of type k components working at time t. As-
sume that the components of the same type have a known CDF, Fk(t) for type k. Moreover,
the failure times of different component types are assumed independent. Then:

P (
K⋂
k=1

{Ck(t) = lk}) =
K∏
k=1

P (Ck(t) = lk)

=
K∏
k=1

(
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]lk (3.1)

where Ck(t) = lk means that at time t, precisely lk components of type k are working.
Hence, the survival function of the system with K types of components becomes:

P (Ts > t) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)P (
K⋂
k=1

{Ck(t) = lk})

=
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)
K∏
k=1

(
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]lk (3.2)

It is obvious from Equation 3.2 that the survival signature can separate the structure
of the system from the failure time distribution of its components, which is the main ad-
vantage of the system signature. To be specific, the survival signature part Φ(l1, ..., lK)

takes the structure of the system into consideration, which is how the state of the compo-
nents influence the system performance. The part of

∏K
k=1 P (Ck(t) = lk) only depends on

Fk(t), which is the lifetime distribution of the components of type k.
In addition, the survival signature only needs to be calculated once for any system,

which is similar to the system signature for systems with only single type of components.
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It is easily seen that survival signature is closely related with system signature. For a spe-
cial case of a system with only one type (K = 1) of components, the survival signature
and Samaniego’s signature are directly linked to each other through Equation 2.13. How-
ever, the latter cannot be easily generalised for systems with multiple types (K ≥ 2) of
components.

This implies that all attractive properties of the system signature also hold for the
method using the survival signature, also the survival signature is easy to apply for systems
with multiple types of components, and one could argue it is much easier to interpret than
the system signature. Furthermore, the difficulty of finding the probabilities of rankings of
order statistics from different probability distributions can be avoided, which is indeed a
simplification of computation. Finally, the quite simple survival signature (in particular for
large systems with only relatively few different component types) and its monotonicity for
coherent systems provides clear advantages to work towards approximations of the system
reliability metrics. This does not limit the applicability of the survival signature to non-
coherent systems (for example, electricity distribution network or part of the electronic
equipment of safety features).

3.3 Generalised Probabilistic Description of the Failure

Times of Components

Reliability analysis of complex systems requires the probabilistic characterisation of all
the possible component transitions. This usually requires a large data-set that is not always
available. In fact, it might not be possible to unequivocally characterise some component
transitions due to lack of data or ambiguity. To avoid the inclusion of subjective knowledge
or expert opinions, the imprecision and vagueness of the data can be treated by using
concepts of imprecise probabilities.

Imprecise probability combines probabilistic and set theoretical components in a uni-
fied construct (see e.g. [73] [74] [75]). It allows a rational treatment of the information of
possibly different forms without ignoring significant information, and without introducing
unwarranted assumptions. For instance, if only few data points are available it might be
difficult to identity the parameters and the form of a distribution. An unknown value of
a (deterministic) parameter that is often modelled using a uniform distribution based on
the principle of maximum entropy should be modelled as an interval and not as a distribu-
tion [76]. In the analysis, imprecise probabilities combine, without mixing, randomness
and imprecision. Randomness and imprecisions are considered simultaneously but viewed
separately at any time during the analysis and in the results. The probabilistic analysis is
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carried out conditional on the elements from the sets, which leads eventually to sets of
probabilistic results, see e.g. [77].

Considering the imprecision in the component parameters will lead to bounds of sur-
vival function of the systems and it can therefore be seen as a conservative analysis, in
the sense that it does not make any additional hypothesis with regard to the available
information. In some instances analytical methods will not be appropriate means to anal-
yse a system. Again, simulation methods based on survival signature can be adopted to
study systems considering parameter imprecision. A naive approach consists in adopting
a double loop sampling where the outer loop is used to sample realization in the epistemic
space. In other words, each realization in the epistemic space defines a new probabilistic
model that needs to be solved adopting the simulation methods proposed above. Then the
envelopment of the system reliability is identified.

3.3.1 Introduction of Probability Box

As stated in the previous section, the probability of the failure of each component is de-
scribed by the CDF, Fk(t). However, it is not always possible to fully characterise the
probabilistic behaviour of components due to ignorance or incomplete knowledge. This
lack of knowledge comes from many sources: in-adequate understanding of the underly-
ing processes, imprecise evaluation of the related characteristics, or incomplete knowledge
of the phenomena. These problems can be tackled by resorting to generalised probabilistic
methods, such as imprecise probabilities, see e.g. [78] [79] [80]. The main problem of
generalised probabilistic methods is the computational cost associated with their evalua-
tion. In fact, these approaches required multiple probabilistic model evaluations, and often
use global optimization procedures. Efficient numerical methods have been developed and
made available in powerful toolboxes such as OpenCossan software [81] [82].

The generalised probabilistic model makes the uncertainty quantification a rather chal-
lenging task in terms of computational cost, and the challenge comes mainly from com-
puting the lower and upper bounds of the quantities of interest. Let F and F be non-
decreasing functions mapping the real line < into [0,1] and F (x) ≤ F (x) for all x ∈ <.
Let [F , F ] denote a set of the non-decreasing functions F on the real line such that
F (x) ≤ F (x) ≤ F (x). When the functions F and F circumscribe an imprecisely known
probability distribution, [F , F ] is called a “probability box” or “p-box” [83]. Using the
framework of imprecise probabilities in form of a p-box (see Ref [84]), the lower and up-
per CDF for the failure times of components of type k are denoted by F k(t) and F k(t),
respectively. The lower and upper CDF bounds can be obtained by calculating the range
of all distributions that have parameters within some intervals. For some distribution fam-
ilies, only two CDFs need to be computed to enclose the p-box. For most distribution
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families, however, four or more crossing CDFs need to be computed to define a p-box, see
Ref [85].

For instance, let us assume thatX has a Lognormal distribution with imprecise param-
eters ([0.5,0.6], [0.05,0.1]). The p-box of event X is calculated by taking all combinations
of (0.5, 0.05), (0.6, 0.05), (0.5, 0.1) and (0.6, 0.1) into account. Figure 3.1 reflects all these
combinations of distributions for event X , while Figure 3.2 shows the p-box for event X .
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Lognormal(0.5,0.05)
Lognormal(0.6,0.05)
Lognormal(0.5,0.1)

Figure 3.1: All combinations of distributions for event X .

3.3.2 Analytical Method to Deal With Imprecision Within Compo-

nents’ Failure Times

Lower and upper bounds of the survival function for a system consisting of multiple types
of components can be calculated analytically based on Coolens works for non-parametric
predictive inference in [57]. Ck(t) denotes the number of k type components working at
time t, and it is assumed that the components cannot be repaired or replaced. The lower
survival function is:

P (TS > t) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)
K∏
k=1

D(Ck(t) = lk) (3.3)
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Figure 3.2: P-box for event X .

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1) (3.4)

while the corresponding upper bound of the survival function is:

P (TS > t) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)
K∏
k=1

D(Ck(t) = lk) (3.5)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1) (3.6)

For a system with m components in one type, Ct is represented by a binomial distribu-
tion, with Ct ∼ Binomial(m, 1− F (t)). According to stochastic dominance theory [86],
Ct increases as (1− F (t)) increases.

For a parametric distribution, the CDF of a components failure time can be expressed
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by F (t | θ), with θ ∈ Θ (e.g. parameter θ ∈ [θ, θ]). Therefore, there will be a θ ∈ Θ

leading to F (t | θ) = F (t) and a θ ∈ Θ leading to F (t | θ) = F (t), which holds for all t.
Here, take an exponential distribution with parameter λ ∈ [λ1, λ2] as an example. It

is known that F (t) = F (t | λ1) = 1 − e−λ1t and F (t) = F (t | λ2) = 1 − e−λ2t. Ct
increases as (1− F (t)) increases, so P (Ct ≤ l) =

∑l
u=0

(
m
u

)
(1− e−λ2t)m−u(e−λ2t)u and

P (Ct ≤ l) =
∑l
u=0

(
m
u

)
(1− e−λ1t)m−u(e−λ1t)u.

For a system with one type of components, the lower bound of the survival function
for the system at time t becomes:

P (TS > t) =
m∑
l=0

Φ(l)

(
m

l

)
(1− e−λ1t)m−l(e−λ1t)l (3.7)

and the corresponding upper bound of the survival function becomes:

P (TS > t) =
m∑
l=0

Φ(l)

(
m

l

)
(1− e−λ2t)m−l(e−λ2t)l (3.8)

For a system composed of K ≥ 2 types of components, with parameter λk ∈ [λk1, λ
k
2],

the lower bound of the survival function for the system at time t is:

P (TS > t) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)
K∏
k=1

(
mk

lk

)
[1− e−λk1 t]mk−lk [e−λ

k
1 t]lk (3.9)

The corresponding upper bound of the survival function becomes:

P (TS > t) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)
K∏
k=1

(
mk

lk

)
[1− e−λk2 t]mk−lk [e−λ

k
2 t]lk (3.10)

To illustrate the method presented in this Section, the lower and upper bounds of sur-
vival function for the typical complex system in Figure 3.3 are calculated.

The system has six components which belonging to two types. Results of survival
signature of the system can be calculated through “ReliabilityTheory” R package and can
be seen in Table 3.1.

The failure times of the two component types are according to the exponential dis-
tribution, with interval parameters λ1 ∈ [0.4, 1.2] and λ2 ∈ [1.3, 2.1], respectively. This
leads to lower and upper bounds of survival functions of the system as seen in Figure 3.6.

For other distribution types, like Weibull distribution or gamma distribution, if the
shape parameter is fixed, the upper and lower bounds of survival function can be deduced
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Figure 3.3: System with two types of components.

Table 3.1: Survival signature of the bridge system of Figure 3.3
l1 l2 Φ(l1, l2)
0 [0, 1, 2, 3] 0
[1, 2] [0, 1] 0
1 2 1/9
1 3 1/3
2 2 4/9
2 3 2/3
3 [0, 1, 2, 3] 1

in a similar way as shown for the exponential distribution type. However, if shape parame-
ter is in an interval, finding the lower bound of survival function reduces to an optimisation
problem over one variable (shape parameter) only. Also, if all the parameters have inter-
val values, by means of simulation method is a replacement to calculate the probability
bounds of the survival function.

3.3.3 Imprecise System

In the real engineering application, due to confidential contracts, specific configuration of
part of the lifeline network might also not be known exactly and considered as a “grey
box”, which leads to the use of imprecise survival signature. Bounds of the survival func-
tion become

P (Ts > t) =
m1∑
l1=0

...
mK∑
lK=0

(Φ(l1, ..., lK))P (
K⋂
k=1

{Ck(t) = lk}) (3.11)
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and

P (Ts > t) =
m1∑
l1=0

...
mK∑
lK=0

(Φ(l1, ..., lK))P (
K⋂
k=1

{Ck(t) = lk}) (3.12)

3.4 Proposed Simulation Methods

The analytical approach involves the determination of a mathematical expression which
describes the reliability of the system, expressed in terms of the reliabilities of the com-
ponents. In other words, in the analytical approach, the system performance is obtained
analytically from each component’s failure distribution using probability theory. There-
fore, analytical solutions offer great power and speed in system analysis [87].

However, when the system is complicated and large, it maybe difficult to derive an
analytical formulation for the system reliability, which makes this process quite time con-
suming. What is more, if the system is repairable or other maintainability information is
taken into account, system reliability analysis through an analytical approach will become
very difficult and restrictive. Thus, a simulation method is straightforwardly used to deal
with these complicated conditions.

The survival signature presented in the previous section can be adopted in a Monte
Carlo based simulation method to estimate the system reliability in a simple and efficient
way. A possible system evolution is simulated by generating random events (i.e. the
random transition such as failure times of the system components) and then estimating the
status of the system based on the survival signature (Equation 3.1). Then, counting the
occurrence number of a specific condition (e.g. counting how many times the system is
in working status), it is possible to estimate the reliability of the system. In this Section,
two Monte Carlo simulation methods adopting the survival signature are presented. To be
specific, the novel Algorithms 1 and 2 are used to estimate the reliability of non-repairable
systems.

3.4.1 Algorithm 1

The first simulation method is based on the realisations of failure events of the system’s
components. For each failure event the status of the system is generated based on the
probability that the system is working knowing that a specific number of components are
working. Such probability is given by the survival signature as defined in Equation (2.14).
The survival signature is computed only once before starting the Monte Carlo simulation.
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Suppose there is a system with C components, K component types and mk compo-
nents of type k. Hence, C =

∑K
k=1mk. We assume that components of type k have the

same failure time distribution and that there is no repair opportunity for the components.
The reliability of the system can be estimated adopting the following procedure:

Step 0. Initialise variables and counters (i.e. Vr);

Step 1. Sample the failure times for each component, fi, for i = 1, 2, . . . , C. The failure
time of a component of type k is obtained by sampling from the corresponding CDF
Fk;

Step 2. Order the sequence of failure times ti ≤ ti+1 for i = 1, 2, . . . ,M . Hence, t1 repre-
sents the first failure of a system component, t2 represents the second failure and so
on;

Step 3. At each failure time, it is easy to calculate the number of components working for
each component type: Ck(ti);

Step 4. Evaluate the survival signature which applies immediately after the corresponding
failure indicated as Φti ≡ Φ(C1(ti), C2(ti), . . . , CK(ti));

Step 5. Draw from a Bernoulli distribution with probability 1−Φt1 the system status X1 at
time t1, if X1 = 1 the system fails;

Step 6. If the system does not fail at t1, then consider t2. The probability that the system
functions at time t2 is Φt2/Φt1 = q2, given that it has survived at time t1. So the sys-
tem status at time t2, X2, is drawn from a Bernoulli distribution with the probability
1− q2;

Step 7. Repeat Step 6 to process other failure times, setting i = i+ 1;

Step 8. Store the status of the system over the time, as follows: V r(j) = V r(j) + 1 ∀j :

j · dt < tf where tf is the system failure time and dt represents the discretisation
time.

The above procedure is repeated for N samples and the estimate of the survival func-
tion is obtained by averaging the vector collecting the status of the system over the number
of samples: P (Ts > t) ≈ V r(t)

N
.

A pseudo-algorithm of the simulation method is shown in Algorithm 1.
This method simulates one system failure time in each run (Steps 1-7). It should

be noted that with the assumption that the system fails if no component functions, this
implies that there is an i∗, less than or equal to C, such that qi∗ = 0. Hence the system
fails certainly at this ti∗ if it has not failed before.
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Algorithm 1
Require: N: Number of simulations; dt: Discretisation time; Fk: CDF failure times,
V c = [m1,m2, . . . ,mk]: Number of components per type; Nt: number of discretisation
steps.
Set Vr(1 : Nt) = 0 . Ititialise counter
Set C = sum(Vc) . Compute total number of components
Set Φ← Survival signature . Compute the survival signature
for n← 1 : N do . loop over number of samples

for k ← 1 : K do . loop over number of component type
for j = 1 : mk do . loop over number of components

Mf(j, k) ∼ Fk . Sample failure time component j of type k
end for

end for
[V t, V i] = sort(Mf) . Reorder transition times (V t)

. Return component index vector (V i)
ΦOld = 1 . Initialise variables
for m← 1 : C do . loop over number of components

V c(V i(m)) = V c(V i(m))− 1 . Update number working components
ΦNow ← Φ(V c)
q ← ΦNow/ΦOld

if rand(1) < q ← then . system working
ΦOld = ΦNew

else
for all j : j · dt < V i(m) do

V r(m) = V r(m) + 1 . Update counter
end for
Break . Process next sample

end if
end for
V r = V r/N . Normalise counter

end for

35



3.4.2 Algorithm 2

It is possible to estimate the system reliability without the necessity to sample the system
status at each component failure time. The idea is to interpret the survival signature as
a normalised “production capability” of the system defined by the Equation 2.14. For
instance, if all the components are working, the system output is 1. If all components
are in failure status, the system output is 0. Hence, instead of sampling the system state
at each failure time, the survival signature is evaluated to collect the “production level
of the system”, i.e. the survival signature is evaluated immediately after each sampled
component failure time and collected in proper counters.

This can be obtained adopting the Algorithm 2 derived from the approach proposed
in [54] to estimated the production availability of an offshore installation requiring the
derivation of the complete status of the system (based on the structural function and cut-
sets). Here, a novel algorithm is proposed to estimate the reliability adopting the survival
signature and hence avoiding the tedious calculation of all the system status.

The reliability of the system can be estimated by modifying steps 5-7 of Algorithm 1
as follows:

Step 5’. Compute the production level of the system by evaluating the survival signature at
each time of interest Φti . The probability that the system survives at time t1 is Φt1;

Step 6’. Collect the value of the survival signature in the vector V r representing the survival
function as follows: V r(j) = V r(j) + Φti ∀j : j · dt < ti where dt represents the
discretisation time.

The above procedure is repeated for N samples and the reliability of the system is
computed by averaging the values of the survival signature (P (Ts > t) ≈ 1

N
V r(t)). A

pseudo-algorithm of the simulation method for non-repairable components is shown in
Algorithm 2.

The uses of the survival signature makes this approach extremely efficient since it does
not require to sample the system output at each component transition time (i.e. component
failures). The flow chart of the simulation methods proposed for estimating the reliability
of non-repairable systems is shown in Figure 3.4.

For each Monte Carlo simulation, this method generates a random grid of time points
at which to evaluate the survival signature representing the survival probability of the
system at those times. Finally, the survival function is obtained by directly averaging the
survival signature over the time.

Algorithm 2 follows the productivity idea, which gives each run a possible survival
function while Algorithm 1 gives a single system failure time in each run. Therefore,
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Algorithm 2
Require: N: Number of simulations; dt: Discretisation time; Fk: CDF failure times,
V c = [m1,m2, . . . ,mk]: Number of components per type; Nt: number of discretisation
steps.
Set Vr(1 : Nt) = 0 . Ititialise counter
Set C = sum(Vc) . Compute total number of components
Set Φ← Survival signature . Compute the survival signature
for n← 1 : N do . loop over number of samples

for k ← 1 : K do . loop over number of component type
for j = 1 : mk do . loop over number of components

Mf(j, k) ∼ Fk . Sample failure time component j of type k
end for

end for
[V t, V i] = sort(Mf) . Reorder transition times (V t)

. Return component index vector (V i)
z = 1 . Initialise index
for m← 1 : C do . loop over number of components

Ck(V i(m)) = Ck(V i(m))− 1 . Update number working components
while z · dt ≤ V t(m) do

V r(z) = V r(z) + Φ(Vc) . Update counter
z ← z + 1 . Update index

end while
end for
V r = V r/N . Normalise counter

end for
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Figure 3.4: Flow chart of Algorithms 1-2.

Algorithm 1 is useful for inference where one explicitly wants the simulated system failure
times, whilst Algorithm 2 is efficient for inference on the system survival function.

It can be shown that the variance of the survival function estimator at each time of
interest obeys the following formula [88]:

V ar[V r(t)] ≈ 1

N

(
V r2(t)− V r(t)2

)
(3.13)

where N represents the number of samples and V r2(t) the mean of the squared values of
the survival function at time t and V r(t)

2
the square of the mean values of the survival
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function at time t. Also, in Equation 3.13 it is common to substitute N − 1 in place of
N although the correction is negligible because N � 1. The Algorithm 2 tends to lead
to better estimates of the system reliability when compared to Algorithm 1, as detailed in
Section 3.5 and shown in Figure 3.10.

3.4.3 Simulation Method to Deal With Imprecision Within Compo-

nents’ Failure Times

Let us use the system in Figure 3.3 as an example to illustrate the simulation method. The
survival signature represents the probability that the system works given that the number
of components of each type that are working. The system in Figure 3.3 is equivalent to a
system composed by two components that can be in four types of status (status 0 to status
3) as shown in Table 3.1. Each status represents the number of working components.

The method used to simulate the survival function is derived from the production level
approach proposed in [54]. The simulation approach requires the following steps:

Step 1. Sampling the transition times of the first component type, hence a sequence of tran-
sition times t1, t2, t3 and t4 can be obtained;

Step 2. Repeating the procedure of step (1) for the component type 2, which will obtain 4
additional transition times;

Step 3. Reordering all the transition times of (t1, t2, ..., t8);

Step 4. For each time interval the probability that the system functions can be computed
based on survival signature;

Step 5. Repeating the steps (1) to (4) for n system histories and averaging the obtained
results;

Step 6. The system probability of survival over the time t is obtained by averaging the values
of the survival functions.

The above simulation procedures are used for components without imprecision. A
general schematic diagram for one simulation sample can be seen in Figure 3.5.

The probabilistic uncertainty and imprecision in component parameters are challeng-
ing phenomena in reliability analysis of complex systems. To solve the parameter epis-
temic imprecision within components, it is just needed to add an optimization loop around
the survival signature-based simulation method which are proposed above. In other words,
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Φ(0,...,0,...,0)

......

Figure 3.5: A general schematic diagram for one simulation sample.

it can be done by adding a simple Monte Carlo loop and sampling the values of component
parameters from uniform distributions.

The double loop sampling involves two layers of sampling: the outer loop is called
the parameter loop since it concerns sampling different values for the set of distribution
parameters for all of the uncertain quantities; while the inner loop goes by the name of
probability loop because it involves sampling from precise probability distribution func-
tions. As a matter of fact, double loop sampling implicates sampling from an analytical
distribution whose parameters have been generated by sampling.

Figure 3.6 shows the lower and upper bounds of survival function obtained by simula-
tion method and compared with the analytical solution, and shows excellent agreement.

Therefore, this simulation method not only has the advantage of survival signature to
handle complex systems reliability problems, but can recur to Monte Carlo simulation to
deal with the uncertainties within the systems. Furthermore, the simulation method can
be used for analysing any systems with general imprecision. Suppose components failure
times of type 1 and type 2 obey Weibull distribution and gamma distribution, respectively.
Their imprecise parameters can be seen in Table 3.2.

It is difficult to determine the bounds of survival function by an analytical method.
However, this problem can be tackled through a simulation method. The results are shown
in Figure 3.7.
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Figure 3.6: Lower and upper bounds of the survival function obtained by simulation and
analytical method.

Table 3.2: Imprecise distribution parameters of components in a system
Component type Distribution type Parameters (α, β)
1 Weibull ([1.2,1.8], [2.3,2.9])
2 Gamma ([0.8,1.6], [1.3,2.1])

3.5 Numerical Examples

3.5.1 Circuit Bridge System

The purpose of this numerical example is to verify the proposed two algorithms since
for this simple problem analytical solutions are available. The system configuration is
represented in Figure 3.3, k = 1, 2. The circuit bridge system comprises six components,
which belong to two types. It has no series section or parallel section which can enable
simplification. The survival signature can easily be computed either manually or using the
R-package “ReliabilityTheory”. The values of the survival signature are reported in Table
3.1, where l1 and l2 indicate the numbers of working components of type k = 1 and k = 2,
respectively and Φ(l1, l2) is the survival signature of the bridge system.

In this example the failure times of both component types 1 and 2 obey exponential
distributions with parameters λ1 = 0.8 and λ2 = 1.5, respectively, i.e. the components
have a constant mean time to failure. It is also assumed that the component once failed
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Figure 3.7: Lower and upper bounds of survival function by simulation method.

can not be repaired.
The survival function of the bridge system is then calculated by means of Algorithms 1

and 2. The resulting functions are then compared with the analytical solution. The survival
function can be obtained from Equation 3.2:

P (TS > t) =
3∑

l1=0

3∑
l2=0

Φ(l1, l2)

(
3

l1

)
[1− e−0.8t]3−l1 [e−0.8t]l1 ×

(
3

l2

)
[1− e−1.5t]3−l2 [e−1.5t]l2 (3.14)

The results of the reliability analysis are shown in Figure 3.8, which shows near perfect
agreement of the simulation methods with the analytical solution. The Monte Carlo simu-
lation has been performed usingN = 5000 samples and a discretisation time dt = 0.0015.
The discretization time is only required to collect the numerical results (i.e. survival func-
tion) although the simulation of the system is continuous with respect to the time.

Figure 3.9 shows an example of system evolution as a function of time with associated
number of working components Ck.

In order to show the efficiency of the proposed algorithm, the evolution of the variance
of the estimators as a function of number of samples has been computed and shown in
Figure 3.10. Algorithm 2 shows a smaller variance compared to Algorithm 1, in particular
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Figure 3.9: Example of a realization of the number of working components Ck as a func-
tion of time.

when small sample sizes are used.
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3.5.2 Hydroelectric Power Plant System

In this Section, a survival analysis of a real world hydroelectric power plant based on
survival signature is conducted. The system is schematically shown in Figure 3.11 and its
reliability block diagram is illustrated in Figure 3.12.

It can be modelled as a complex system comprising the following main twelve com-
ponents: (1) control gate (CG), which is built on the inside of the dam, the water from the
reservoir is released and controlled through the gate; (2) two butterfly valves (BV 1,BV 2),
which can transport and control the water flow; (3) two turbines (T1,T2), where the flow-
ing waters kinetic energy is transformed into mechanical energy; (4) three circuit break-
ers (CB1,CB2,CB3), which are used to protect the hydro power plant system; (5) two
generators (G1,G2), which produce alternating current by moving electrons; and (6) two
transformers (TX1,TX2), which inside the powerhouse take the alternating current and
convert it to higher-voltage current.

Two cases are presented in the following part: Case A presents the survival analysis
with the fully probability model; Case B considers imprecision within the model.

Case A: It is assumed that all components of the same type have the same failure time
distribution. Failure type and distribution parameters are listed in Table 3.3.

Let l1, l2, l3, l4, l5 and l6 denote CG, BV , T , G, CB and TX , respectively. Table
3.4 shows the survival signature of the hydro power plant, whereby the rows with values
Φ(l1, l2, l3, l4, l5, l6) = 0 are omitted.
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Table 3.3: Failure types and distribution parameters of components in a hydro power plant
Component
name

Distribution
type

Precise Parameters Imprecise Parameters

CG Weibull (1.3,1.8) ([1.2,1.5], [1.5,2.1])
BV Weibull (1.2,2.3) ([1.0,1.6], [2.1,2.5])
T Exponential 0.8 [0.4,1.2]
G Weibull (1.6,2.6) ([1.3,1.8], [2.3,2.9])
CB Gamma (1.3,3.0) ([1.2,1.4], [2.8,3.3])
TX Gamma (0.6,1.1) ([0.3,0.8], [1.0,1.3])

Table 3.4: Survival signature of a hydro power plant in Figure 3.11; rows with
Φ(l1, l2, l3, l4, l5, l6) = 0 are omitted
l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)
1 1 1 1 2 [1,2] 1/12
1 1 1 2 2 [1,2] 1/6
1 1 2 1 2 [1,2] 1/6
1 2 1 1 2 [1,2] 1/6
1 1 1 1 3 [1,2] 1/4
1 1 2 2 2 [1,2] 1/3
1 2 1 2 2 [1,2] 1/3
1 2 2 1 2 [1,2] 1/3
1 1 1 2 3 [1,2] 1/2
1 1 2 1 3 [1,2] 1/2
1 2 1 1 3 [1,2] 1/2
1 2 2 2 2 [1,2] 2/3
1 1 2 2 3 [1,2] 1
1 2 1 2 3 [1,2] 1
1 2 2 [1,2] 3 [1,2] 1
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Figure 3.11: Schematic diagram of a hydroelectric power plant system.

Figure 3.12: Reliability block diagram of a hydroelectric power plant system.

The survival signature can now be used as follows. There are m1 = 1, m2 = m3 =

m4 = m6 = 2 and m5 = 3 components of each type. The survival signature must
consider combinations for all l1 ∈ {0, 1}, l2, l3, l4, l6 ∈ {0, 1, 2} and l5 ∈ {0, 1, 2, 3},
and the state vector is x = (x11, x
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2). Now consider

Φ(1, 1, 1, 2, 2, 1) for example. This covers all possible vectors x with x11 = 1, x21 +x22 = 1,
x31 + x32 = 1, x41 + x42 = 2, x51 + x52 + x53 = 2 and x61 + x62 = 1. There are 24 such
vectors, but only four of these can make the system function. Due to the iid assumption
of the failure times of components of the same type, and due to independence between
components of different types, all these 24 vectors have equal probability to occur, hence
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Φ(1, 1, 1, 2, 2, 1) = 4/24 = 1/6.
The survival function of the hydroelectric power plant system with twelve components

of six types is shown in Figure 3.13.
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Figure 3.13: Survival function of a hydroelectric power plant system along with survival
functions for the individual components.

Case B: The investigation from CASE A is now extended by considering imprecision
in the description of the probabilistic model for the failure characterization of the system
components. Intervals are used to describe the imprecision in the failure time distribution
as shown in Table 3.3.

The upper and lower bounds of the parameters reflect the ideal and the worst cases of
the performance of the components, respectively. The range of the parameters represents
epistemic uncertainty, which results from expert assessments of the component perfor-
mance. This modelling leads to upper and lower survival functions of the hydro power
plant system reflecting the epistemic uncertainties as a range between the curves, see Fig-
ure 3.14. The imprecision from the input is translated into imprecision of the output.

3.5.3 Grey System

In order to illustrate the efficiency and the applicability of the proposed simulation ap-
proaches a complex system composed by 8 components of three types is analysed. The
component failure types and distribution parameters are shown in Table 3.5, again affected
by imprecision.
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Figure 3.14: Upper, lower and precise survival functions of the hydroelectric power plant
system.

Table 3.5: Components failure types and distribution parameters for the system in Figure
3.15

Component type Distribution Parameters
1 Weibull ([1.6, 1.8], [3.3, 3.9])
2 Exponential ([2.1, 2.5])
3 Weibull ([3.1, 3.3], [2.3, 2.7])

In addition, it is assumed that the exact configuration of part of the system is unknown
as shown in Figure 3.15, i.e. it might be composed by an additional component of type 1
or two components of type 2 connected in parallel.

However, the system can still be described using the survival signature although af-
fected by imprecision as shown in Table 3.6. For instance, if 2 components of type one
and 1 component of type three are working the system can be either in a failing state or
working with a probability of 0.5 (if the unknown part of the system is composed by an
additional component of type one).

The upper and lower bounds of survival function for the system with imprecision both
in the survival signature and on the component distribution parameters are shown in Figure
3.16.

This example shows the flexibility and the applicability of the simulation approaches
proposed for the analysing of systems affected by imprecision where no analytical solu-
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Figure 3.15: Grey system composed by 8 components of three types with imprecision of
the exact system configuration.

Table 3.6: Imprecise survival signature of the system of Figure 3.15, Φ(l1, l2, l3) = 0 and
Φ(l1, l2, l3) = 1 for both lower and upper bounds are omitted.

l1 l2 l3 [Φ(l1, l2, l3),Φ(l1, l2, l3)]
1 1 1 [1/8,1/8]
1 1 2 [1/4,1/4]
1 2 1 [1/5,1/4]
1 2 2 [3/7,1/2]
1 3 1 [1/4,3/8]
1 3 2 [1/2,1/2]
1 4 1 [1/4,1/2]
1 4 2 [1/2,1/2]
2 0 1 [0,1/2]
2 0 2 [0,1]
2 1 1 [1/4,3/4]
2 1 2 [1/2,1]
2 2 1 [1/2,1]
2 3 1 [3/4,1]

tions are available.

3.5.4 Complex Lifeline Network

In order to show the efficiency of the proposed algorithm in Section 2.5.2, a complex
repairable network is analysed. Figure 3.17 shows a lifeline network of 17 nodes and 32
edges. The source is the node s and the sink is the node t. All the nodes are assumed to be
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Figure 3.16: Upper and lower bounds of survival function for the system in Figure 3.15.

perfectly reliable in the network.

Figure 3.17: A lifeline network with 17 nodes and 32 edges.

Three cases are considered. The first case is used to compare results between the
former improved recursive decomposition method and the presented survival signature-
based method. The proposed approach is extended to analyse a complex network with
multiple component types in the second case. For the third case, imprecision is taken into
consideration.

Case 1: Network with Single Type of Components
Reliability analysis on the network shown in Figure 3.17 considering only one type of

components has been studied by Liu and Li in [89]. In this Case, there is an assumption
that the edges of the network are independent and identically distributed. All edges are
undirected edges (which means all edges are connected by nodes). Let all edges’ reliability
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be 0.9 (Case I), 0.8 (Case II), 0.2 (Case III) and 0.1 (Case IV).
The network reliability calculated by the improved recursive decomposition algorithm

is 0.999930 (Case I), 0.996522 (Case II), 0.017194 (Case III) and 0.000777 (Case IV),
respectively.

By using the efficient algorithm which is proposed in this thesis, the survival signature
of the complex network can be calculated in 28.07 seconds, and the results can be seen in
Table 3.7.

Table 3.7: Survival signature of the network in Figure 3.17.
l Φ(l) l Φ(l) l Φ(l) l Φ(l) l Φ(l) l Φ(l)
0 0 1 0 2 0 3 0 4 0.00014 5 0.00081
6 0.00285 7 0.0077 8 0.01765 9 0.03597 10 0.06683 11 0.00014

12 0.18409 13 0.27635 14 0.38916 15 0.51445 16 0.63944 17 0.75075
18 0.18409 19 0.90414 20 0.94679 21 0.97271 22 0.98719 23 0.99458
24 0.99799 25 0.99938 26 0.99985 27 0.99998 28 1 29 1
30 1 31 1 32 1

In all four cases, the network reliabilities calculated through the survival signature-
based reliability method given by Equation 3.2 are identical to those calculated using the
method from Liu and Li. However, the survival signature-based method only needs to
calculate the survival signature of the network once and store the results, so it is efficient
to calculate the network reliability for more cases. Furthermore, the proposed method
is powerful at dealing with the complex networks with multiple component types and
components with time varying distributions.

Case 2: Network with Multiple Types of Components
Assume that the edges within the network are belonging to three types instead of one

single type. To be specific, edges 1, 2, 3, 4, 5, 28, 29, 30, 31 and 32 are in type one
with reliability 0.9; edges 6, 7, 8, 9, 15, 16, 17, 18, 24, 25, 26 and 27 are in type two
with reliability 0.8; edges 10, 11, 12, 13, 14, 19, 20, 21, 22 and 23 are in type three with
reliability 0.2.

In order to estimate the network reliability, the survival signature of this network can
be calculated by the proposed algorithm in 23.78 seconds, and the results can be seen in
Table 7.1 in the Appendix. Then, the reliability of the network is 0.3746931 by using
Equation 3.2.

It can be seen from the above examples that the network reliability is time independent,
because we assume the edge reliability values are stable as time goes. In the real engineer-
ing world, however, the failure times of edges are according to different distribution types
(i.e., Exponential, Weibull, Gamma or Lognormal distribution) sometimes. All of these
distribution are time dependent, and will lead to the network reliability values being time
varying.
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Now let us assume that the failure times of edges type one are according to the Expo-
nential distribution with parameter λ = 0.12. Similarly, type two ∼Weibull(0.4,4.2) and
type three ∼ Normal(0.7,0.02).

The survival signature remains the same as the network does not change its configura-
tion. The survival function of the network is shown in Figure 3.18. It can be seen that the
survival function is time varying. Thus, it is easy to determine the network reliability at
each time.

Case 3: Imprecise Network Reliability
The available information for the quantitative specification of the uncertainties associ-

ated with the components is often limited and appears as incomplete information, limited
sampling data, ignorance, measurement errors and so forth. Therefore, it is important to
consider imprecision during the whole system reliability analysis period.

The first case is that due to lack of data or limited knowledge, there are not always
precise data for edges failure time distributions. For instance, Table 3.5.4 shows the failure
types and imprecise distribution parameters of edges in the network.

Table 3.8: Failure types and imprecise distribution parameters of edges in the network of
Figure 3.17.

Edge Type Distribution Type Imprecise Parameters λ or (α, β)
1 Exponential [0.08, 0.18]
2 Weibull ([0.3, 0.6], [3.8, 4.6])
3 Normal ([0.5, 0.8], [0.01, 0.03])

The lower and upper bounds of survival function of the network can be estimated by
means of a double loop approach. Figure 3.18 shows the interval of the survival function.

The second case concerns “grey box” in the lifeline network. Since it is difficult to
know the exact network configuration, there exists imprecision within the network survival
signature. For example, there is a “grey box” after node t of the network in Figure 3.17.
We do not know the precise configuration of this shaded box, but know that this part
consists of three edges which belong to each type respectively. To be specific, edge 33
belongs to one, while edge 34 is in type two, and edge 35 of type three in the “grey box”,
which can be seen in Figure 3.19.

The unknown configuration of this part in the network leads to imprecise survival
signature, which can be calculated through the proposed algorithm. Based on Equations
3.11 and 3.12, the lower and upper bounds of the survival function can be calculated,
which can be seen in Figure 3.20.

From the above two cases, we can conclude that imprecision either within the compo-
nents failure time distribution parameters or in the survival signature can lead to survival
function intervals of the complex network.

52



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t

S
ur

vi
va

l F
un

ct
io

n 
P

(T
s>

t)

 

 
Lower Bound Survival Function
Upper Bound Survival Function
Precise Survival Function

Figure 3.18: Time varying precise survival function alongside with lower and upper
bounds of survival function of the network in Figure 3.17 (imprecise distribution parame-
ters).

t t'

there are three edges 
with edge 33 type 1,
edge 34 type 2
edge 35 type 3

Figure 3.19: Grey box of the network in Figure 3.17.

3.6 Conclusion

In this Chapter efficient analytical and simulation approaches for analysing precise and
imprecise system reliability have been presented. All the methods are based on the sur-
vival signature, which has been proven to be an effective method to estimate the survival
function of systems with multiple component types.

In the proposed approach, the system model needs to be analysed only once in order
to conduct a reliability analysis, which represents a significant computational advantage.
Performing a survival analysis on complex systems and networks has been presented as a
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Figure 3.20: Lower and upper bounds of survival function of the network in Figure 3.17
(imprecise survival signature).

novel pathway for system reliability. In addition, the effect of imprecision, for example
resulting from incomplete data or the unknown system configuration, has been taken into
account in the system reliability analysis. As a consequence, bounds of survival functions
of the system can be obtained. The numerical examples in this Chapter indicate that the
proposed approaches can be used to evaluate the reliability and uncertainty of complex
systems efficiently.
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Chapter 4

Reliability Analysis of Complex

Repairable Systems

4.1 Introduction

When performing reliability analysis, it is essential to distinguish between repairable and
non-repairable systems and networks. The reliability approaches discussed in Chapter 3
are largely applicable to non-repairable systems.

In this Chapter, we examine the peculiar aspects of complex repairable systems as
well as discuss method for analysing their reliability. An algorithm based on the survival
signature is proposed to analyse the complex system with repairable components. This
approach is efficient since the survival signature of the complex repairable system only
needs to be calculated once while Monte Carlo simulation is used to generate component
transition times.

Section 4.2 gives an introduction about the relationship between a repairable system
and its components. What is more, a survival signature-based simulation method is pro-
posed to analyse reliability of repairable systems in this Section. Section 4.3 shows the
applicability and performance of the proposed approaches by analysing some numerical
examples.
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4.2 Repairable System Reliability Analysis Based on Sur-

vival Signature

4.2.1 Repairable System and Its Components

Non-repairable components are those that are discarded or replaced with new ones when
they fail. In real engineering applications, however, there are always exist repairable com-
ponents, which are not replaced following the occurrence of a failure; rather, they are
repaired and put into operation again. The sketch map of the repairable component is
shown in Figure 4.1.

work

fail
Figure 4.1: Sketch map of a repairable component.

If the system with m components is repairable, a schematic diagram of the repairable
components status and the corresponding system performance is presented in Figure 4.2.

For a structure function method, it is a necessary to identify whether the system works
or not at each critical time point. The critical time point is the beginning time for each
component failure and the finish time for each component repair. In this Chapter, a survival
signature-based simulation method is proposed to analyse the repairable system reliability.

4.2.2 Proposed Method for Repairable System Analysis

Algorithm 2 can easily be extended to analyse systems with repairable components. As-
sume that there are jk possible transitions for the components of type k. The probability
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Figure 4.2: Schematic diagram of the repairable components status and the corresponding
system performance.

of going from state s = l to state s′ = m is given by pklm = P (X
′
k = m | Xk = l). Let

Fkl =
∑
m P (X

′
k = m | Xk = l) represent the CDF of the component of type k to exit

from its state l, i.e. to undergo a transition leading to a state m 6= l.
Let us assume for the moment that there is only one possible transition to exit from the

state s = l. For instance, a component in working status s = 1 can fail and enter in the
state s′ = 2; the component in the state s = 2 can only be repaired and return in the status
s′ = 1. Hence, pk21 = P (X

′
k = 2 | Xk = 1) = pk2 represents the probability of failure for

component k, pk12 = pk1 the probability of repair.
The Monte Carlo simulation is performed as follows:

Step 0. Initialise variables (i.e. told = 0 and counters (i.e. Vt));

Step 1. Sample the transition times ti for i = 1, 2, . . . , C for each component of the system
from the corresponding CDF, Fkl, and stored in a vector V t = {t1, t2, . . . , tC}, set
told = 0;

Step 2. Identify the first transition time, i.e. min(V t) and the corresponding component z.
Hence, t1 represents the first transition of the system, t2 the second transition and so
on;

Step 3. At each transition time ti, calculate the number of components in working status
(i.e. Cti = (C1, C2, ..., CK)). The corresponding “production level” is obtained by
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evaluating the survival signature for the number of components in working status;

Step 4. Collect the value of the survival signature at time ti, Φti , in a counter V r represent-
ing the survival function as follows: V r(j) = V r(j) + Φti ∀j : told ≤ j · dt <
min(V t).

Step 5. Set told = min(V t) and sample the new status of the component z from the proba-

bility mass function P (s = m) =
Fklm(ti)
Fkl(ti

;

Step 6. Update the vector of transition times V t by sampling the next transition time t′z of
the component z of type k in status m from Fkm, where k is the component type of
the component z and m its status. Hence: V t(z) = tz + t′z;

Step 7. If min(V t) < TF (i.e. the final time), return to point 2.

The above steps are repeated for N samples and the survival function obtained by
averaging the vector V r over the number of samples. The flow chart of the proposed
algorithm is shown in Figure 4.3 and the pseudo-code is shown in Algorithm 3.

4.3 Numerical Example

4.3.1 Circuit Bridge System

In this example the components of the bridge system shown in Figure 3.3 are considered
repairable. Hence, the components can be in two different status: working (s = 1) and
not-working (s = 2). Two cases are analysed considering different distributions for the
repair times as shown in Table 4.1.

Analytical solutions are not available for analysing repairable systems and the sys-
tem can only be analysed by adopting simulation methods such as the Algorithm 3. An
example of the evolution of the system is represented in Figure 4.4.

The survival function P (TS > t) reaches a stationary level that depends on the ratio
between the mean failure time and mean repair time. The estimated survival function is
shown in Figures 4.5-4.8.

It is important to notice that the proposed approach (Algorithm 3) does not require
the introduction of additional component types to analyse a system with repairable com-
ponents. In order to verify the correctness of Algorithm 3 which is based on survival
signature, the results have been compared with the solution of simulation method based
on the structural function. The minimum path sets of the Bridge system shown in Figure
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Algorithm 3
Require: N: Number of simulations; dt: Discretisation time; Fk: CDF failure times,
V c = [m1,m2, . . . ,mk]: Number of components per type; Nt: number of discretisation
steps.
Set Vr(1 : Nt) = 0 . Ititialise counter
Set C = sum(Vc) . Compute total number of components
Set Φ← Survival signature . Compute the survival signature
Set Vs = Initial component Status . System initial conditions
for n = 1 : N do . loop over number of samples

for i = 1 : C do . loop over number of components
Vt(i) ∼ Fkl . Sample transition time component z of type k in state l

end for
u = 1 . Initialise counter
while min(Vt) ≤ Nt ∗ dt do

[tz, z] = min(V t) . Identify first system transition tz
. and corresponding omponent index z, component type kz

while u · dt ≤ Vj do
V r(u) = V r(u) + Φ(Vk) . Update counter
u← u+ 1 . Update index

end while
if Vs(z) is working then

Vc(k) = Vc(k)− 1 . Update component counter
Vs(z) NOT working . Update component status

else
Vc(k) = Vc(k) + 1 . Update component counter
Set Vs(z) working . Update component status

end if
Vt(z) ∼ Fkl . Sample new transition time component z

. of type kz in the state l = Vj(z)
end while

end for
V r = V r/N . Normalise counter
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Compute Survival Signature Φ

Sample components transition times (Vt)

Update 
component status Ck

Start N Monte Carlo simulations

is ti smaller than
the mission time?

Identify smallest transition time
ti=min(Vt ) and component j

Collect "production level" 
Φ(C1,C2, ..., Ck) for ti-1 to ti

Algorithm 3

Yes

Process next 
sample

Sample next transition time 
for component j: Vt(j)

Compute the survival function

Yes

Figure 4.3: Flow chart of Algorithm 3.

3.3 are [1,2,3], [1,2,5,6], [1,3,4,5] and [1,4,6]. N = 5000 samples have been used to esti-
mate the reliability of the system and the results shown in Figures 4.5 and 4.7 are in perfect
agreement with the results obtained using Algorithm 3. Figures 4.6 and 4.8 compare the
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Table 4.1: Parameters of repairable components in the bridge system. State 1: Working,
State 2: Not-working.

Component type (k) Transition (s) Distribution Parameters
CASE A

1 1→ 2 Exponential 0.8
1 2→ 1 Weibull 0.9 and 1.2
2 1→ 2 Exponential 1.5
2 2→ 1 Weibull 1.3 and 1.8

CASE B
1 1→ 2 Exponential 0.8
1 2→ 1 Uniform 0.2 and 0.6
2 1→ 2 Exponential 1.5
2 2→ 1 Uniform 0.1 and 0.2

X1
X2

X4

X3

time

X6

X5

t1 t2 ti

(3,3) (3,2) (1,2) (0,2)C (2,1)

tF

Figure 4.4: Example of a realization of the number of working components Ck as a func-
tion of time.

variance of the estimator as a function of the number of samples adopting the Algorithm
3 based on survival signature and Monte Carlo method based on structural function.

4.3.2 Complex System

In order to illustrate the efficiency and the applicability of the proposed simulation ap-
proaches, a complex system composed by 14 repairable components of six different types
is analysed. The reliability block diagram of the system is shown in Figure 4.9 and the
failure type and distribution parameters of the components are reported in Table 4.2. The
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Figure 4.5: CASE A: Survival function of the circuit bridge system with repairable com-
ponents calculated by means of Algorithm 3 and a simulation method based on structure
function.
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Figure 4.6: CASE A: Standard deviation of the estimator for the circuit bridge system
with repairable components calculated by means of Algorithm 3 and a simulation method
based on structure function.

survival signature of this system can be referred in Table 7.2 in the Appendix.

First, the system is analysed without considering the repairs (i.e. transition 2 → 1 is
not allowed). Hence, the reliability of the system can be estimated adopting the proposed
Algorithms 1 and 2 and the results are shown in Figure 4.10.

In case of repairable components or system, Algorithm 3 needs to be used. The pro-
posed approach is generally applicable and allows to estimate the reliability of complex
repairable system based on the survival signature. Figure 4.11 shows the survival function
for the case of repairable components.
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Figure 4.7: CASE B: Survival function of the circuit bridge system with repairable com-
ponents calculated by means of Algorithm 3 and a simulation method based on structure
function.
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Figure 4.8: CASE B: Standard deviation of the estimator for the circuit bridge system
with repairable components calculated by means of Algorithm 3 and a simulation method
based on structure function.

4.4 Conclusion

The survival signature has been shown to be a practical method for performing reliability
analysis of complex systems and networks with multiple component types. An algorithm
which bases on the survival signature is proposed to analyse complex system with re-
pairable components.
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Table 4.2: Components failure (transition 1 → 2) and repair (transition 2 → 1) data for
each component type of the complex system.

Component type (k) Transition (s) Distribution Type Parameters
1 1→ 2 Exponential 2.3
1 2→ 1 Uniform (0.4,0.6)
2 1→ 2 Exponential 1.2
2 2→ 1 Uniform (0.9,1.1)
3 1→ 2 Weibull (1.7,3.6)
3 2→ 1 Uniform (0.6,0.8)
4 1→ 2 Lognormal (1.5,2.6)
4 2→ 1 Uniform (1.0,1.2)
5 1→ 2 Weibull (3.2,2.5)
5 2→ 1 Uniform (1.2,1.4)
6 1→ 2 Gamma (3.1,1.5)
6 2→ 1 Uniform (1.1,1.3)

It is more efficient to simulate a system and network using the survival signature rather
than the full structure function (and for very large systems this may not be possible). This
is because it is not necessary to estimate the all cut sets of the system, exchangeable
components can be grouped together and characterised by a single distribution and finally
the simulation code is simple and more robust. The case studies presented in this Chapter
indicate that the proposed approaches can be used to evaluate the reliability of complex
repairable systems efficiently.
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Figure 4.10: Survival function of the complex system calculated by Algorithms 1 and 2
and compared with analytical solution.
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Figure 4.11: Survival function of the complex system with repairable components.
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Chapter 5

Importance and Sensitivity Analysis of

Complex Systems

5.1 Introduction

Component importance analysis is a sensitivity analysis which identifies the most “crit-
ical” component of the system, and in reliability theory, the most important component
is the one that contributes the most to the system reliability and should be paid most at-
tention. To be specific, component importance measures can help the engineers to rank
components in order of decreasing (or increasing) importance, and to determine which
components are important to the system reliability. Then the critical components should
be given priority with respect to improvements or maintenance, which can improve the
system performance [90].

In this Chapter, a new component importance measure is introduced as the relative
importance index (RI). The survival signature-based component importance measures
are applicable to both non-repairable and repairable complex systems. Through simulation
methods based on survival signature, upper and lower bounds of the survival function of
the system or relative importance index can be obtained efficiently. On this basis, the
survival function of system and the importance degree of components can be quantified.
In order to deal with the epistemic uncertainty when performing sensitivity analysis, the
probability bounds analysis which is based on a pinching method is used.

Section 5.2 introduces the relative importance index as a component importance mea-
sure for non-repairable systems. Also, it considers the imprecision within the relative
importance index. Then, the component importance measures for repairable systems are
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proposed in Section 5.3. After that, Section 5.4 gives an introduction about sensitivity
analysis for systems under epistemic uncertainty with probability bounds analysis. Fi-
nally, some numerical examples are analysed in Section 5.5.

5.2 Component Importance Measures of Non-repairable

Systems

5.2.1 Definition of Relative Importance Index

An important objective of a reliability and risk analysis is to identify those components
or events that are most important (critical) from a reliability/safety point of view. These
components should be given priority with respect to improvements or maintenance. Im-
portance measures are important tools to evaluate and rank the impact of individual com-
ponents within a system [91], which will allow one to study the relationship among com-
ponents and the system. Importance measures have many applications in probabilistic
risk analysis and there are many approaches based on various measures of influence and
response. These importance measures provide a numerical rank to determine which com-
ponents are more critical to system failure or more important to system reliability im-
provement.

A new importance measure is introduced herein as relative importance index indicated
by RI , which is utilised to quantify the difference between the probability that the system
functions if the ith component works and the probability that the system functions if the
ith component is not working. The measure RIi(t) expresses the importance degree of a
specific component during the survival time.

The relative importance index RIi(t) can be expressed as follows:

RIi(t) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (5.1)

where P (TS > t | Ti > t) represents the probability that the system functions if the ith
component works; P (TS > t | Ti ≤ t) represents the probability that the system functions
knowing that the ith component has failed.

The relative importance index RIi(t) is a function of time and it reveals the trend of
the survival functions P (TS > t | Ti > t) and P (TS > t | Ti ≤ t) of the system. This
measure quantifies the degree of the influence in each component characterisation, i.e.,
the bigger the value of RIi(t), the bigger is the influence of the ith component on the
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estimation of the system reliability at a specific time t, and vice versa. At each point in
time the largest RI over all components shows the most “critical” component. This helps
to allocate resources for inspection, maintenance and repair in an optimal manner over the
lifetime of a system.

The relative importance measures can be interpreted in a similar way as the Birnbaum’s
measure which quantifies the difference between the system reliability when component
i is given as functioning and the system reliability when component i is given as failed.
However, relative importance index RIi(t) uses the survival function instead of reliability
equations to represent system reliability based on different conditions (work or fail) of
the component i, which would usually be used to determine component importance for
complex systems and networks with multiple types of component, because the survival
functions of P (TS > t | Ti > t) and P (TS > t | Ti ≤ t) can be obtained easily by using
the survival signature.

5.2.2 Imprecision Within Relative Importance Index

Now taking imprecise probabilistic characterisations of the component failure probabil-
ities into account, the set of all possible probability distribution functions can be repre-
sented as distributional p-boxes indicated with M : P ∈ M . The relative importance
index can be defined as:

RIi(t | P ) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (5.2)

Therefore, the lower and upper bounds of relative importance index are:

RIi(t) =inf
P∈M RIi(t | P ) (5.3)

RIi(t) =sup
P∈M RIi(t | P ) (5.4)

Illustrative Example: Now let us calculate the relative importance index of compo-
nent 4 of the system in Figure 3.3 in Chapter 3. First calculate the survival signature of
the system in Figure 5.1 and Figure 5.2, which represents that the component 4 of type 2
works and fails at time t respectively.
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Figure 5.1: Component 4 works at time t.
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Figure 5.2: Component 4 fails at time t.

The survival signature of the two circumstances can be expressed as Φ̃1(l1, l2) and
Φ̃0(l1, l2), and the results can be seen in Table 5.1 and Table 5.2 respectively.

So the relative importance index of component 4 can be expressed as:

RIi(t | P ) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t)

=
m1∑
l1=0

m2−1∑
l2=0

Φ̃1(l1, l2)P (
2⋂

k=1

{Ck(t) = lk})−
m1∑
l1=0

m2−1∑
l2=0

Φ̃0(l1, l2)P (
2⋂

k=1

{Ck(t) = lk})

=
m1∑
l1=0

m2−1∑
l2=0

[Φ̃1(l1, l2)− Φ̃0(l1, l2)]P (
2⋂

k=1

{Ck(t) = lk}) (5.5)

If the components’ failure times have precise distribution parameters, e.g. λ1 = 0.8

and λ2 = 1.6, M degenerates to a probability function P ≡ M = {1 − e−λt : λ1 =
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Table 5.1: Survival signature of the system in Figure 5.1
l1 l2 Φ̃1(l1, l2)
0 0 0
0 1 0
0 2 0
1 0 0
1 1 0
1 2 1/3
2 0 0
2 1 1/3
2 2 2/3
3 0 1
3 1 1
3 2 1

Table 5.2: Survival signature of the system in Figure 5.2
l1 l2 Φ̃0(l1, l2)
0 0 0
0 1 0
0 2 0
1 0 0
1 1 0
1 2 1/3
2 0 0
2 1 0
2 2 2/3
3 0 1
3 1 1
3 2 1
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0.8;λ2 = 1.6}. Hence, the relative importance index of component 4 can be calculated by
using an analytical method and the results can be seen in Figure 5.3.
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Figure 5.3: Relative importance index of Component 4 with precise distribution parame-
ters.

Considering imprecisions within components failure times, the set of all probability
distributions defines a probability p-box for each component failure time: M = {1−e−λt :

0.4 ≤ λ1 ≤ 1.2; 1.3 ≤ λ2 ≤ 2.1}. Therefore, the lower and upper bounds of relative
importance index of component 4 can be calculated through a simulation method. Figure
5.4 shows the results.

5.3 Component Importance Measures of Repairable Sys-

tems

Component importance measures are invaluable in the real engineering world to identify
the weak components. The existing importance measures are mostly calculated through
analytical approaches, and application of these measures to complex repairable systems
may be intractable. In order to overcome intractability, two importance measures work
by figuring out how much each component or component set contributes to system un-
availability. What is more, another index is used to quantify the importance degree of the
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Figure 5.4: Relative importance index of Component 4 with imprecise distribution param-
eters.

specific component and component set. It always takes the system with m components
which belong to K component types for example in this Section.

The structure function-based method and the survival signature-based method are both
based on Monte Carlo simulation, which is general and useful for many problems. By
generating the state evolution of each component, the structure function is computed to
determine the state of the system. However, the survival signature is a summary of the
structure functions, which is efficient to deal with the complex configuration systems.

5.3.1 Importance Measure of a Specific Component

The relative importance index RIi(t) of the ith component at time t that was first used in
[60] can be extended to analyse the importance degree of components in the repairable
system. To be specific, it is the repairable system survival function probability differences
if the ith component works or not. The mathematical expression formula of the relative
importance index which is based on the survival signature can be expressed as

RISSi (t) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (5.6)
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where P (TS > t | Ti > t) represents the probability that the repairable system works
knowing that the ith component functions; P (TS > t | Ti ≤ t) denotes the repairable
system survival probability if the same component fails.

However, the relative importance index calculated by survival signature needs to know
the survival signature of the new system. If the system is complex, it is time consuming
work. Therefore, the structure function-based relative importance index is introduced to
identify the specific component’s importance degree, and its equation is

RISFi (t) = P (TS > t | xi repairable
⋂

Ti > t)−
P (TS > t | xi non− repairable

⋂
Ti > t) (5.7)

where P (TS > t | xi repairable
⋂
Ti > t) means the survival function of the repairable

system if the ith component can be repaired normally; while P (TS > t | xi non −
repairable

⋂
Ti > t) indicates the probability that the system functions knowing that the

same component cannot be repaired after failure.

5.3.2 Importance Measure of a Set of Components

It is sometimes important to evaluate the importance of a set of components instead of a
specific one in the real engineering world. Therefore, the relative importance index for a
specific component can be extended to a set of k components, which can be denoted by
RIk(t). The set of components can be either in one single type or different types.

For the first situation, RIk(t) is convenient to combine with the survival signature and
it is the probability difference values of the repairable system works if the components of
type k are repairable or they cannot be repaired. The expression can be written as follows

RISSk (t) = P (TS > t | lk repairable
⋂

Ti > t)− P (TS > t | lk non− repairable
⋂

Ti > t)(5.8)

where P (TS > t | lk repairable
⋂

Ti > t) represents the probability that the re-
pairable system works if components of type k are repairable; P (TS > t | lk non −
repairable

⋂
Ti > t) denotes the probability that the repairable system functions know-

ing that the components of type k cannot be repaired.
For the second condition, it is more efficient to analyse the importance degree of a set

of components that belong to different types. The mathematical equation of the structure
function-based method is
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RISFk (t) = P (TS > t | xki repairable
⋂

Ti > t)−P (TS > t | xki non−repairable
⋂

Ti > t)

(5.9)
where P (TS > t | xki repairable

⋂
Ti > t) means the survival probability of the re-

pairable system if the set of components of type k is repairable, here i ∈ (1, 2, ...,mk) and
k ∈ (1, 2, ..., K). P (TS > t | xki non − repairable

⋂
Ti > t) represents the survival

function of the system given that the components of type k set is non-repairable.

It can be seen that both RIi(t) and RIk(t) are time dependent and both of them can
be calculated by the survival signature-based method and the structure function-based
method, respectively. What is more, they reveal the trend of the importance degree of
a specific component or a set of components within the repairable system during the sur-
vival time. The greater level value of RIi(t) or RIk(t) is, the more “critical” is the ith
component or the set of components on the repairable system reliability at a specific time
t, and vice versa. This helps to allocate resources, which might include resources for reli-
ability improvement, surveillance and maintenance, design modification, security, operat-
ing procedure, training, quality control requirements, and a wide variety of other resource
expenditures. By using the importance of a specific component or a set of components,
resources expenditure can be properly optimised to reduce the total life-cycle resource ex-
penditures while keeping the risk as low as possible. In other words, for a given resource
expenditure such as for maintenance, the importance measure of a specific component or
set of components can be used to allocate resources to minimise the total system risk. This
approach allows the risk manager to offer the “biggest bang for the buck” [92].

5.3.3 Quantify Importance Degree

In order to quantify importance degree of the specific component or a set of components,
the quantitative importance index (QI) is introduced in this paper. The numerically ob-
tained index for a repairable system is through a Monte Carlo simulation method which
is based on survival signature and structure function. The failure times of the system can
be calculated through each trial, after having simulated many histories of the system, es-
timates are made of the desired relative criticality index statistically. For a system with
m components belonging to K types, the quantitative importance index of the specific
component i is expressed as

QIi =
N f
i

max{N f
1 , ..., N

f
i , ..., N

f
m}

(5.10)
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where N f
i represents average number of system failures if the ith component cannot re-

pair while the other components can be repaired normally; and max{N f
1 , ..., N

f
i , ..., N

f
m}

denotes the biggest value of all N f
i with i = 1, 2, ...,m.

Similarly, for components set k, the QI can be written as

QIk =
N f
k

max{N f
1 , ..., N

f
k , ..., N

f
K}

(5.11)

where N f
i denotes the average failure number of the system if the components set k are

non-repairable but the other components sets are repairable; whilemax{N f
1 , ..., N

f
k , ..., N

f
K}

denotes the maximum number of all N f
k with k = 1, 2, ..., K.

These two indices can quantify the importance degree of a specific component and
a components set respectively, and the quantitative importance index values of all the
components are compared with the biggest QI value. Therefore, the bigger the value
is, the bigger influence of the ith component or the components set k on the repairable
system.

5.4 Sensitivity Analysis for Systems Under Epistemic Un-

certainty with Probability Bounds Analysis

5.4.1 Represent Epistemic Uncertainty by P-box

In real cases, the amount and quality of information to specify a probabilistic model can
be limited to such an extent that the associated magnitude of imprecision makes the entire
analysis meaningless. In such cases it is essential to identify those contributions to the
imprecision, which influence the results most strongly. Once these are known, targeted
measures and investments can be defined in order to reduce the imprecision to enable a
meaningful survival analysis.

For the uncertain event X , ∆(X) = P (X) − P (X) is called the imprecision for
the uncertain event X [93]. Since epistemic uncertainty reflects the unsureness in the
predicted reliability, a decision maker might wants to reduce it by investing resources to
estimate more accurately the value of each event parameter [94].

As for the system reliability, the survival function is time varying, which can be seen
in Equations 3.1 and 3.2. The epistemic uncertainty within the components failure time
distribution parameters propagates to the survival function of the system P (t). The epis-
temic uncertainty will lead to the lower and upper bounds of the survival function, which
can be expressed by P (t) and P (t) respectively.
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Figure 5.5 shows an example of the p-box of the system survival function.
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Figure 5.5: Example of p-box of the system survival function

The area of p-box, denoted by APB, reflects the degree of the epistemic uncertainty.
To be specific, to calculate the survival function of a time dependent system which is
described by p-box, the time interval is discretised into several subintervals, the minimum
and maximum difference value at each subinterval can be found. Then summarise the
product of difference value and its corresponding subintervals, which can get the value
of APB. The more knowledge or information on the failure time distribution, the smaller
area of the p-box. If there exists no epistemic uncertainty, which means the precise values
of the components failure distribution parameters are known to us, the area of p-box APB
will shrink to zero.

Since it is clear that P (t) ≤ P (t) ≤ P (t), and P (t) reflects the reliability of the system
at different time t, the APB can be expressed by the following Equation.

APB =
∫ ∞
0

[P (t)− P (t)]dt (5.12)

It can be seen from Equation 5.12 that APB is the difference between the estimated
upper and lower survival functions of the system in presence of epistemic uncertainty.
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5.4.2 Probability Bounds Analysis as Sensitivity Analysis

Ferson and Donald [95] developed probability bounds analysis (PBA) which can pro-
duce bounds around the output distribution from an assessment. These bounds enclose all
the possible distributions that could actually arise given what is known and what is not
known about the model (system) and its inputs (components failure distribution parame-
ters). Therefore, PBA represents uncertainty by using a p-box.

PBA is a combination of probability theory and interval analysis, and the main ad-
vantage of PBA is that it separates aleatory uncertainty from epistemic uncertainty and
propagates them differently, thus each maintains its own character [96].

System sensitivity analysis is a systematic study of how the inputs of the system in-
fluence the reliability of the system. Therefore, system sensitivity analysis has two fun-
damental features: one is to find out how the reliability and function of the system are
influenced by the inputs, and another is to focus on improving estimates of inputs which
will lead to the most improvement of the system reliability.

Because of the obvious and fundamental importance of sensitivity analysis on systems,
it is essential and of interest to perform a sensitivity analysis on the systems by combining
with the probability bounds analysis. This thesis uses a pinch strategy to assess the impact
of epistemic uncertainty on the systems.

As we knew before, the epistemic uncertainty within the components failure time dis-
tribution will lead to lower and upper survival function bounds of the system, and the
epistemic uncertainty degree can be quantified by APB. If there is extra information or
data are available on an input, there will be less uncertainty degree of the whole system,
which also means the APB will decrease. Therefore, it is feasible to compare the value
difference before and after “pinching” an input, i.e. replacing the uncertain input with a
point value or with a precise distribution function. Pinching can be applied to each input
and the maximum reduction of uncertainty of the system is regarded as the most sensitive
input of the system.

The estimate of the value of information for a parameter will depend on how much
uncertainty is within the parameter, and how it influences the uncertainty in the system
reliability. The reduction or sensitivity can be expressed by Equation 5.13.

100

(
1− AafterPB

AbeforePB

)
% (5.13)

where AbeforePB is the former p-box value of APB, while AafterPB represents the area of p-box
with an input which is pinched.

The result of this Equation reflects the percentage reduction of uncertainty when the
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former uncertain input parameter is replaced by a more precise value. The pinching theory
[97] can be applied to each system component in turn and the results of all components
are got through the above Equation, then ranking the results to find out the most sensitive
component. What is more, it can be extended to pinch multiple inputs simultaneously to
perform the sensitivity analysis on components set of the system, and then locate which
components set is more sensitive. Therefore, we can use a sensitivity index (SI) to repre-
sent Equation 5.13.

5.5 Numerical Example

5.5.1 Hydroelectric Power Plant System

Let us use the power plant system in Figure 3.11 of Chapter 3 to illustrate the relative
importance index. The following part consists of two cases: Case A presents the full
probability system, while Case B allows imprecision within the system. Table 3.3 shows
the precise and imprecise distribution parameters of components in the hydro power plant
system.

Case A: Based on the survival function it is possible to calculate the influence of
each component on the system reliability for each point in time t. The basic theoretical
knowledge and equations can be seen in Section 5.2, which allows to estimate the relative
importance index RIi(t) of each component.

For the other component importance measures, analytical methods can be used to rank
the component importance degree. The equations of Birnbaum’s measure (BM ), risk
achievement worth (RAW ) and Fussel-Vesely’s measure (FV ) calculate the component
importance Ii(t) of the ith component at time t as can be seen in Table 5.3.

Table 5.3: Component importance equations of BM , RAW and FV
Methods Component Importance Equations
BM IBi (t) = ∂RS(t)

∂Ri(t)

RAW IRAWi (t) = RS(t)(Ri(t)=1)
RS(t)

FV IFVi (t) = RS(t)−RS(t)(Ri(t)=0)
RS(t)

In the above equations, RS(t) and Ri(t) represent the reliability of the system and
the ith component at time t. The Birnbaum’s measure [4], IBi (t), is defined as the rate
of change in total risk of the system with respect to changes in a risk element’s basic
probability (or frequency). Risk achievement worth [98], IRAWi (t), is the ratio of the new
risk to the baseline risk of the system when the probability of the specified risk element
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is set to unity. And Fussel-Vesely’s measure [16], IFVi (t), is defined as the fractional
contribution of a risk element, the total risk of the system of all scenarios containing that
specified element. For the power plant in Figure 3.11, the reliability equation RS(t) =

R1(1− (1−R2R3R4R5)(1−R6R7R8R9))R10(1− (1−R11)(1−R12)).
The component importance obtained at t = 0.12 using the proposed method for the

power plant system have been compared with the results Birnbaum’s measure (BM ), risk
achievement worth (RAW ) and Fussel-Vesely’s measure (FV ) as shown in Table 5.4.

Table 5.4: Comparision of component importance obtained using different methods at
t = 0.12

Components
Methods

CG BV 1
BV 2

T1 T2 G1
G2

CB1
CB2

CB3 TX1
TX2

BM 0.8854 0.1181 0.1366 0.1177 0.1191 0.8846 0.2703
ranking 1 6 4 7 5 2 3
RAW 7.8947 1.9280 1.9280 1.9280 1.9280 7.8947 2.5270
ranking 1 3 3 3 3 1 2
FV 1.000 0.1346 0.1346 0.1346 0.1346 1.000 0.2215
ranking 1 3 3 3 3 1 2
RI 0.8831 0.1217 0.1401 0.1213 0.1221 0.8693 0.2656
ranking 1 6 4 7 5 2 3

According to the above table, it can be calculated that the RI method has the same
component importance ranking as Birnbaum’s measure. Also, the proposed RI method
has the same ranking trend as RAW and FV . The RI method just needs the survival
signature without calculating the reliability equation, which is useful for large systems
with multiple component types.

The relative importance index values of each component over time are shown in Figure
5.6.

The relative importance index values reveal the component importance over time. The
bigger the value of RIi(t) is, the more “critical” the ith component is. The above results
show that BV 1 and BV 2 have the same relative importance index values, and the same
applies to T1 and T2, G1 and G2, CB1 and CB2, TX1 and TX2. This is because the
components are in a parallel configuration and they have the same failure time distribution
type and parameters, which is also according to our common sense that these components
have the same importance degree to the system. For component CB3, it has same failure
time type and distribution parameters as components CB1 and CB2, but has different
location in the system. Therefore, the relative importance index value of component CB3

is bigger than relative importance index values of components CB1 and CB2, but not as
big as the relative importance index value of component CG. Components CG and CB3

have the same decreasing trend of relative importance index over time, while for the other
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Figure 5.6: Relative importance index values of the system components.

components, the trends of relative importance index increase first, then decay with time.
The relative importance index values of components TX1 and TX2 are always smaller
than other components, which means they have smallest influence degree to the system
reliability.

Case B: This Case considers imprecision within the distribution parameters of system
components. Therefore, as a further step the imprecision can be carried forward to cal-
culate ranges for the relative importance index. Firstly, ranges for the survival functions
assuming that a given component fails or works are calculated for each component, then
the associated ranges for the relative importance index for each component are determined,
see Figure 5.7 and Figure 5.8.

From the above figures it can be recognised that imprecision within component failure
times can lead to imprecision of relative importance index of the component.

5.5.2 Repairable Complex System

The complex repairable system in Figure 4.9 of Chapter 4 is analysed in this part; compo-
nents failure and repair data for each component type of the system can be seen in Table
4.2.

Case A: Let first perform the importance measure of a specific component which is
based on the structure function. The results can be seen in Figure 5.9.
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Figure 5.7: Upper and lower relative importance index of components CG, BV , T and G.
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Figure 5.8: Upper and lower relative importance index of components CB and TX .

It is clear that component 14 always has a higher relative importance index than the
other thirteen components, which means it is the most “critical” component in the re-
pairable system. Then it comes to component 8. Component 13 has little relative impor-
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Figure 5.9: Relative importance index of the specific component in the system.

tance index values at the first time, however, its relative importance index values become
bigger as time goes on, which just follows the components 14 and 8. Component 1 and
component 2 have similar relative importance values, which sometimes cross over. The
same circumstance occurs on components 4 and 6. The relative importance of the five
components (3, 5, 7, 9, 10) is always within 0.1, which means they have less importance
influence degree than other components on the repairable system.

Case B: In the real application world, sometimes people want to know the importance
degree of a set of components. i.e. the relative importance index of components of set 1
to set 6 in this repairable system. Figure 5.10 shows the results of them.
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Figure 5.10: Relative importance index of the components sets with same type in system.

It can be seen that the relative importance index values of component sets 1 and 2
are bigger than other component sets. Therefore, components of types 1 and 2 are more
important than components of other types in this repairable system. On the contrary, com-
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ponent set 4 is the least important within the system because it has the smallest values of
relative importance index. The values of component set 1 are higher than 2 at the begin-
ning time. However, their values are the same as the survival time goes on. Component
set 5 has lower relative importance values than component sets 3, but the values go up and
rank the third within the six component sets in the last. Component set 3 and 6 has the
similar relative importance values trend, although the value of set 5 is bigger than set 6 at
the beginning time.

When it comes to analyse the importance degree of a set of components which belong
to different types, the efficient structure function method can be used. Suppose it is a
necessary to perform sensitivity analysis on six components sets, that is set 1 with three
components (5, 7, 9), set 2 with components (1, 6, 10), set 3 with components (3, 4,
13), set 4 with components (2, 8, 13), set 5 with components (12, 14) and set 6 with
four components (1, 3, 7, 9). Figure 5.11 indicates the importance degree of these six
components sets which belong to different component types.
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Figure 5.11: Relative importance index of the components sets with different types in
system.

From the above figure, we can see that the relative importance index value of different
sets at each time. For example, at time t = 8, the components set 5 has the biggest influ-
ence on this repairable system. Then it comes to components set 4 and 3. The components
set 6 and 2 ranked the fourth and fifth respectively, while components set 1 has the least
relative importance index value.

Case C: If using the quantitative importance index to quantify the importance degree
during the survival time, the QI of a specific component and different types components
set can be seen in Figure 5.12 and Figure 5.13, respectively.

The first figure shows that component 14 is the most “critical” one to the whole system,
while the second figure indicates set 5 with components (12, 14) has the biggest influence
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Figure 5.12: Quantitative importance index of the specific component in the system.
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Figure 5.13: Quantitative importance index of the components sets with different types in
the system.

degree on the repairable system.

5.5.3 Typical Complex System

Figure 5.14 shows a bridge system, which is a typical complex system with three compo-
nent types.

The components’ lieftimes all satisfy an Exponential distribution. If there exist epis-
temic uncertainty within the parameters, the imprecise and precise distribution parameters
of all components can be seen in Table 5.5.

Accordingly, the bounds of imprecise survival function and precise survival function
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Figure 5.14: Typical complex system: the number outside the box is the component index,
while the number inside the box represents the component type.

Table 5.5: Imprecise and precise distribution parameters of all components in the typical
complex system

Component index Component type Imprecise parameter Precise parameter
1 1 [0.24, 0.50] 0.37
2 1 [0.24, 0.50] 0.37
3 2 [0.18, 0.55] 0.365
4 2 [0.18, 0.55] 0.365
5 3 [0.21, 0.45] 0.33

of the typical system can be seen in Figure 5.15.

The area of p-box AbeforePB = 0.2551 by using Equation 5.12, which reflects the degree
of the epistemic uncertainty. Then let us perform a sensitivity analysis on specific compo-
nent and components set under epistemic uncertainty with probability bounds analysis.

Case A: Sensitivity Analysis on Specific Component
Let replace the imprecise input with a precise distribution parameter of each compo-

nent, as shown in Table 5.5.

Taking component 1 as an example, we replace the imprecise distribution Exponen-
tial([0.24, 0.50]) with the precise distribution Exponential(0.37), while the other compo-
nents remain the former imprecise parameters. Now the p-box of the system survival
function is shown in Figure 5.16.

Therefore, it can be calculated that AafterPB1 = 0.2112 through Equation 5.12. The
sensitivity index of component 1 can be calculated by Equation 5.13, which is 17.209%.

Similarly, the sensitivity index of components 2, 3, 4 and 5 are 17.21%, 27.95%,
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Figure 5.15: The bounds of imprecise survival function and precise survival function of
the typical system
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Figure 5.16: The p-box of the system survival function when component 1 is pinched by
a precise distribution
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27.95% and 4.98% respectively. Thus, the sequence of each component’s sensitivity index
is SI3 = SI4 > SI1 = SI2 > SI5, which means components 3 and 4 are more sensitive
than the other three components.

Case B: Sensitivity Analysis on Components Set
It is sometimes important to analyse the sensitivity degree of different components

sets to the system. For instance, if people want to know the sensitivity index of these
five different components sets: C[1,3], C[2,4,5], C[1,2], C[3,4] and C[5], it is necessary
to replace the imprecise distribution parameters of components in each set with precise
distribution parameters, which can also be seen in Table 5.5.

Considers pinching component 1 and component 3 to distributions with precise pa-
rameters, to be specific, component 1 with Exponential(0.37) while component 3 with
Exponential(0.33). Then calculate the lower and upper bounds of the system survival
function, which is shown in Figure 5.17.
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Figure 5.17: The p-box of the system survival function when components set C[1,3] is
pinched by a precise distribution

Here it can be seen that the area of p-box shrinks a lot compared to the initial one,
to be specific, AafterPB13 = 0.1321 after quantization calculation. Therefore, the percentage
reduction is 48.22%.

Similarly as the above case, compare with the former epistemic uncertainty degree
AbeforePB , the percentage reduction is 53.19%, 34.89%, 55.27% and 4.98% for the other
four components sets, which means SIC[3,4] > SIC[2,4,5] > SIC[1,3] > SIC[1,2] > SIC[5].
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Engineers should pay more attention on components sets C[3,4] and C[2,4,5] as they are
more sensitive than the other components sets.

5.6 Conclusion

In order to quantify the influence degree of components without and with imprecision, a
novel component-wise importance measure has been presented: the relative importance
index. Importance measures allow us to identify the most “critical” system component at
a specific time. This allows an optimal allocation of resources for repair, maintenance and
inspection. This novel and efficient method is conducted in an analytical way or through
simulation methods based on survival signature, which improves the computational effi-
ciency. Using the relative importance index, the importance of the individual components
is ranked to obtain a preference list for maintenance and repair.

The component importance index of complex non-repairable systems can be extended
to repairable systems. In many cases, uncertainties cannot be quantified precisely since
they are characterised by incomplete information, limited sampling data, ignorance, mea-
surement errors and so on. Thus, a thorough and realistic quantitative assessment of the
uncertainties is quite important. In order to find out which component or components set
with epistemic uncertainty are more sensitive to the system, the probability bounds anal-
ysis which is based on pinching theory is introduced. The effectiveness and feasibility of
the proposed approaches have been demonstrated with some numerical examples. The re-
sults show that the survival signature-based component importance measures are efficient
to perform sensitivity analysis of non-repairable and repairable systems.
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Chapter 6

Complex System Reliability Under

Common Cause Failures

6.1 Introduction

A common cause failure (CCF) is an event that causes multiple components to fail si-
multaneously as a result of a shared (or common) cause, which exists widely in complex
systems and networks. Common cause events are highly relevant to probabilistic safety
assessments due to their potential adverse impact on the safety and availability of critical
safety systems [99]. A number of parametric models have been developed for common
cause failures over the time since the publication for the reactor safety study [100].

In this Chapter, a survival signature-based reliability analysis on complex systems and
networks with common cause failures is proposed. The α-factor model distinguishes be-
tween the total failure rate of a component and the common cause failures modelled by
α-factor parameters, which can be obtained through experts’ judgements of the system or
the past data on the system. These advantages of the α-factor model make it possible to
combine with the survival signature to assess the complex system reliability after CCFs.

The standard α-factor model is proposed first in the thesis to perform system reliability
analysis after CCFs. However, it has two assumptions that there must be at least one com-
ponent failure of each type and the component failures of each type are independent. In
order to remove these assumptions, another general α-factor model has been introduced.
It takes account of all the possible combinations of the failed numbers of past events. The
novel standard and general α-factor models can be expressed by the time independent
equations which connect with the survival signature. Given the system components of
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each type that fail simultaneously after a common cause event, those of the same type are
all equally likely to fail. Therefore, the survival signature remains the same as before, and
it can perform the time dependent system reliability analysis after common cause failures.
In many cases, however, the α-factor estimators or components failure distribution param-
eters cannot be quantified precisely because of limited test data, incomplete information,
ignorance and so on. Thus, it is essential to take this incertitude into consideration, which
will lead to the imprecise system reliability probability. The applicability of the proposed
approaches are demonstrated by solving the numerical examples and, by investigating the
results, the concept of design for reliability should be given more attention.

Section 6.2 proposes the time independent and time varying models for system relia-
bility after common cause failures, while Section 6.3 shows the applicability and perfor-
mance of the proposed methods by analysing a numerical example.

6.2 System Reliability after Common Cause Failures

6.2.1 Instruction of α-factor Model

The α-factor model is particularly useful in the practical engineering world as the alpha
factor parameters can be got through experts’ judgement of the system or past data on the
system. The parameters αr of the model are the fractions of the total probability of failure
in the system that involves the failure of r components due to a common cause. For system
with single component type, it can be expressed as:

αr =
nr∑m
i=1 ni

(6.1)

where, nr is the number of events with r failed components.
The α parameter estimator represents the probability that exactly r of the m compo-

nents fail, given that at least one failure has occurred. It can be seen from Equation 6.1
that the sum of all the αr will be 1.

For components which belong to multiple types, the α parameter estimator is indicated
as:

αkr =
nkr∑mk
i=1 n

k
i

(6.2)

where, nkr is the number of r failed components which belong to type k.
Similarly, the summation of α factor parameters of type k is 1, with

∑mk
r=1 α

k
r = 1.

The characters of the α-factor model make it possible to combine with the survival
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signature to assess the complex system reliability. In this following sections, the survival
signature is introduced to analyse complex system with common cause failures. Based on
the results of [47], the α-factor model can be applied to calculate system reliability in the
presence of common cause failures.

6.2.2 Standard α-factor Model for System Reliability

Let assume that there is a system withmk components belonging to type k ∈ {1, 2, ..., K}.
When a failure event occurs, P (f1, f2, ..., fK) denotes the probability for how many fail-
ures occur of each component type. The survival signature Φ(l1, l2, ..., lK) represents the
probability that the system is functioning when lk components of type k are working,
which can be expressed as

Φ(l1, l2, ..., lK) = P (system functions | lk components of type k work) (6.3)

where k ∈ {1, 2, ..., K}.
Let P (SCCF ) denote the probability that the system still functions after a common

cause failure event and can be calculated as

P (SCCF ) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (6.4)

where fi = mi − li.
From Equation 6.4 it can be seen that unlike the P (Ts > t) calculated by Equation 3.2,

the survival function of the system after a CCF is independent of t. In addition, the typical
merit of the survival signature can also be held. To be specific, the survival signature,
which encompasses information of the system structures, and the probability distribution,
which relies on the common cause failures of the components belonging to different types,
are separated in the equation.

The α-factor model with estimate of the alpha factor parameters are mainly used in this
Section and they are given by Equation 6.1 for a common cause group of m components.

P (f1, f2, ..., fK) is constructed by using the past data available on the system, com-
bined with the α-factor model for CCFs. For this standard α-factor model, there are as-
sumptions that P (0, 0, ..., 0) = P (0, f2, ..., fK) = P (f1, 0, ..., fK) = ... = P (f1, f2, ..., 0) =

0, as there must be at least one component failure of each type. What is more, there is an-
other assumption that the components failures of each type are independent, which implies
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that P (f1, f2, ..., fK) = P (f1)× P (f2)× ...× P (fK).
Recall that αknk

gives the probability that exactly nk components fail, given that they
belong to type k. For example, if there is only 1 component of type 1 failures, it follows
that P (f1 = 1) = α1

1. Thus, the alpha parameters provide all the information required to
specify the distribution. For instance, P (1, 1, ..., 1) = α1

1α
2
1...α

K
1 .

The next step is to calculate the survival signature, which will then be combined with
the probability of failure considering CCF P (f1, f2, ..., fK) to assess the survival function
of the system. It is not necessary to calculate all the survival signatures as it can identify
which values are required by Equation 6.4.

6.2.3 General α-factor Model for System Reliability

The standard α-factor model for system reliability which is presented above may leads to
an unsatisfactory low probability level of the system reliability, this is due to the assump-
tion that the first failure event will affect components of all types. Therefore, it is essential
to find a general α-factor model by which people can avoid assuming that the failure event
has necessarily affect all common cause groups of components.

Let us assume there are K common cause component groups, where group k ∈
{1, 2, ..., K} includes mk components. The past data nj1,j2,...,jK denote the numbers of
past events with exactly j1 failed components from group 1, exactly j2 failure components
from group 2 and the like.

The α-factor parameter αj1,j2,...,jK provides the probability that exactly jk components
of group k fail, with k ∈ {1, 2, ..., K}. Given that a common cause failure event has
affected the overall system, however, which exact common cause groups are affected are
not known. Therefore, the αj1,j2,...,jK can be estimated by Equation 6.5 as

αj1,...,jK =
nj1,...,jK

(
∑m1
j1=0 ...

∑mK
jK=0 nj1,...,jK )− n0,...,0

(6.5)

The
∑m1
j1=0 ...

∑mK
jK=0 nj1,...,jK in the denominator represents all the possible outcomes,

but n0,...,0 has to be subtracted as there is an assumption that at least one component in the
system is affected by the failure event.

However, the assumption is only valid if n0,...,0 is included in the summation. In prac-
tice, there may be no data for the number of times no components have failed. Therefore,
it is necessary just arbitrarily to set n0,...,0 = 0. Since the purpose of this paper is to per-
form reliability analysis on complex systems in the presence of CCFs, the model without
the above information is not relevant for the purpose.
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The probability that the system works after a common cause failure event can also be
expressed by Equation 6.4. The survival signature Φ(l1, ..., lK) is the same as before as
it depends only on the system structures and can also be identified through Equation 6.4.
However, the joint probability distribution P (f1, f2, ..., fK) is obtained without assuming
independence among components, as it is simply given by the alpha factor parameters. To
be specific, that means P (f1, f2, ..., fK) = αj1,j2,...,jK .

6.2.4 Time Dependent System Reliability after CCFs

Given numbers nk with k ∈ {1, 2, ..., K} of components of each type that fail simultane-
ously after a common cause event, those of one type are all equally likely to be failing.
Assume Ck(t) expresses the number of k components function at time t after a common
cause failure. Therefore,

P (
K⋂
k=1

{Ck(t) = lk − nk} | CCF ) =
K∏
k=1

(
mk

lk − nk

)
[Fk(t)]

mk−lk+nk [1− Fk(t)]lk−nk (6.6)

So the functioning of the system after the next common cause failure can be predicted
by Equation 6.7.

P (Ts > t | CCF ) =
m1−n1∑
l1=0

...
mK−nK∑
lK=0

Φ(l1, ..., lK)P (
K⋂
k=1

{Ck(t) = lk − nk} | CCF ) (6.7)

It can be seen from the above Equation that the survival function of the system is
dependent on time t.

6.2.5 Imprecise System Reliability after CCFs

In the application engineering world, if the system has not been in operation in the past
(e.g. is a new system), or it does not usually encounter common cause failure events, there
may not be enough data to estimate the values of the accurate α-factor parameters. In ad-
dition, experts can provide an estimation of the number nk of common cause components
failures, but often only an interval is predicted.

Therefore, the α-factor parameters might have imprecise values with bounds [αkmk
, αkmk

].
Since P (f1, f2, ..., fK) is estimated based on the α-factor model, the imprecision will
propagate to P (m1 − l1, ...,mK − lK). The survival signature remains unaffected by
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the imprecision since it is only influenced by uncertainty and imprecision in the system
structure. Hence, the bounds of the survival probability are calculated as

P (SCCF ) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (6.8)

P (SCCF ) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (6.9)

For time varying system reliability after CCFs, if there is a lack of information on
components failure time distribution, the cumulative distribution function Fk(t) will have
uncertainty. Similarly, the survival signature remains the same. Therefore, the lower
survival function of the system after CCFs is

P (TS > t | CCF ) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)×

K∏
k=1

[P (Ck(t) ≤ lk | CCF )− P (Ck(t) ≤ lk − 1 | CCF )] (6.10)

and the upper survival function is

P (TS > t | CCF ) =
m1∑
l1=0

...
mK∑
lK=0

Φ(l1, ..., lK)×

K∏
k=1

[P (Ck(t) ≤ lk | CCF )− P (Ck(t) ≤ lk − 1 | CCF )] (6.11)

6.3 Numerical Example

In this Section, five cases are analysed. To be specific, the first case shows the applica-
tion of the proposed standard α-factor model for system reliability after common cause
failures. Then, the following two cases talk about the general α-factor model. Case four
illustrates the time varying system reliability after CCFs, while the last case considers
imprecision within the system with common cause failures.
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Figure 6.1 shows a complex system with thirteen components which belong to four
k = 4 types (m1 = 3,m2 = 4,m3 = 2,m4 = 4).
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Figure 6.1: Complex system with thirteen components which belong to four types. The
number inside the component box represents the type, while the number outside the box
expresses the component index.

6.3.1 Case 1 (Standard α-factor Model)

Firstly, let us determine the values of the survival function by using the standard α-factor
model from hypothetical data collected from the system. Suppose that the common cause
failure groups are the same as component types. This is logical in the engineering world
as the components of the same type have similar characteristics, so they are more likely to
be influenced by the same common cause event.

we have n1 = 1, n2 = 2, n3 = 1 for components of type 1. n1 = 1 means that
there has been 1 previous occurrence of failure with just one component of type 1, so the
α-factor parameter estimators in this case are

α1
1 =

n1

n1 + n2 + n3

=
1

4
(6.12)

α1
2 = 1

2
, α1

3 = 1
4

and
∑3
k=1 α

1
k = 1.

For type 2, n1 = 2, n2 = 1, n3 = 1 and n4 = 2, which gives α2
1 = 1

3
, α2

2 = 1
6
, α2

3 = 1
6

and α2
4 = 1

3
respectively. There are n1 = 2 and n2 = 1 for type 3. Thus, α3

1 = 2
3

and
α3
2 = 1

3
.

Similarly for component type 4, the data of n1 = 3, n2 = 3, n3 = 1 and n4 = 1 lead
to α4

1 = 3
8
, α4

2 = 3
8
, α4

3 = 1
8

and α4
4 = 1

8
.
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We assume that a common cause failure event occur will affect at least one component
of each type. According to the α-factor model, therefore, it can be known for this system
that P (0, 0, 0, 0) = P (0, b, c, d) = P (a, 0, c, d) = P (a, b, 0, d) = P (a, b, c, 0) = 0, for
a = 1, 2, 3, b = 1, 2, 3, 4, c = 1, 2 and d = 1, 2, 3, 4.

Based on the assumption that the failure components of different types are indepen-
dent, we obtain that P (f1, f2, f3, f4) = P (f1)P (f2)P (f3)P (f4).

Recall that α1
1 represents the probability that exactly one component of the three com-

ponents of type 1 fail. Hence, it follows that P (f1) = α1
1. So the alpha parameters provide

all the information that is required to specify the distribution. P (1, 1, 1, 1) = α1
1α

2
1α

3
1α

4
1 =

1
4
× 1

3
× 2

3
× 3

8
= 1

48
.

Then, it is necessary to calculate the survival signature Φ, which is used to combine
with the P (f1, f2, f3, f4) to assess the survival probability of the system. For P (1, 1, 1, 1),
its corresponding survival signature is Φ(2, 3, 2, 3), which means that probability that the
system works given that exactly 2 components of type one, 3 components of type two,
2 components of type three and 3 components of type four are working. There are alto-
gether 48 possible state vectors, of which 41 combinations allow the system to function.
Therefore, Φ(2, 3, 2, 3) = 41

48
.

All the values of P (f1, f2, f3, f4) and their corresponding survival signature Φ(m1 −
f1,m2− f2,m3− f3,m4− f4) can be calculated. Based on the values of P and Φ and the
Equation 6.4, the probability that the system survives after a common cause failure event
P (SCCF ) is 50

139
.

This probability is unsatisfactorily low, which is probably due to the assumptions of the
standard α-factor model. In order to relax these assumptions, it is necessary to generalise
the α-factor model.

6.3.2 Case 2 (General α-factor Model One)

Let us continue to use the complex system in Figure 6.1. However, we do not assume
that the common cause event will affect all the common cause failure groups. Again,
the component types form the common cause failure groups as before. Therefore, it can
be any number combinations of the components from type 1 to type 4. Note again that
P (0, 0, 0, 0) = 0 as at least one component will be affected by the CCFs.

The past data on the system can be seen in Table 7.4 in the Appendix, which has more
data available to fit the requirements for implementing the general α-factor model.

It can be seen that
∑3
j1=0

∑4
j2=0

∑2
j3=0

∑4
j4=0 nj1j2j3j4 = 345, and the α-factor pa-

rameters can be easily obtained by Equation 6.5. For instance, α2314 = 1
345

. Since
there is no assumption that independence among the components, the joint probability
distribution P (f1, f2, f3, f4) is simply given by the α-factor parameters, which means
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P (2, 3, 1, 4) = α2314 = 1
345

.
The survival signature of the complex system in Figure 6.1 is the same as calculated

before as it only depends on the structure of the system. Combining the joint probability
distribution values and their corresponding survival signature, the survival probability of
the system after the CCfs P (Ts > t | CCF ), which can be calculated by Equation 6.4, is
461
934

. This value is still low, though it is an improvement compared with the initial failure
event in Case 1.

6.3.3 Case 3 (General α-factor Model Two)

It can be seen from Case 2 that this system is highly susceptible to common cause failures,
as all combinations of the failed components have occurred in the past data. There is a
more robust system to be analysed in this Case, with past data that can be seen in Table
6.1.

Table 6.1: Past data nj1j2j3j4 on the system in Figure 6.1
nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4
n0001 = 16 n0002 = 11 n0003 = 13 n0004 = 6 n0010 = 13 n0011 = 3
n0012 = 2 n0013 = 3 n0014 = 3 n0020 = 13 n0021 = 5 n0022 = 2
n0023 = 4 n0100 = 13 n0101 = 3 n0102 = 3 n0103 = 2 n0104 = 2
n0110 = 2 n0111 = 1 n0120 = 3 n0200 = 13 n0201 = 4 n0202 = 2
n0203 = 1 n0204 = 13 n0210 = 1 n0220 = 3 n0300 = 14 n0301 = 5
n0302 = 2 n0303 = 13 n0304 = 1 n0310 = 3 n0320 = 2 n0400 = 7
n0401 = 3 n0402 = 3 n0403 = 2 n0404 = 1 n0410 = 1 n0420 = 3
n1000 = 17 n1001 = 6 n1002 = 3 n1003 = 4 n1004 = 4 n1010 = 5
n1011 = 1 n1020 = 3 n1100 = 6 n1101 = 2 n1102 = 1 n1110 = 2
n1111 = 1 n1200 = 3 n1201 = 1 n1300 = 6 n1301 = 1 n1400 = 4
n1401 = 1 n1402 = 1 n2000 = 13 n2001 = 5 n2002 = 3 n2003 = 2
n2004 = 2 n2010 = 4 n2011 = 1 n2020 = 4 n2100 = 6 n2101 = 1
n2110 = 1 n2200 = 3 n2300 = 3 n2301 = 1 n3000 = 9 n3001 = 5
n3002 = 3 n3010 = 4 n3020 = 2 n3100 = 3 n3300 = 1 n3301 = 1

It can be seen from the above table that there is one past event (n1111) such that
all component types are affected, and few past data where three types have been influ-
enced (n0111, n1011, n1101, n1102, n1110, n1201, n1401, n1402, n2011, n2101, n2110, n2301, n3301 in
this case). In other words, this system has the feature that components belonging to one
type are more reliable when CCFs affect the other types. Therefore, it is unlikely to have
large numbers of components of more than two types fail simultaneously.

Similarly,
∑3
j1=0

∑4
j2=0

∑2
j3=0

∑4
j4=0 nj1j2j3j4 = 345 and the joint probability distribu-

tion P (f1, f2, f3, f4) can be found directly from α-factor parameters, with P (f1, f2, f3, f4) =
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αn1n2n3n4 . The survival signature of the system remains the same as before since its struc-
ture does not change at all.

Based on Equation 6.4, it can be found that P (Ts > t | CCF ) = 439
473

, which means the
system survival probability after a common cause failure is around 92.81%. This is highly
improved compared with the former two cases.

The structure of the system remains the same, and the total number of the past data
is identical to Case 2, but why does the vulnerability of the system to CCFs decline so
drastically? It can be investigated that the higher values of P (f1, f2, f3, f4), 17

345
, 16
345

, 14
345

,
13
345

and 11
345

, correspond to survival signature Φ(l1, l2, l3, l4) = 1. Therefore, these kinds of
CCFs that are triggered will not be likely to cause system failures. While in Case 2, there
are more instances in the past data where larger numbers of components from more than
two types had failed, making it less likely that the system could continue to work.

6.3.4 Case 4 (Time Dependent System Reliability after CCFs)

It is assumed that all components of the same type have the same failure time distribution.
Their failure types and distribution parameters are listed in Table 6.2.

Table 6.2: Failure types and distribution parameters of components of the system in Figure
6.1

Component Type Distribution type Parameters (α, β) or λ
1 Weibull (1.8,2.2)
2 Exponential 1.2
3 Normal (2.3,1.6)
4 Lognormal (3.2,2.6)

If a common cause event occurs, the influenced components of each type will fail
simultaneously with the given probability, and those from the same component type all
equally likely to be failing. The survival signature remains the same as before, but the
number of the working components decreases.

Let C(0, 0, 1, 1) denote the common cause failure group with one component from
type 3 and one from type 4, without any components failing for other two types. In order
to show the results clearly, here are the other five conditions with common cause failure
groupsC(1, 1, 1, 1), C(0, 2, 0, 2), C(2, 2, 1, 2), C(2, 2, 1, 3) andC(2, 3, 1, 3). The time de-
pendent survival function of the system after the these conditions’ common cause failures
can be seen in Figure 6.2.

After the common cause failures, the survival function of the six conditions are lower
than without the CCFs. It can also be seen that the more numbers and types of components
are influenced by CCF, the lower of system reliability is as expected. This also agrees with
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Figure 6.2: Survival functions of the system after some conditions’ common cause fail-
ures.

our common sense.

6.3.5 Case 5 (Imprecise System Reliability after CCFs)

In this subsection, let us consider uncertainty in the system reliability analysis after com-
mon cause failures. In Case 1, if the system has not suffered CCF in the past, there might
not be enough data to calculate the α-factor parameters, although the standard α-factor
model can still be implemented by using experts’ judgements.

Given that a total of 20 common cause component failures has occurred across the
complex system in Figure 6.1, let two groups of experts estimate how the data would be
spread. Suppose group one gives that α1

1 = 2
5
, α1

2 = 1
5

and α1
3 = 2

5
for components type 1,

while for components type 2, α2
1 = 0, α2

2 = 2
5
, α2

3 = 2
5

and α2
4 = 1

5
. α3

1 = 2
3

and α3
2 = 1

3

for components type 3, and for components type 4, α4
1 = 3

7
, α4

2 = 1
7
, α4

3 = 2
7

and α4
4 = 1

7
.

At this time, even the survival signature of Φ(2, 3, 2, 3) remains the same as 41
48

, which is a
big value within the survival signature. However, its corresponding P (1, 1, 1, 1) decreases
from 1

48
to 0. Let summarise the products of P (f1, f2, f3, f4) and their corresponding

Φ(m1 − f1,m2 − f2,m3 − f3,m4 − f4), then the survival probability P (Ts > t | CCF )

of the complex system after the next CCFs is 6
23

.
For group two, the estimated data are α1

1 = 1
2
, α1

2 = 1
3
, α1

3 = 1
6
, α2

1 = 1
4
, α2

2 = 1
4
,
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α2
3 = 1

4
, α2

4 = 1
4
, α3

1 = 1
2
, α3

2 = 1
2
, α4

1 = 3
8
, α4

2 = 3
8
, α4

3 = 1
4

and α4
4 = 0. For this

circumstance, P (1, 1, 1, 1) increases to α1
1α

2
1α

3
1α

4
1 = 1

2
× 1

4
× 1

2
× 3

8
= 3

128
. Therefore,

P (Ts > t | CCF ) = 179
456

according to Equation 6.4.

So due to the epistemic uncertainty in this example, the probability bounds that the
system works after the next common cause failure event are P (Ts > t | CCF ) = [ 6

23
, 3
128

].

As for time dependent system reliability after CCFs in this case, it is difficult to know
the precise distribution parameter of components type 2 due to lack of information. There-
fore, the parameter λ has imprecise values [1.0,1.3] instead of the precise value of 1.2. The
imprecision within the components failure time distribution can propagate to the complex
system. So now the imprecise time varying survival functions of the system after the six
conditions’ common cause failures can be seen in Figures 6.3 and 6.4.
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Figure 6.3: Lower and upper survival function bounds of the system after the common
cause failures of C(0,0,1,1), C(0,2,0,2) and C(2,2,1,3) respectively.

In the real applications, for instance, due to confidential contracts, it is sometimes dif-
ficult to know the exact configuration of the system, which leads to imprecise survival
signature. For this kind of “grey” system, the system reliability after common cause fail-
ures can also be modelled.

It can be seen that epistemic uncertainty will lead the uncertainty within the system in
this Case. In order to reduce the imprecision, engineers need to improve efforts to get the
precise α-factor parameters or components failure time distribution parameters.
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Figure 6.4: Lower and upper survival function bounds of the system after the common
cause failures of C(1,1,1,1), C(2,2,1,2) and C(2,3,1,3) respectively.

6.4 Conclusion

Common cause failure events have the capability to reduce significantly the reliability and
availability of systems. Therefore, it is essential to analyse and model the effects of CCF.
This Chapter includes the effects of CCF into survival signature to compute the reliability
analysis of complex systems.

The survival signature is a summary of system structure function, which makes it ef-
ficient to analyse complex systems, while CCFs are modelled using the standard and gen-
eral α-factor models. The proposed methods are combined with the survival signature in
order to perform complex system reliability analysis in the presence of common cause
failure events. The effect of epistemic uncertainty, for example resulting from insufficient
data, has been taken into account to perform reliability analysis on complex systems with
different types after CCFs. As a result, lower and upper bounds of the system survival
probability after CCFs can be obtained. The feasibility and effectiveness of the proposed
measures are demonstrated by the numerical cases.

The proposed approach allows a more realistic situation of a system and can be adopted
to decide whether to repair or replace the failed components immediately, or after the
next common cause failure event. In other words, the administrator or designer has to
consider the costs of repairing or replacing the components as soon as possible, or taking
the risk of allowing the next common cause failure event to occur before performing repair
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or replacement. Overall, it is an example of how decision theory is incorporated in the
practical engineering world.

The goal of the reliability policy is to achieve high initial reliability by focusing on
reliability fundamentals during design. So design for reliability provides engineers and
managers with a range of tools and techniques for incorporating reliability into the design
process for complex systems [101]. For a complex system, it can examine the survival
signature first, in order to find out which component combinations of failures will not
allow the system to function at all. Therefore, the engineers can ensure these components
are equipped to be more reliable under certain circumstances, which makes the system
more reliable.

A possible drawback of the work presented in this Chapter is that there may not be
enough past data on the system, which is essential to calculate the precise values of the
α-factor parameters. This is either if the system does not usually experience the common
cause failures, or if the system has not been run in the past. However, these α-factor
models can still be implemented by using experts’ judgements on the system to ascertain
the nj1,j2,...,jK values.
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Chapter 7

Conclusion Remarks

7.1 Conclusions

This thesis investigates efficient methods for reliability and sensitivity analysis on complex
systems and networks, which are the backbones of our society. In addition, the effects
of imprecision and uncertainty are considered in the system reliability and component
importance measures.

The simulation methods for complex system reliability analysis are based on the sur-
vival signature as proposed in Chapter 3. They are sufficient for the computation of com-
mon reliability metrics and have the crucial advantage that they can be applied to systems
and networks with components whose failure times are not according to iid assumption.
In addition, when it comes to large systems and networks, especially with uncertainty, it is
difficult to derive the reliability metrics of interest in a purely analytical manner. However,
the methodologies in this Chapter are generally applicable to any system configuration,
and allow the consideration of imprecision within the system components. Therefore, the
upper and lower bounds of the survival function of the system can be obtained.

In some cases, there are repairable systems which can be put into operation again after
failure. Thus, the reliability approach is extended in Chapter 4 to simulate the evolution of
complex repairable systems. This method is efficient, as it combines the survival signature,
which needs to be calculated only once for the same system, with Monte Carlo simulation,
which generates the components’ transition time.

In order to identify the most important component, which contributes the largest to the
system reliability, Chapter 5 presents a novel component-wise importance measure which
is called relative importance index. The importance degree of the individual component
at each time can be ranked through this measure, which allows an optimal allocation of

105



resources for inspection, maintenance and repair. Furthermore, the imprecision is con-
sidered in this Chapter. As a consequence, intervals of relative importance index can be
conducted in an analytical way or by a simulation approach, which is based on the survival
signature. Based on the definition of relative importance index, this thesis implements a
wide selection of component importance measures of specific components or components
set for repairable systems and networks. As a further step, the probability bounds analysis,
which is based on pinching theory, is used to identify which components or components
set is most sensitive to the system.

Finally, common cause failures within the complex systems are analysed in Chapter
6. The approaches presented in this Chapter are based on the α-factor model and survival
signature, which enables the reliability analysis on networks and systems with common
cause failures. These different models can be used to evaluate the time-independent and
time-varying system reliability, respectively. Also, the incertitude is taken into considera-
tion here, which leads to the bounds of system reliability probability after common cause
failures.

7.2 Discussion and Future Work

The feasibility and effectiveness of the presented approaches have been illustrated with nu-
merical examples in each Chapter, and the results show that these methods are efficient to
perform reliability and sensitivity analysis on complex systems and networks with impre-
cise probability. However, there are still several possible areas for further exploration and
extension. Here are some interesting areas for possible future developments and research.

This thesis mainly focuses on classical reliability theory, which assumes that a com-
ponent or a system can only be in binary states, either function or failure. However,
there are multi-state systems (MSS) in real applications, and MSS reliability models allow
both the systems and their components to assume more than two levels of performance
[102]. Although many authors have made contributions about MSS reliability modelling
and evaluation theory, no one has applied the novel survival signature theory to complex
multi-state systems reliability evaluation. As this thesis stated before, the survival signa-
ture is a summary of the structure function and is efficient to analyse a complex system that
has multiple components with exchangeable failure times, all of which make it possible
to evaluate MSS through the survival signature. Therefore, how to calculate and use the
survival signature to perform reliability analysis on such kind of systems is an interesting
topic to consider. On the other hand, there are some efficient methods in the MSS area,
i.e. a hybrid load flow and even driven simulation approach in [103]. It is promising to
combine the survival signature with this method to perform reliability analysis on binary
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complex systems.
The α-factor model, which is utilised in conjunction with the survival signature to

analyse complex system reliability under common cause failures is applicable. However,
this model relies heavily on the past data or experts’ judgements, which can be recognised
as a disadvantage. Therefore, it is also possible to combine the survival signature with
other CCF models if the information available on the systems and networks would better
suit such models. In addition, if we were to distinguish components at risk from CCF
according to e.g. location, we would need to model it more precisely, with a more detailed
version of the survival signature. This is an important topic for later research.

There are special systems, such as a k-out-of-n redundancy system, in the engineering
world. Calculating the reliability and importance measures for this kind of system by using
the survival signature is interesting. Also, the study mainly focuses on the basic failure
time models, so incorporating the time-dynamic development and survival signature into
the stochastic failure models is challenging in the future work.

Resilience (ability to bounce back to a desired performance state) is a relatively new
definition in network system engineering. In this view, systems should not only be reliable,
i.e. having an acceptably low failure probability, but also resilient, i.e. having the ability to
recover optimally from disruptions of the nominal operating conditions [104]. Therefore,
it is another research challenge to consider resilience when conduct reliability analysis
of complex systems with or without common cause failures, and evaluate the component
importance measures as well.

When the component in the repairable system fails or is worn out, the maintenance
actions like repairs and replacements need to be introduced. Given a certain cost and
reward structure, an optimal repair and replacement strategy needs to be derived. Thus, it is
essential to propose a general maintenance optimization approach which can be exploited
in complex models.

For complex systems and networks in the real application world, in order to get in-
formation quickly on components’ life distribution, accelerated life testing (ALT) is used.
In practice, it means that the components are running under severe conditions (i.e. higher
than usual temperature, voltage, pressure, vibration, cycling rate, load, etc.) and fail sooner
than under usual conditions [105]. How to model the results from the ALT to arrive at an
estimation for the lifetime during normal operating conditions is an interesting topic. Due
to some conditions, however, only limited real world data can be obtained. Thus, future
research may focus on using the censored data from testing or from the real world to
estimate and verify the complex practical world system reliability.
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Appendix

Appendix 1: Survival Signature of System in Figure 3.17

The table shows the survival signature of the complex system of Figure 3.17. The rows
with survival signature values equal to either 1 or 0 have been omitted.

Table 7.1: Survival signature of a complex network in Figure

3.17; rows with Φ(l1, l2, l3) = 0 and Φ(l1, l2, l3) = 1 are

omitted

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

2 0 2 1/400 2 0 3 7/946

2 0 4 7/473 2 0 5 2/81

2 0 6 36/973 2 0 7 15/289

2 0 8 53/767 2 0 9 4/45

2 0 10 1/9 2 1 2 3/857

2 1 3 6/577 2 1 4 13/628

2 1 5 10/289 2 1 6 15/289

2 1 7 31/427 2 1 8 3/31

2 1 9 26/209 2 1 10 75/482

2 2 2 1/204 2 2 3 2/137

2 2 4 27/931 2 2 5 6/125

Continued on next page

109



Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

2 2 6 71/993 2 2 7 20/201

2 2 8 63/478 2 2 9 29/172

2 2 10 104/495 2 3 2 1/143

2 3 3 11/534 2 3 4 13/321

2 3 5 50/753 2 3 6 17/174

2 3 7 74/551 2 3 8 22/125

2 3 9 146/655 2 3 10 218/791

2 4 2 1/99 2 4 3 23/785

2 4 4 11/194 2 4 5 85/931

2 4 6 111/839 2 4 7 39/218

2 4 8 104/451 2 4 9 73/254

2 4 10 245/701 2 5 2 1/68

2 5 3 13/311 2 5 4 77/971

2 5 5 1/8 2 5 6 20/113

2 5 7 184/787 2 5 8 147/500

2 5 9 277/777 2 5 10 262/625

2 6 2 17/787 2 6 3 36/601

2 6 4 20/181 2 6 5 75/443

2 6 6 127/546 2 6 7 80/269

2 6 8 87/241 2 6 9 290/689

2 6 10 262/551 2 7 2 13/405

2 7 3 43/500 2 7 4 79/516

2 7 5 137/607 2 7 6 176/591

2 7 7 31/85 2 7 8 152/359

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

2 7 9 89/188 2 7 10 322/625

2 8 2 3/62 2 8 3 116/937

2 8 4 106/505 2 8 5 5/17

2 8 6 249/677 2 8 7 189/442

2 8 8 214/451 2 8 9 209/409

2 8 10 486/901 2 9 2 37/500

2 9 3 161/905 2 9 4 113/400

2 9 5 145/392 2 9 6 403/929

2 9 7 463/967 2 9 8 375/734

2 9 9 405/758 2 9 10 423/767

2 10 2 38/329 2 10 3 31/122

2 10 4 88/239 2 10 5 329/743

2 10 6 59/121 2 10 7 307/596

2 10 8 388/727 2 10 9 523/957

2 10 10 5/9 2 11 2 5/27

2 11 3 192/541 2 11 4 371/817

2 11 5 74/147 2 11 6 149/283

2 11 7 300/557 2 11 8 523/957

2 11 9 218/395 2 11 10 5/9

2 12 2 183/593 2 12 3 219/473

2 12 4 100/189 2 12 5 426/773

2 12 6 5/9 2 12 7 5/9

2 12 8 5/9 2 12 9 5/9

2 12 10 5/9 3 0 2 7/946

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

3 0 3 22/991 3 0 4 44/991

3 0 5 2/27 3 0 6 1/9

3 0 7 75/482 3 0 8 185/892

3 0 9 4/15 3 0 10 1/3

3 1 2 1/99 3 1 3 1/33

3 1 4 12/199 3 1 5 1/10

3 1 6 84/563 3 1 7 83/400

3 1 8 120/437 3 1 9 7/20

3 1 10 432/997 3 2 2 1/72

3 2 3 14/339 3 2 4 63/773

3 2 5 33/247 3 2 6 123/625

3 2 7 109/404 3 2 8 201/572

3 2 9 211/479 3 2 10 504/941

3 3 2 16/829 3 3 3 10/177

3 3 4 8/73 3 3 5 91/515

3 3 6 201/787 3 3 7 227/662

3 3 8 223/511 3 3 9 153/287

3 3 10 335/532 3 4 2 23/855

3 4 3 43/557 3 4 4 60/409

3 4 5 107/463 3 4 6 14/43

3 4 7 17/40 3 4 8 356/679

3 4 9 107/173 3 4 10 47/67

3 5 2 19/504 3 5 3 41/389

3 5 4 39/200 3 5 5 149/500

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

3 5 6 253/623 3 5 7 157/307

3 5 8 451/743 3 5 9 575/836

3 5 10 697/926 3 6 2 6/113

3 6 3 138/961 3 6 4 10/39

3 6 5 247/655 3 6 6 393/797

3 6 7 22/37 3 6 8 463/684

3 6 9 151/204 3 6 10 397/504

3 7 2 3/40 3 7 3 173/889

3 7 4 293/882 3 7 5 353/758

3 7 6 40/69 3 7 7 303/454

3 7 8 169/231 3 7 9 486/625

3 7 10 107/132 3 8 2 77/723

3 8 3 151/577 3 8 4 382/905

3 8 5 211/378 3 8 6 589/895

3 8 7 363/500 3 8 8 649/841

3 8 9 688/857 3 8 10 361/438

3 9 2 12/79 3 9 3 87/250

3 9 4 247/473 3 9 5 555/859

3 9 6 504/697 3 9 7 661/859

3 9 8 640/801 3 9 9 9/11

3 9 10 310/373 3 10 2 167/765

3 10 3 169/372 3 10 4 98/157

3 10 5 361/500 3 10 6 547/708

3 10 7 399/499 3 10 8 71/87

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

3 10 9 262/317 3 10 10 5/6

3 11 2 218/689 3 11 3 501/871

3 11 4 170/237 3 11 5 756/967

3 11 6 450/557 3 11 7 399/487

3 11 8 637/771 3 11 9 152/183

3 11 10 5/6 3 12 2 219/473

3 12 3 434/625 3 12 4 504/635

3 12 5 644/779 3 12 6 5/6

3 12 7 5/6 3 12 8 5/6

3 12 9 5/6 3 12 10 5/6

4 0 2 7/473 4 0 3 44/991

4 0 4 73/823 4 0 5 71/483

4 0 6 135/617 4 0 7 161/531

4 0 8 290/727 4 0 9 368/729

4 0 10 606/979 4 1 2 2/101

4 1 3 45/764 4 1 4 12/103

4 1 5 113/591 4 1 6 247/879

4 1 7 381/994 4 1 8 158/319

4 1 9 249/406 4 1 10 11/15

4 2 2 19/717 4 2 3 39/500

4 2 4 19/125 4 2 5 166/677

4 2 6 160/453 4 2 7 249/529

4 2 8 74/125 4 2 9 697/981

4 2 10 638/779 4 3 2 11/309

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

4 3 3 79/767 4 3 4 155/788

4 3 5 31/100 4 3 6 233/536

4 3 7 281/500 4 3 8 127/186

4 3 9 332/421 4 3 10 677/777

4 4 2 6/125 4 4 3 8/59

4 4 4 86/341 4 4 5 241/625

4 4 6 426/815 4 4 7 97/149

4 4 8 149/196 4 4 9 385/456

4 4 10 852/943 4 5 2 37/571

4 5 3 111/625 4 5 4 298/933

4 5 5 294/625 4 5 6 172/281

4 5 7 641/877 4 5 8 370/451

4 5 9 353/400 4 5 10 885/958

4 6 2 7/80 4 6 3 136/589

4 6 4 249/625 4 6 5 545/972

4 6 6 287/412 4 6 7 498/625

4 6 8 319/369 4 6 9 119/131

4 6 10 325/347 4 7 2 92/779

4 7 3 11/37 4 7 4 58/119

4 7 5 97/149 4 7 6 406/527

4 7 7 713/841 4 7 8 284/317

4 7 9 549/593 4 7 10 341/361

4 8 2 117/734 4 8 3 189/500

4 8 4 183/314 4 8 5 147/200

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

4 8 6 49/59 4 8 7 116/131

4 8 8 67/73 4 8 9 194/207

4 8 10 543/572 4 9 2 151/702

4 9 3 303/641 4 9 4 188/277

4 9 5 290/359 4 9 6 577/658

4 9 7 802/879 4 9 8 373/400

4 9 9 729/772 4 9 10 59/62

4 10 2 85/293 4 10 3 415/717

4 10 4 355/462 4 10 5 495/571

4 10 6 41/45 4 10 7 904/971

4 10 8 781/829 4 10 9 221/233

4 10 10 20/21 4 11 2 175/447

4 11 3 151/219 4 11 4 735/869

4 11 5 799/876 4 11 6 824/881

4 11 7 435/461 4 11 8 274/289

4 11 9 773/813 4 11 10 20/21

4 12 2 100/189 4 12 3 504/635

4 12 4 868/957 4 12 5 445/471

4 12 6 20/21 4 12 7 20/21

4 12 8 20/21 4 12 9 20/21

4 12 10 20/21 5 0 2 2/81

5 0 3 2/27 5 0 4 71/483

5 0 5 185/767 5 0 6 317/897

5 0 7 463/967 5 0 8 153/250

Continued on next page

116



Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

5 0 9 373/500 5 0 10 55/63

5 1 2 13/405 5 1 3 56/587

5 1 4 150/803 5 1 5 19/63

5 1 6 190/439 5 1 7 365/638

5 1 8 22/31 5 1 9 622/745

5 1 10 59/63 5 2 2 13/311

5 2 3 100/817 5 2 4 4/17

5 2 5 174/469 5 2 6 259/500

5 2 7 181/273 5 2 8 88/111

5 2 9 163/182 5 2 10 77/80

5 3 2 54/989 5 3 3 33/211

5 3 4 17/58 5 3 5 328/731

5 3 6 583/963 5 3 7 373/500

5 3 8 6/7 5 3 9 400/429

5 3 10 438/449 5 4 2 22/309

5 4 3 85/428 5 4 4 115/319

5 4 5 438/823 5 4 6 69/100

5 4 7 102/125 5 4 8 167/185

5 4 9 843/883 5 4 10 393/400

5 5 2 17/183 5 5 3 1/4

5 5 4 273/625 5 5 5 359/581

5 5 6 381/497 5 5 7 544/625

5 5 8 744/797 5 5 9 123/127

5 5 10 371/376 5 6 2 59/488

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

5 6 3 49/157 5 6 4 13/25

5 6 5 389/555 5 6 6 310/373

5 6 7 569/625 5 6 8 291/305

5 6 9 300/307 5 6 10 363/367

5 7 2 46/293 5 7 3 258/671

5 7 4 489/806 5 7 5 608/783

5 7 6 823/933 5 7 7 245/261

5 7 8 541/559 5 7 9 400/407

5 7 10 843/851 5 8 2 131/645

5 8 3 7/15 5 8 4 574/829

5 8 5 640/761 5 8 6 429/466

5 8 7 599/625 5 8 8 85/87

5 8 9 950/963 5 8 10 350/353

5 9 2 131/500 5 9 3 59/106

5 9 4 329/426 5 9 5 360/403

5 9 6 593/625 5 9 7 243/250

5 9 8 117/119 5 9 9 980/991

5 9 10 245/247 5 10 2 100/297

5 10 3 80/123 5 10 4 337/400

5 10 5 169/181 5 10 6 590/609

5 10 7 105/107 5 10 8 862/873

5 10 9 619/625 5 10 10 879/886

5 11 2 305/707 5 11 3 407/548

5 11 4 226/251 5 11 5 132/137

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

5 11 6 284/289 5 11 7 803/813

5 11 8 101/102 5 11 9 807/814

5 11 10 879/886 5 12 2 426/773

5 12 3 644/779 5 12 4 445/471

5 12 5 436/443 5 12 6 879/886

5 12 7 879/886 5 12 8 879/886

5 12 9 879/886 5 12 10 879/886

6 0 2 36/973 6 0 3 1/9

6 0 4 135/617 6 0 5 317/897

6 0 6 368/729 6 0 7 484/733

6 0 8 699/868 6 0 9 885/958

6 1 2 28/597 6 1 3 5/36

6 1 4 97/361 6 1 5 305/719

6 1 6 281/477 6 1 7 427/573

6 1 8 181/207 6 1 9 101/105

6 2 2 31/521 6 2 3 108/625

6 2 4 204/625 6 2 5 500/999

6 2 6 567/844 6 2 7 193/236

6 2 8 509/552 6 2 9 615/628

6 3 2 25/332 6 3 3 22/103

6 3 4 345/881 6 3 5 465/802

6 3 6 351/469 6 3 7 7/8

6 3 8 159/167 6 3 9 83/84

6 4 2 73/766 6 4 3 65/248

Continued on next page
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Table 7.1 – Continued from previous page

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

6 4 4 19/41 6 4 5 307/466

6 4 6 547/671 6 4 7 177/193

6 4 8 459/473 6 4 9 138/139

6 5 2 36/299 6 5 3 173/543

6 5 4 503/932 6 5 5 729/994

6 5 6 20/23 6 5 7 299/316

6 5 8 955/973 6 5 9 885/889

6 6 2 109/719 6 6 3 18/47

6 6 4 386/625 6 6 5 4/5

6 6 6 103/113 6 6 7 366/379

6 6 8 426/431 6 6 9 344/345

6 7 2 66/347 6 7 3 5/11

6 7 4 77/111 6 7 5 191/223

6 7 6 163/173 6 7 7 453/463

6 7 8 136/137 6 7 9 525/526

6 8 2 39/164 6 8 3 143/269

6 8 4 435/569 6 8 5 551/611

6 8 6 241/250 6 8 7 299/303

6 8 8 885/889 6 8 9 832/833

6 9 2 37/125 6 9 3 348/569

6 9 4 631/763 6 9 5 59/63

6 9 6 373/381 6 9 7 902/909

6 9 8 767/769 6 10 2 274/747

6 10 3 132/191 6 10 4 175/199
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

6 10 5 481/500 6 10 6 363/367

6 10 7 249/250 6 10 8 713/714

6 11 2 19/42 6 11 3 603/787

6 11 4 502/545 6 11 5 49/50

6 11 6 237/238 6 11 7 624/625

6 12 2 5/9 6 12 3 5/6

6 12 4 20/21 6 12 5 879/886

7 0 2 15/289 7 0 3 75/482

7 0 4 161/531 7 0 5 463/967

7 0 6 484/733 7 0 7 800/973

7 0 8 349/371 7 1 2 8/125

7 1 3 43/228 7 1 4 216/601

7 1 5 423/767 7 1 6 568/773

7 1 7 22/25 7 1 8 950/981

7 2 2 42/533 7 2 3 161/708

7 2 4 8/19 7 2 5 521/834

7 2 6 712/889 7 2 7 914/991

7 2 8 115/117 7 3 2 55/567

7 3 3 141/518 7 3 4 58/119

7 3 5 585/841 7 3 6 435/508

7 3 7 39/41 7 3 8 417/421

7 4 2 18/151 7 4 3 290/897

7 4 4 439/789 7 4 5 360/473

7 4 6 892/991 7 4 7 97/100
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

7 4 8 921/926 7 5 2 25/171

7 5 3 361/949 7 5 4 587/938

7 5 5 104/127 7 5 6 265/284

7 5 7 971/989 7 5 8 643/645

7 6 2 140/783 7 6 3 287/648

7 6 4 418/603 7 6 5 347/400

7 6 6 464/485 7 6 7 363/367

7 6 8 555/556 7 7 2 109/500

7 7 3 345/677 7 7 4 96/127

7 7 5 795/877 7 7 6 832/855

7 7 7 621/625 7 7 8 998/999

7 8 2 40/151 7 8 3 125/216

7 8 4 798/983 7 8 5 59/63

7 8 6 123/125 7 8 7 808/811

7 9 2 110/343 7 9 3 234/361

7 9 4 300/349 7 9 5 301/314

7 9 6 334/337 7 9 7 499/500

7 10 2 157/406 7 10 3 201/281

7 10 4 257/286 7 10 5 417/428

7 10 6 463/465 7 10 7 998/999

7 11 2 386/831 7 11 3 7/9

7 11 4 92/99 7 11 5 595/604

7 11 6 624/625 7 12 2 5/9

7 12 3 5/6 7 12 4 20/21
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

7 12 5 879/886 8 0 2 53/767

8 0 3 185/892 8 0 4 290/727

8 0 5 153/250 8 0 6 699/868

8 0 7 349/371 8 1 2 21/253

8 1 3 29/119 8 1 4 400/877

8 1 5 665/983 8 1 6 503/587

8 1 7 298/309 8 2 2 33/332

8 2 3 80/281 8 2 4 146/283

8 2 5 216/293 8 2 6 53/59

8 2 7 373/381 8 3 2 57/479

8 3 3 75/227 8 3 4 15/26

8 3 5 381/481 8 3 6 93/100

8 3 7 803/813 8 4 2 73/513

8 4 3 51/134 8 4 4 51/80

8 4 5 341/406 8 4 6 939/985

8 4 7 839/845 8 5 2 9/53

8 5 3 10/23 8 5 4 87/125

8 5 5 345/392 8 5 6 289/298

8 5 7 243/244 8 6 2 88/435

8 6 3 162/329 8 6 4 313/417

8 6 5 73/80 8 6 6 571/582

8 6 7 434/435 8 7 2 72/299

8 7 3 132/239 8 7 4 4/5

8 7 5 196/209 8 7 6 607/614
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

8 7 7 768/769 8 8 2 219/766

8 8 3 415/677 8 8 4 409/485

8 8 5 111/116 8 8 6 917/923

8 9 2 62/183 8 9 3 558/829

8 9 4 22/25 8 9 5 133/137

8 9 6 854/857 8 10 2 133/332

8 10 3 19/26 8 10 4 91/100

8 10 5 813/829 8 10 6 624/625

8 11 2 368/779 8 11 3 754/961

8 11 4 438/469 8 11 5 79/80

8 12 2 5/9 8 12 3 5/6

8 12 4 20/21 8 12 5 879/886

9 0 2 4/45 9 0 3 4/15

9 0 4 368/729 9 0 5 373/500

9 0 6 885/958 9 1 2 14/135

9 1 3 239/788 9 1 4 480/863

9 1 5 707/892 9 1 6 373/394

9 2 2 59/488 9 2 3 307/894

9 2 4 584/961 9 2 5 757/908

9 2 6 816/847 9 3 2 88/625

9 3 3 157/406 9 3 4 285/433

9 3 5 405/466 9 3 6 793/813

9 4 2 41/250 9 4 3 391/903

9 4 4 289/409 9 4 5 346/385
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

9 4 6 550/559 9 5 2 17/89

9 5 3 213/442 9 5 4 513/682

9 5 5 12/13 9 5 6 97/98

9 6 2 65/292 9 6 3 428/803

9 6 4 27/34 9 6 5 589/625

9 6 6 631/635 9 7 2 69/266

9 7 3 223/381 9 7 4 509/612

9 7 5 383/400 9 7 6 808/811

9 8 2 276/913 9 8 3 67/105

9 8 4 850/983 9 8 5 345/356

9 8 6 475/476 9 9 2 291/826

9 9 3 185/268 9 9 4 660/739

9 9 5 969/991 9 9 6 908/909

9 10 2 71/173 9 10 3 346/467

9 10 4 331/361 9 10 5 557/566

9 11 2 226/473 9 11 3 725/919

9 11 4 59/63 9 11 5 618/625

9 12 2 5/9 9 12 3 5/6

9 12 4 20/21 9 12 5 879/886

10 0 2 1/9 10 0 3 1/3

10 0 4 606/979 10 0 5 55/63

10 1 2 35/278 10 1 3 359/979

10 1 4 435/662 10 1 5 262/293

10 2 2 1/7 10 2 3 35/87
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

10 2 4 434/625 10 2 5 73/80

10 3 2 81/500 10 3 3 265/602

10 3 4 658/901 10 3 5 142/153

10 4 2 7/38 10 4 3 97/202

10 4 4 419/548 10 4 5 515/547

10 5 2 106/505 10 5 3 247/473

10 5 4 498/625 10 5 5 868/911

10 6 2 64/267 10 6 3 541/956

10 6 4 253/306 10 6 5 280/291

10 7 2 14/51 10 7 3 482/789

10 7 4 534/625 10 7 5 292/301

10 8 2 144/457 10 8 3 587/894

10 8 4 175/199 10 8 5 626/641

10 9 2 320/883 10 9 3 439/625

10 9 4 733/813 10 9 5 971/989

10 10 2 167/400 10 10 3 569/761

10 10 4 491/533 10 10 5 71/72

10 11 2 13/27 10 11 3 19/24

10 11 4 879/937 10 11 5 280/283

10 12 2 5/9 10 12 3 5/6

10 12 4 20/21 10 12 5 879/886
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Appendix 2: Survival Signature of System in Figure 4.9

The table in this appendix shows the survival signature of the complex system of Figure
4.9. The rows with survival signature values equal to either 1 or 0 have been omitted.

Table 7.2: Survival signature of a complex system in

Figure 4.9; rows with Φ(l1, l2, l3, l4, l5, l6) = 0 and

Φ(l1, l2, l3, l4, l5, l6) = 1 are omitted

l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)

3 1 0 [0,1] [0,1] 1 1/20

3 1 0 1 1 0 1/20

3 1 1 0 [0,1] 1 1/20

3 1 1 1 0 1 1/20

3 1 2 [0,1] 0 1 1/20

3 1 2 0 1 0 1/20

3 1 1 [0,1] 1 1 1/10

3 1 1 1 1 0 1/10

3 1 2 0 1 1 1/10

3 1 2 1 1 [0,1] 1/10

3 2 0 0 [0,1] 1 1/10

3 2 0 1 0 1 1/10

3 2 0 1 1 [0,1] 1/10

3 2 1 [0,1] 0 1 1/10

3 2 1 0 1 0 1/10

3 2 2 [0,1] 0 1 1/10

3 2 2 0 1 0 1/10

3 3 0 [0,1] [0,1] 1 3/20
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l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)

3 3 0 1 1 0 3/20

3 3 [1,2] [0,1] 0 1 3/20

3 3 1 0 1 0 3/20

3 3 2 0 1 0 3/20

3 4 0 [0,1] [0,1] 1 1/5

3 4 0 1 1 0 1/5

3 4 [1,2] [0,1] 0 1 1/5

3 4 1 0 1 0 1/5

3 4 2 0 1 0 1/5

4 1 0 [0,1] [0,1] 1 1/5

4 1 0 1 1 0 1/5

4 1 [1,2] [0,1] 0 1 1/5

4 1 1 0 1 0 1/5

4 1 2 0 1 0 1/5

3 2 [1,2] [0,1] 1 1 4/15

3 2 1 1 1 0 4/15

3 2 2 1 1 0 4/15

4 2 [0,1,2] [0,1] 0 1 11/30

4 2 0 0 1 1 11/30

4 2 0 1 1 [0,1] 11/30

4 2 1 0 1 0 11/30

4 2 2 0 1 0 11/30

3 [3,4] 1 [0,1] 1 1 2/5

3 3 1 1 1 0 2/5
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l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)

3 3 2 0 1 1 2/5

3 3 2 1 1 [0,1] 2/5

3 4 1 1 1 0 2/5

3 4 2 [0,1] 1 1 2/5

3 4 2 1 1 0 2/5

4 1 [1,2] [0,1] 1 1 2/5

4 1 [1,2] 1 1 0 2/5

4 3 0 [0,1] [0,1] 1 1/2

4 3 0 1 1 0 1/2

4 3 [1,2] [0,1] 0 1 1/2

4 3 1 0 1 0 1/2

4 3 2 0 1 0 1/2

5 1 0 [0,1] [0,1] 1 1/2

5 1 0 1 1 0 1/2

5 1 [1,2] [0,1] 0 1 1/2

5 1 1 0 1 0 1/2

5 1 2 0 1 0 1/2

4 4 0 [0,1] [0,1] 1 3/5

4 4 0 1 1 0 3/5

4 4 [1,2] [0,1] 0 1 3/5

4 4 1 0 1 0 3/5

4 4 2 0 1 0 3/5

4 2 [1,2] [0,1] 1 1 2/3

4 2 1 1 1 0 2/3
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l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)

4 2 2 1 1 0 2/3

4 3 [1,2] [0,1] 1 1 4/5

4 3 1 1 1 0 4/5

4 3 2 1 1 0 4/5

4 4 [1,2] [0,1] 1 1 4/5

4 4 1 1 1 0 4/5

4 4 2 1 1 0 4/5

5 2 0 [0,1] [0,1] 1 5/6

5 2 0 1 1 0 5/6

5 2 [1,2] [0,1] 0 1 5/6

5 2 [1,2] 0 1 0 5/6

Appendix 3: Values of P (f1, f2, f3, f4) and Φ(l1, l2, l3, l4) of

Case 1 in Chapter 6

Table 7.3: Values of P (f1, f2, f3, f4) and their corresponding

survival signature Φ(l1, l2, l3, l4), note that fi = mi − li

P (f1, f2, f3, f4) Φ(l1, l2, l3, l4) P (f1, f2, f3, f4) Φ(l1, l2, l3, l4)

P (1, 1, 1, 1) = 1
48

Φ(2, 3, 2, 3) = 41
48

P (1, 1, 1, 2) = 1
48

Φ(2, 3, 2, 2) = 19
24

P (1, 1, 1, 3) = 1
144

Φ(2, 3, 2, 1) = 35
48

P (1, 1, 1, 4) = 1
144

Φ(2, 3, 2, 0) = 2
3

P (1, 1, 2, 1) = 1
96

Φ(2, 3, 1, 3) = 41
48

P (1, 1, 2, 2) = 1
96

Φ(2, 3, 1, 2) = 107
144
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P (f1, f2, f3, f4) Φ(l1, l2, l3, l4) P (f1, f2, f3, f4) Φ(l1, l2, l3, l4)

P (1, 1, 2, 3) = 1
288

Φ(2, 3, 1, 1) = 19
32

P (1, 1, 2, 4) = 1
288

Φ(2, 3, 1, 0) = 5
12

P (1, 2, 1, 1) = 1
96

Φ(2, 2, 2, 3) = 17
24

P (1, 2, 1, 2) = 1
96

Φ(2, 2, 2, 2) = 16
27

P (1, 2, 1, 3) = 1
288

Φ(2, 2, 2, 1) = 35
72

P (1, 2, 1, 4) = 1
288

Φ(2, 2, 2, 0) = 7
18

P (1, 2, 2, 1) = 1
192

Φ(2, 2, 1, 3) = 49
72

P (1, 2, 2, 2) = 1
192

Φ(2, 2, 1, 2) = 14
27

P (1, 2, 2, 3) = 1
576

Φ(2, 2, 1, 1) = 49
144

P (1, 2, 2, 4) = 1
576

Φ(2, 2, 1, 0) = 1
6

P (1, 3, 1, 1) = 1
96

Φ(2, 1, 2, 3) = 9
16

P (1, 3, 1, 2) = 1
96

Φ(2, 1, 2, 2) = 29
72

P (1, 3, 1, 3) = 1
288

Φ(2, 1, 2, 1) = 13
48

P (1, 3, 1, 4) = 1
288

Φ(2, 1, 2, 0) = 1
6

P (1, 3, 2, 1) = 1
192

Φ(2, 1, 1, 3) = 1
2

P (1, 3, 2, 2) = 1
192

Φ(2, 1, 1, 2) = 23
72

P (1, 3, 2, 3) = 1
576

Φ(2, 1, 1, 1) = 5
32

P (1, 3, 2, 4) = 1
576

Φ(2, 1, 1, 0) = 1
24

P (1, 4, 1, 1) = 1
48

Φ(2, 0, 2, 3) = 5
12

P (1, 4, 1, 2) = 1
48

Φ(2, 0, 2, 2) = 2
9

P (1, 4, 1, 3) = 1
48

Φ(2, 0, 2, 1) = 1
12

P (1, 4, 1, 4) = 1
48

Φ(2, 0, 2, 0) = 0

P (1, 4, 2, 1) = 1
96

Φ(2, 0, 1, 3) = 1
3

P (1, 4, 2, 2) = 1
96

Φ(2, 0, 1, 2) = 1
6

P (1, 4, 2, 3) = 1
96

Φ(2, 0, 1, 1) = 1
24

P (1, 4, 2, 4) = 1
96

Φ(2, 0, 1, 0) = 0

P (2, 1, 1, 1) = 1
24

Φ(1, 3, 2, 3) = 37
48

P (2, 1, 1, 2) = 1
24

Φ(1, 3, 2, 2) = 17
24

P (2, 1, 1, 3) = 1
72

Φ(1, 3, 2, 1) = 31
48

P (2, 1, 1, 4) = 1
72

Φ(1, 3, 2, 0) = 7
12

P (2, 1, 2, 1) = 1
48

Φ(1, 3, 1, 3) = 37
48

P (2, 1, 2, 2) = 1
48

Φ(1, 3, 1, 2) = 23
36

P (2, 1, 2, 3) = 1
144

Φ(1, 3, 1, 1) = 11
24

P (2, 1, 2, 4) = 1
144

Φ(1, 3, 1, 0) = 1
4

P (2, 2, 1, 1) = 1
48

Φ(1, 2, 2, 3) = 13
24

P (2, 2, 1, 2) = 1
48

Φ(1, 2, 2, 2) = 47
108

P (2, 2, 1, 3) = 1
144

Φ(1, 2, 2, 1) = 25
72

P (2, 2, 1, 4) = 1
144

Φ(1, 2, 2, 0) = 5
18

P (2, 2, 2, 1) = 1
96

Φ(1, 2, 1, 3) = 35
72

P (2, 2, 2, 2) = 1
96

Φ(1, 2, 1, 2) = 71
216

P (2, 2, 2, 3) = 1
288

Φ(1, 2, 1, 1) = 13
72

P (2, 2, 2, 4) = 1
288

Φ(1, 2, 1, 0) = 1
18

P (2, 3, 1, 1) = 1
48

Φ(1, 1, 2, 3) = 1
3

P (2, 3, 1, 2) = 1
48

Φ(1, 1, 2, 2) = 5
24

P (2, 3, 1, 3) = 1
144

Φ(1, 1, 2, 1) = 1
8

P (2, 3, 1, 4) = 1
144

Φ(1, 1, 2, 0) = 1
12

P (2, 3, 2, 1) = 1
96

Φ(1, 1, 1, 3) = 1
4

P (2, 3, 2, 2) = 1
96

Φ(1, 1, 1, 2) = 17
144
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P (f1, f2, f3, f4) Φ(l1, l2, l3, l4) P (f1, f2, f3, f4) Φ(l1, l2, l3, l4)

P (2, 3, 2, 3) = 1
288

Φ(1, 1, 1, 1) = 1
24

P (2, 3, 2, 4) = 1
288

Φ(1, 1, 1, 0) = 0

P (2, 4, 1, 1) = 1
24

Φ(1, 0, 2, 3) = 1
6

P (2, 4, 1, 2) = 1
24

Φ(1, 0, 2, 2) = 1
18

P (2, 4, 1, 3) = 1
72

Φ(1, 0, 2, 1) = 0 P (2, 4, 1, 4) = 1
72

Φ(1, 0, 2, 0) = 0

P (2, 4, 2, 1) = 1
48

Φ(1, 0, 1, 3) = 1
12

P (2, 4, 2, 2) = 1
48

Φ(1, 0, 1, 2) = 0

P (2, 4, 2, 3) = 1
144

Φ(1, 0, 1, 1) = 0 P (2, 4, 2, 4) = 1
144

Φ(1, 0, 1, 0) = 0

P (3, 1, 1, 1) = 1
48

Φ(0, 3, 2, 3) = 11
16

P (3, 1, 1, 2) = 1
48

Φ(0, 3, 2, 2) = 5
8

P (3, 1, 1, 3) = 1
144

Φ(0, 3, 2, 1) = 9
16

P (3, 1, 1, 4) = 1
144

Φ(0, 3, 2, 0) = 1
2

P (3, 1, 2, 1) = 1
96

Φ(0, 3, 1, 3) = 11
16

P (3, 1, 2, 2) = 1
96

Φ(0, 3, 1, 2) = 13
24

P (3, 1, 2, 3) = 1
288

Φ(0, 3, 1, 1) = 11
32

P (3, 1, 2, 4) = 1
288

Φ(0, 3, 1, 0) = 1
8

P (3, 2, 1, 1) = 1
96

Φ(0, 2, 2, 3) = 3
8

P (3, 2, 1, 2) = 1
96

Φ(0, 2, 2, 2) = 5
18

P (3, 2, 1, 3) = 1
288

Φ(0, 2, 2, 1) = 5
24

P (3, 2, 1, 4) = 1
288

Φ(0, 2, 2, 0) = 1
6

P (3, 2, 2, 1) = 1
192

Φ(0, 2, 1, 3) = 7
24

P (3, 2, 2, 2) = 1
192

Φ(0, 2, 1, 2) = 11
72

P (3, 2, 2, 3) = 1
576

Φ(0, 2, 1, 1) = 1
16

P (3, 2, 2, 4) = 1
576

Φ(0, 2, 1, 0) = 0

P (3, 3, 1, 1) = 1
96

Φ(0, 1, 2, 3) = 1
8

P (3, 3, 1, 2) = 1
96

Φ(0, 1, 2, 2) = 1
24

P (3, 3, 1, 3) = 1
288

Φ(0, 1, 2, 1) = 0 P (3, 3, 1, 4) = 1
288

Φ(0, 1, 2, 0) = 0

P (3, 3, 2, 1) = 1
192

Φ(0, 1, 1, 3) = 1
16

P (3, 3, 2, 2) = 1
192

Φ(0, 1, 1, 2) = 0

P (3, 3, 2, 3) = 1
576

Φ(0, 1, 1, 1) = 0 P (3, 3, 2, 4) = 1
576

Φ(0, 1, 1, 0) = 0

P (3, 4, 1, 1) = 1
48

Φ(0, 0, 2, 3) = 0 P (3, 4, 1, 2) = 1
48

Φ(0, 0, 2, 2) = 0

P (3, 4, 1, 3) = 1
144

Φ(0, 0, 2, 1) = 0 P (3, 4, 1, 4) = 1
144

Φ(0, 0, 2, 0) = 0

P (3, 4, 2, 1) = 1
96

Φ(0, 0, 1, 3) = 0 P (3, 4, 2, 2) = 1
96

Φ(0, 0, 1, 2) = 0

P (3, 4, 2, 3) = 1
288

Φ(0, 0, 1, 1) = 0 P (3, 4, 2, 4) = 1
288

Φ(0, 0, 1, 0) = 0

Appendix 4: Past Data of System in Figure 6.1

132



Table 7.4: Past data nj1j2j3j4 on the system in Figure 6.1

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4

n0001 = 1 n0002 = 1 n0003 = 1 n0004 = 1 n0010 = 1 n0011 = 1

n0012 = 1 n0013 = 1 n0014 = 1 n0020 = 1 n0021 = 1 n0022 = 1

n0023 = 1 n0024 = 1 n0100 = 1 n0101 = 1 n0102 = 3 n0103 = 1

n0104 = 1 n0110 = 1 n0111 = 1 n0112 = 1 n0113 = 1 n0114 = 1

n0120 = 1 n0121 = 1 n0122 = 1 n0123 = 1 n0124 = 2 n0200 = 1

n0201 = 1 n0202 = 1 n0203 = 1 n0204 = 1 n0210 = 1 n0211 = 2

n0212 = 1 n0213 = 1 n0214 = 1 n0220 = 1 n0221 = 1 n0222 = 1

n0223 = 1 n0224 = 1 n0300 = 1 n0301 = 1 n0302 = 1 n0303 = 1

n0304 = 1 n0310 = 2 n0311 = 2 n0312 = 1 n0313 = 1 n0314 = 1

n0320 = 1 n0321 = 1 n0322 = 1 n0323 = 1 n0324 = 1 n0400 = 1

n0401 = 1 n0402 = 1 n0403 = 1 n0404 = 1 n0410 = 1 n0411 = 2

n0412 = 1 n0413 = 1 n0414 = 1 n0420 = 1 n0421 = 1 n0422 = 1

n0423 = 1 n0424 = 1 n1000 = 1 n1001 = 1 n1002 = 1 n1003 = 1

n1004 = 1 n1010 = 1 n1011 = 1 n1012 = 2 n1013 = 1 n1014 = 1

n1020 = 1 n1021 = 1 n1022 = 1 n1023 = 1 n1024 = 1 n1100 = 1

n1101 = 1 n1102 = 1 n1103 = 2 n1104 = 1 n1110 = 2 n1111 = 1

n1112 = 1 n1113 = 1 n1114 = 1 n1120 = 1 n1121 = 1 n1122 = 1

n1123 = 1 n1124 = 1 n1200 = 1 n1201 = 2 n1202 = 1 n1203 = 1

n1204 = 1 n1210 = 1 n1211 = 1 n1212 = 1 n1213 = 1 n1214 = 1

n1220 = 1 n1221 = 3 n1222 = 2 n1223 = 1 n1224 = 1 n1300 = 1

n1301 = 1 n1302 = 1 n1303 = 1 n1304 = 1 n1310 = 1 n1311 = 3

n1312 = 1 n1313 = 1 n1314 = 1 n1320 = 1 n1321 = 1 n1322 = 1

n1323 = 1 n1324 = 1 n1400 = 1 n1401 = 1 n1402 = 1 n1403 = 1
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Table 7.4 – Continued from previous page

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4

n1404 = 2 n1410 = 4 n1411 = 1 n1412 = 1 n1413 = 1 n1414 = 1

n1420 = 1 n1421 = 1 n1422 = 1 n1423 = 1 n1424 = 1 n2000 = 1

n2001 = 1 n2002 = 1 n2003 = 1 n2004 = 1 n2010 = 3 n2011 = 1

n2012 = 1 n2013 = 1 n2014 = 1 n2020 = 1 n2021 = 1 n2022 = 1

n2023 = 2 n2024 = 1 n2100 = 1 n2101 = 1 n2102 = 1 n2103 = 2

n2104 = 1 n2110 = 1 n2111 = 1 n2112 = 1 n2113 = 1 n2114 = 1

n2120 = 1 n2121 = 1 n2122 = 1 n2123 = 1 n2124 = 1 n2200 = 1

n2201 = 2 n2202 = 1 n2203 = 1 n2204 = 1 n2210 = 1 n2211 = 1

n2212 = 1 n2213 = 1 n2214 = 1 n2220 = 1 n2221 = 2 n2222 = 1

n2223 = 1 n2224 = 3 n2300 = 1 n2301 = 1 n2302 = 1 n2303 = 1

n2304 = 1 n2310 = 1 n2311 = 1 n2312 = 1 n2313 = 1 n2314 = 1

n2320 = 1 n2321 = 1 n2322 = 1 n2323 = 1 n2324 = 1 n2400 = 1

n2401 = 1 n2402 = 2 n2403 = 1 n2404 = 1 n2410 = 1 n2411 = 1

n2412 = 1 n2413 = 1 n2414 = 1 n2420 = 1 n2421 = 1 n2422 = 1

n2423 = 1 n2424 = 1 n3000 = 2 n3001 = 1 n3002 = 2 n3003 = 1

n3004 = 1 n3010 = 1 n3011 = 1 n3012 = 1 n3013 = 1 n3014 = 1

n3020 = 1 n3021 = 1 n3022 = 1 n3023 = 3 n3024 = 1 n3100 = 1

n3101 = 1 n3102 = 1 n3103 = 1 n3104 = 1 n3110 = 1 n3111 = 1

n3112 = 2 n3113 = 1 n3114 = 1 n3120 = 1 n3121 = 1 n3122 = 1

n3123 = 1 n3124 = 1 n3200 = 1 n3201 = 1 n3202 = 1 n3203 = 1

n3204 = 1 n3210 = 1 n3211 = 3 n3212 = 1 n3213 = 1 n3214 = 1

n3220 = 1 n3221 = 1 n3222 = 2 n3223 = 1 n3224 = 1 n3300 = 1

n3301 = 1 n3302 = 1 n3303 = 1 n3304 = 2 n3310 = 1 n3311 = 1

n3312 = 1 n3313 = 1 n3314 = 3 n3320 = 1 n3321 = 1 n3322 = 1

Continued on next page
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Table 7.4 – Continued from previous page

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4

n3323 = 2 n3324 = 2 n3400 = 1 n3401 = 1 n3402 = 1 n3403 = 2

n3404 = 1 n3410 = 3 n3411 = 1 n3412 = 1 n3413 = 1 n3414 = 1

n3420 = 1 n3421 = 1 n3422 = 1 n3423 = 1 n3424 = 1
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