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Summary 

The normal location problem, selecting the population with the largest mean, has been 
investigated from the 1950's on, initiated by Bechhofer and Gupta. They published two 
procedures, now considered as standard approaches. In this Master's Thesis we look again 
at the location problem, assuming normally indepent distributed populations with common 
known variances and propose a procedure that can be regarded as a generalization of the 
former two procedures. We combine both of them, by introducing a so-called preference 
threshold. In fact, the procedure we propose is a subset selection approach with an addi­
tional requirement, related to Bechhofer's approach. Whereas Bechhofer selects only the 
population corresponding to the largest sample sum, we determine a distance c and sample 
size n and select all populations in a selected subset of populations that have sample sums 
within this distance from the largest sample sum. We believe this is a procedure more 
in accordance with intuition: in Bechhofer's method we choose only the population with 
the largest sample sum, also if the difference to the second-largest is only very small, in 
our procedure we select a single population as the best one, only if its sample sum has a 
difference of at least c to the second-largest. The values for c and n are determined using 
the two requirements; selecting the actual best population in the subset with at least a cer­
tain probability and selecting the actual best population alone with a certain probability. 
In the thesis we consider several aspects of the proposed procedure. We generalize the 
procedure for the selection of t best populations, we consider the expected subset size 
and pay attention to the probability of a correct selection given that one population is 
selected. Also, departures from the assumption of common known variance is investigated 
and a Bayesian data analysis method is studied. Simulation studies illustrate features of 
the procedure and they show good results for the preference threshold procedure. 
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Samenvatting 

De selectie van de populatie met het grootste gemiddelde uit een aantal normaal verdeelde 
populaties is onderzocht sinds 1950, aangezet door het werk van Bechhofer en Gupta. 
Zij publiceerden twee procedures die nu bekend zijn als standaard aanpakken. In mijn 
afstudeerverslag bekijken we opnieuw dit zogenoemde locatie-probleem, onder de aan­
name van normaal onafhankelijk verdeelde populaties met dezelfde bekende variantie en 
we steilen een procedure voor die als een generalisatie van de twee standaard procedures 
kan worden beschouwd. We combineren beide door middel van de introductie van een 
zogenoemde voorkeursdrempel. In feite is de procedure die wij voorsteilen een 'subset 
selection' benadering met een extra eis, die gerelateerd is aan Bechhofer's methode. Terwijl 
Bechhofer aileen de populatie selecteert die met de grootste steekproefsom overeenkomt, 
bepalen wij een afstand c en steekproefgrootte n en selecteren aile populaties in de geselec­
teerde deelverzameling die een steekproefsom hebben binnen deze afstand c van de grootste 
steekproefsom. Volgens ons is deze procedure meer in overeenstemming met de intui"tie: in 
Bechhofer's procedure kiezen we aileen de populatie met de grootste steekproefsom, ook 
als het verschil met de tweede grootste maar heel klein is, in onze procedure selecteren 
we slechts een enkele populatie als de enige beste als zijn steekproefsom ten minste een 
verschil heeft van c tot de tweede grootste steekproefsom. De waarden van n en c worden 
bepaald aan de hand van twee eisenj de selectie van de echte beste populatie in de gese­
lecteerde deelverzameling met ten minste een bepaalde kans en de selectie van de echte 
beste populatie aileen met ten minste een bepaalde kans. In het afstudeerverslag bekijken 
we verschillende aspect en van de voorgestelde procedure. We generaliseren de procedure 
tot de selectie van t beste populaties, we bekijken de verwachte grootte van de deelverza­
meling en we besteden aandacht aan de kans op een correcte selectie gegeven dat er een 
populatie is geselecteerd. Ook onderzoeken we afwijkingen van de aanname van dezelfde 
bekende variantie en we bestuderen een Bayesian data analyse methode. Simulaties illus­
treren bepaalde eigenschappen van de procedure en ze laten goede resultaten zien voor de 
'preference threshold procedure'. 
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Chapter 1 

Introd uction 

Choosing among several alternatives is a problem which occurs often in practical situtations. 
Of course, we are usually interested in selecting the best alternative, in some well-defined 
sense of 'best'. For example, if we have k different kinds of drugs to cure a certain dis­
ease, we want to choose the most effective one (e.g. the one that cures in the shortest 
period of time) and this can be measured by a random variable that can be modelled by 
some parameter ()j for the jth drug. Generalized, we have k (k ~ 2) populations that are 
modelled by some parameter () and we want to choose the best one of them. An often 
used classical procedure is to test the null-hypothesis that all k parameters have the same 
value (the homogeneity hypothesis). In practice, this is a very unrealistic situation. The 
alternative is usually that the k populations do not all have equal () values, which is very 
likely to be the actual situation. A researcher is usually not satisfied when rejecting Ho, 
but, for example, wants to know which population can be considered to be the best. For 
this purpose, ranking and selection procedures are specifically designed. 

In this thesis we will regard the problem of selecting the best population out of k inde­
pendent normally distributed populations with unknown means and common known vari­
ance. The 'best' population is defined to be the one having the largest mean. Particularly 
Bechhofer [1] and Gupta [18] (before this publication already in his Ph.D. thesis [17]) have 
made valuable contributions to the development of procedures to tackle the selection prob­
lem. Their works can be considered as two basic approaches. 

Bechhofer introduced the concept of an indifference and preference zone, arguing that 
if the best means of the k populations are close to each other we are indifferent about 
which one we choose and if the difference between the best mean and second-best mean is 
at least a certain value 8*(> 0) (a situation referred to as being in the preference zone), we 
want to make a Correct Selection (selecting the best population) with at probability at 
least p". This method is usually referred to as the indifference zone selection approach. 
In order to select the best population, Bechhofer's procedure consists of taking a sample 
of size n of all k populations, calculating the k sample means and selecting the one with 
the largest sample mean. The observations are assumed to be distributed like N(fLi, (72). 
This assumption is made to prevent the calculations from being too complex, however 
also different distributed observations have been studied. It should be noted here that the 
(common) sample size n depends on 8*, k, (72 and P*, where (72 is the common variance 
for the populations. The greater the value for P*, the larger n must be to satisfy the 
probability requirement. Bechhofer's approach explicitly aims at determining sample size 
n, so it is useful in the design stage of a selection experiment. 

Gupta's procedure [18] is known as the subset selection approach. Gupta proposed to 
select a subset of the k populations, as small as possible, that contains the best population 
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with probability of at least P*. The procedure is to calculate the sample means and select 
all those populations in the subset that are within a certain distance from the maximum of 
the sample means. A major difference with Bechhofer's procedure is that Gupta can apply 
his selection criterion after the sampling has been done, there is no requirement for the 
sample size n, although you usually have to pay for small sample sizes with large selected 
subsets. 

In this thesis we aim at a generalization of the existing procedures by integrating the 
two just introduced basic approaches. The design of the procedure should aim at specifying 
a minimum required sample size n to achieve certain requirements, corresponding to the 
standard indifference zone approach. The assumption Bechhofer makes by dividing the 
parameter space into a preference and indifference zone seems acceptable, for if the Ie pop­
ulations all have the same value there isn't any selection problem, and so it is reasonable 
to assume a minimum difference 6*(> 0) between the two largest means. For this reason we 
will hold on to this assumption and also assume this for the part of our procedure which 
corresponds to Gupta's approach although in the standard subset approach all means are 
allowed to be equal. The choice of a reasonable value for the minimum difference 6* re­
mains a problem. For this choice we have to rely on expert opinions and other information. 

However, for the standard indifference zone procedure another unsatisfactory feature 
arises. Let us suppose we meet an owner of a chicken farm who wants us to select, between 
four different strains, the one with the largest egg production. We take samples according 
to a specified plan following Bechhofer's approach and we find values for the sample means 
like: the first strain results in 250.3 eggs per pUllet housed, the second 254.7, the third 
278.4 and the fourth 278.1. Now, using Bechhofer's procedure we would select population 
(strain) three as being the best one, ignoring the fact that population four produced only 
a slightly smaller sample mean. It will be a though job to convince the farmer that strain 
3 is really better than strain 4. This is a decision where intuition may not approve with at 
a high confidence level. The data we used is based on a study by Becker [3] on selecting 
between chicken stocks. The data has been manipulated to show the point. 

To deal with this unsatisfactory feature of Bechhofer's procedure we generalize the stan­
dard indifference zone approach by introducing a minimal distance c (c 2: 0), the preference 
threshold value, which should be specified in the design stage. Coolen and Van der Laan 
[121 have studied this generalization providing a new foundational argument for a positive 
c. For the design of the experiment we need to specify two values, nand c, so we also need 
two requirements. Coolen and Van der Laan use one requirement similar to Bechhofer's 
P* requirement, that is selecting the best one with at least probability P*, and their sec­
ond requirement is related to the probability of a False Selection, P(FS), the selection of 
a single but non-best population. Their rule is to select the population with the largest 
sample sum if the difference to the other sample sums exceeds threshold c. This is what 
they call a strong preference. If the difference is smaller than c they do not make a selection. 

In this thesis we propose to select the population with the largest sample sum alone if 
the difference to the second-largest sample sum exceeds the threshold value c. We can call 
this a strong preference for this population. In case the difference between the largest and 
next-ta-Iargest sample sums does not exceed c, we propose to select all populations that 
have a sample sum with distance c or less to the maximum sample sum. The value of c 
is dependent on the value of the sample size n. Bechhofer's and Gupta's basic approaches 
will be described in more detail in chapter 2, together with a brief description of some 
other approaches. 

In this thesis several aspects of selection procedures will be discussed. The problem of 
selection has been introduced in this introduction and some basic approaches to deal with 
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selection problems will be considered in chapter 2. In chapter 3 the selection procedure that 
we propose is introduced and the basic features of the procedure are considered. Further 
analysis on our procedure is presented in chapter 4. The robustness of our procedure with 
regard to the assumption of known variances is considered in chapter 5. In chapter 6 we 
briefly consider a Bayesian data-analytic approach. To illustrate our procedure and to 
compare it to other procedures we report the results of a number of simulations in chapter 
7. Finally, in chapter 8 some suggestions for future research will be discussed. 
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Chapter 2 

Statistical Selection 

2.1 Bechhofer's indifference zone approach 

Bechhofer [1] introduces a procedure to select a single 'best' population out of k popula­
tions, in some well-defined sense of 'best'. Throughout this thesis we will denote random 
variables in capitals and their realized observations in small letters. Hence, we denote the 
jth observation taken from population i by Yij (i = 1, ... , k) and we assume all populations 
to be independent normally distributed with unknown means and common known variance 
0'2 (> 0), so Y;j "" N(ft;, 0'2). The sample sizes are all equal to n, where n is to be determined. 
We can rank the means like 

ft[l] :5 ft[2] :5 ... :5 ft[k]· (2.1) 

The goal is to select the population with mean ft[k] , the actual best mean. The sample 
means are denoted by (i = 1, ... , k) 

1 n 

Yi = - 2::::: Y,j 
n j=l 

(2.2) 

and we have t '" N(fti, u.:). The population with mean ft[,] is denoted by 1T'(i) with related 
n 

sample mean, Yei) and sample sum, L Yci)j which is distributed like N(nft[i] , n0'2) 
j=l 

(i = 1, ... , k). The procedure is to take a sample of size n from each of the k populations, 
to calculate the k sample sums and to assert that the one with the largest sample sum is 
the best population. This rule will be referred to as RB. Bechhofer uses the sample means 
as response variable but that is essentially the same, because of the fixed sample size. The 
probability of making a Correct Selection in this approach (eBB), that is selecting the best 
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population, 1r(k), is (analogous to [1]) 

n n 

P(CSBI RB) = P("y(k)j > ~ax "y(i)j) L.J l<t<k-l ~ 
j=l - - 1=1 

= P(nY(;) < nY(k); i 1, ... , k - 1) 
00 

= J P(nY(i) < Y; i 1, ... , k l)dP(nY(k)::; y) 
-00 

00 k-l 

= J II [<1>( Y - nJ.![i))] d<1>( y - nJ.![k] ) 
. Vn(J' Vn(J' 

-00 .=1 

00 k-l 

= J II [<1>(Z + nJ.![k] nJ.![;])] d<1>(z). 
>=1 Vn(J' 

-00 

(2.3) 

In this derivation and throughout the thesis we will denote the standard normal cumulative 
distribution by <1>(.) and its derivative the standard normal density function by .p(.). Bech­
hofer divides the complete parameter space, n, 

n = {J.! : J.! = (J.!1, ... , J.!k), J.!i E ]R, i = 1, ... , k} (2.4) 

in the indifference zone, where we are indifferent about a correct selection because the 
difference between the largest and second-largest mean is less than a chosen value 0*(> 0), 
and the preference zone, where this difference is at least 0*. Thus we have 

n(o*) = {J.! E n 1J.![k) - J.![k-l] ~ 6*} (2.5) 

is the preference zone and the indifference zone is the complement ofthis: ]Rk \ n(6*). The 
requirement imposed on the probability of a correct selection, P(CSB), for J.! E n(6*) is 

lnf P(CSB I RB) > P*, 
n(.o) -

(2.6) 

where 0* > 0 and P* E (t, 1) are to be specified, and we want to obtain the smallest common 
sample size n for which the probability requirement is satisfied. Smaller sample sizes is 
usually more economical in time and money. Of course, P* should be larger than 11k, 
because you can achieve that probability by just picking one populationwithout further 
observations. The infimum of P(CSB I RB) over n(o*) is attained for the Least Favourable 
Configuration (LFC) , the parameter configuration for which the value of the infimum over 
n(o*) is actually attained. This LFC is [1] (and also more generally studied by Bofinger 
[7]) 

J.![1] = ... = J.![k-l] J.![k] - 0* (2.7) 

and the configuration will be referred to as J.!LFC(oO). The probability of a correct selection 
for this least favourable configuration is equal to (using result (2.3)) 

00 

= J <1>k-l(z + ~:)d<1>(Z) (2.8) 
-00 
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and this leads to the P* requirement 

00 J <fIk-l(z + TB)d<fl(z) = P* (2.9) 
-00 

where 

Vno* 
TB= --. 

U 
(2.10) 

Values for TB have been tabulated for different k,o* and P* values, in for example [1]. 
The table we provide in appendix C.1 also gives the appropriate values of TB. Using these 
values we get the minimum required value for n to satisfy (2.9), determined by 

_ (UTB)2 n- . 
0* 

(2.11) 

If this value is not an integer, the minimum required sample size n is derived by taking the 
nearest higher integer value, for which the probability P(GSB) will not be less than P*. 

2.2 Gupta's subset selection 

The essential difference between Bechhofer's indifference zone approach and the second 
basic approach by Gupta, that we introduce here, is that in Gupta's approach the sample 
size is assumed to be given and it is not considered an explicit goal to determine an optimal 
sample size. Gupta worked on this problem in 1956 as part of his Ph.D. thesis [17], but an 
article about it only appeared in 1965. This section is based on the latter article. Using 
the same notation as in section 2.1, Gupta's rule [18] can be described as: select the ith 
population if and only if 

n n 

"Yi' > max" YI' - d L..J J - 1<I<k L..J J , 
j=1 - - j=l 

(d> 0). (2.12) 

Note that we again use the sample sum as response variable, whereas Gupta used the 
sample means, but due to the fixed sample sizes this is in fact the same. We refer to this 
rule as Ra. A Correct Selection for this subset selection approach occurs when a subset 
is selected, that includes the best population '1r(k)' To distinguish this correct selection 
from Bechhofer's definition of a correct selection, we denote Gupta's Correct Selection by 
GSa. The goal in the design is to determine distance d to achieve a certain probability 
requirement. The probability of a GSa is [18] 

n n 

P(GSa IRa) = P(Ly(k)j ~ 1 <rrtr-l Ly(i)j - d) 
j=1 - - j=l 

= P(nY(i) ::; nY(k) + d; i = 1, ... , k - 1) 
00 

= J P(nY(i)::; Y + d; i = 1, ... , k - l)dP(nY(k) ::; y) 
-00 

00 k-l 
= J II [<fI( Y + d - nfl[i])] d<fl( Y - nfl[k j ) 

. Vnu Vnu 
-00 .=1 

00 k-l 
= J II [<fI(z + d + nfl[k] - nfl[i])] d<fl(z). 

. Vnu 
-00 .=1 

(2.13) 
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From (2.13), because of the normal distribution function being monotonously increasing 
and the ordering of the means, fL[l) ~ fL[2) ~ ..• ~ fL[k], we see that the Least Favourable 
Configuration is taken when fL[l] = fL[2J = ... = fL[k] [18] and we have 

00 

Inf P(CSG I RG) = J cPk-1(z + ; )dcP(z), 
o ynu 

(2.14) 
-00 

where n is again the space defined by (2.4). Thus if we want to make a correct selection 
with probability P* E (11k, 1), the probability requirement becomes 

00 J cPk-1(Z+ 'TG)dcP(z) = r, 
-00 

where 

2.3 Sequential selection 

d 
'TG = ynu' 

(2.15) 

(2.16) 

One can distinguish two different basic ideas of selection procedures. There are the 
procedures we have considered before, designing an experiment by calculating the re­
quired sample size or taking a fixed sample size, take the samples and make a statement. 
Another way is to take observations of each population one by one (or batchwise) and after 
each stage try to make a statement or continue taking observations. These procedures are 
called sequential procedures. The big advantage of a sequential selection procedure above 
the non-sequential ones, is that you can avoid taking samples from populations that are 
obviously worse than at least one of the other populations, by eliminating them in an 
early stage and hence you can economize on the total number of samples to be taken. In 
practice, this means saving resources, money or time. Sequential procedures are especially 
applicable in flow-production situations etc .. However, we must realize that this is not 
always possible, because in some situations you have to work with a design. For example, 
if we want to select the best variety of potatoes, we have to plant a certain number of 
plants and this has to be large enough in order to make the required statement after the 
experiment, which will typically take some months. 

In this section we take a look at a sequential selection procedure as proposed by Coolen 
[11], which is an adaption of the plan by Hoel and Mazumdar [21], and we will compare 
the sequential procedure in chapter 7 to the preference threshold procedure. The problem 
is again to find the best population (the one with the largest mean) among k independent 
normally distributed populations with common known variance u 2 and unknown means 
fl.. Dividing the parameter space into the indifference and preference zone, the sequential 
procedure has to select the best population with probability of at least 1 - a when the 
difference between the largest and second-largest mean is larger than 8*, so 

Inf P(CS) > 1 - a. 
0(0*) -

(2.17) 

Of course, a is restricted to a E (0,1 11k), for obvious reasons. If we take p. = 1 a we 
achieve the same probability requirement as for the standard indifference zone approach. 
The sequential selection rule, RHq , is described as follows. First, we need a stopping 
boundary, which is defined as 

u2 (k - 1 - a) 
g = FIn 1- a . (2.18) 

16 



To start, we take one observation from each population, obtaining observations (Yll, ... , Ykl). 
Then any population 7ri for which 

Yti < max{Yll, ... , YkI} - 9 

is eliminated. If only a single population is not eliminated, that population is selected as 
the best one and the experiment is terminated. If not, we take a second observation from 
all remaining populations. In general, in the nth stage of the experiment (n = 2,3, ... ) we 
take one observation from each population not eliminated before or at stage n - 1 and we 
eliminate any remaining population 7ri for which 

n n 

LYi; < m,!l'x{LYr;} - 9 
;=1 i=l 

where the maximum is taken over all populations that are still in the experiment. The 
experiment stops at the first moment that only a single population is left, which is then 
selected as the best one. This procedure is called an open sequential procedure, that is it 
has no upperbound for the maximum number of stages needed before selection of a single 
population. However, the sequential procedure terminates with probability one. Indeed 
this procedure selects the best population with probability of at least (1 - a) as Coolen 
shows in [11] using the theory of Brownian Motion Processes. It is to be remarked that 
(1 a) is an actual lower bound of the probability of correct selection in this procedure 
and there are no non-trivial cases known in which this lower bound is actually achieved. 
(Different to the standard indifference zone and standard subset selection approaches, in 
which the lower bound is achieved for respectively least favourable configurations. Some 
simulations of this sequential procedure can be found in chapter 7. 

2.4 Some other developments in selection procedures 

Since the work of the two pioneers, Bechhofer and Gupta [1] and [18], the problem of 
selecting the best has been considered in a lot of studies. We mention two textbooks on 
the problem. One, more easily accessible and presenting mostly variations on the standard 
indifference zone approach, but also considering the subset selection approach, is by Gib­
bons et al. [16]. More comprehensive is the book by Gupta and Panchapakesan [19] that 
presents a survey of ranking and selection theory at that time. In these books we found the 
methods to tackle selection problems without assuming common known variances, the two­
stage procedure by Bechhofer, Dunnet and Sobel [2], the sequential procedure by Robbins, 
Sobel and Starr [26] and the two-stage method by Dudewicz and Dalal [15]. We briefly 
describe them in section 5.1. 

Driessen et ai. [14] study the effect of a deviation from the assumption of common known 
variances and chapter 5, in which we regard the robustness of our procedure with respect 
to this, is inspired by this article. Bofinger [7] studied the least favourable configuration 
in more detail and formulated a general definition, however, each case has to be examined 
carefully. With regard to the problem of non-monotonicity of the probability of correct 
selection with respect to sample sizes and variances, Bofinger [8] gives conditions on the 
variances which ensure that the probability of correct selection increases when any sample 
size is increased and she concludes with "bigger samples are usually better". Driessen [13], 
however, also pays attention to this problem and indicates some incorrect proofs. Driessen 
shows that when the means of k normal populations are close enough, the probability of 
the population with the largest mean is strictly increasing in O"k!nk. 

Gutman and Maymin [20] use a selection rule based on a threshold between the largest 
and second-largest observation of the random variable you are interested in. However, they 
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do not look at the design of an experiment, but study the probability that the selected 
population is the actual best one, after taking the data. Hsu [22] regards confidence inter­
vals for all distances from the" best" under the location model and discusses the relations 
for (amongst others) the standard indifference zone approach and the standard subset se­
lection procedure. 

A new kind of subset selection procedure for k normal populations with a common 
known variance is proposed by Somerville [28], based on F-ratios. The procedure is com­
pared to Gupta's standard subset selection procedure using Monte Carlo methods and 
from the results the conclusion is made that there is strong evidence that the procedure is 
at least as efficient as Gupta's in terms of expected subset size. 

Van der Laan and Verdooren [23] present an overview of selection procedures with 
emphasis on normal, binomial, Poisson and multinomial populations, because of their im­
portance for agricultural applications. Furthermore some generalizations, modifications 
and the selection procedure of Somerville are discussed. 

A sequence of articles has appeared in the early sixties on an application of selection 
procedures on chicken stocks. Becker [3] presents a study on the effect of the difference Ii 
between the best and second-best chicken stock, with 'best' related to the maximum of hen­
housed egg production, using Bechhofer's procedure. He concludes that the probability 
of the best one winning the test was fairly low for a sample of size 50 to 100, and if 
the differences between stocks become smaller, the chance of a correct ranking becomes 
less. He also shows how to use a combination of several tests by using the so-called 
Control Method, utilizing the strains that appeared in all tests. The latter dealt with a 
quantitative trait, Becker [4] studied all-or-none traits, such as mortality. He shows that 
the ranking of samples in this case, is affected by the same factors (sample size, difference 
between stocks) in a similar way as is the case with a quantitative trait. Continuing on 
this, Becker [5] demonstrated that by artificial and economical selection the true differences 
between stocks (Ii) decreased and therefore the probability of correctly selecting the best 
one also decreased for both quantitative and all-or-none traits. Usually a least favourable 
configuration is used to calculate the probability of a correct ranking, but we have to keep 
in mind that this is an underestimate. Soller and Putter [27] realized this and compared 
the results found under assumption of a least favourable configuration and under values 
more likely to appear in practice, the so-called average configuration, based on the Becker's 
data. In the cases they consider, the probability of the best stock actually ranking best, 
are about twice as large under the" average" configuration as under the least favourable 
configuration. 
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Chapter 3 

Preference threshold procedure 

3 .1 Introduction 

The first standard approach, the indifference zone approach, has the disadvantage of com­
pletely neglecting the second-largest sample sum, even when its sample sum only has a 
very small difference to the largest sample sum. This has already been mentioned in 
the introduction in chapter 1. For example, we could take our samples and calculate the 
sample sums and find out that the largest one is 100.1 and the second-largest is equal to 
100. Then it seems unsatisfactory to neglect the population corresponding to the second­
largest sample sum. In the second approach, Gupta's subset selection procedure, this 
problem does not occur, but a disadvantage is that we cannot determine the sample size 
which is considered to be given. The ability of determining the sample size is especially 
important in the designing phase of an experiment. In the procedure we are proposing in 
this chapter, we combine the two advantages of the standard approaches by introducing 
a preference threshold, a distance from the maximum sample sum. We select all popu­
lations in a subset that are within this distance to the maximum sample sum. We can 
say that we have a strong preference for all populations in the selected subset with regard 
to the non-selected populations and that we have a weak preference for the population 
corresponding to the largest sample sum with regard to the selected other populations. 

3.2 Selection rule 

For k (k ~ 2) independent normally distributed populations with unknown means and 
common known variance (12 > 0, we regard the problem of selecting the 'best' population, 
where the 'best' is the population with the largest population mean. (If we are interested 
in the population with the smallest mean a similar procedure can be used, due to the 
symmetry ofthe normal distribution. See appendix A for a derivation.) The k populations 
are denoted by 1I"i, (i = 1,2, ... , k). We will take samples of fixed size n(> 0) of each popula­
tion and we denote the jth observation taken from population 1I"i by Yij, so Yij ,..., N(Jli, (12), 

with Jli the unknown mean of population 1I"i and all Yij mutual independent. A standard 
notation for the ordered means is 

Jl[l] ::; Jl[2] ::; ... ::; Jl[k], (3.1) 

and we say that Jl[i] is the mean of population 1I"(i)' Our goal can now be stated as: Selecting 
population 1I"(k)' that is the one correspondin$ to Jl[k], the largest mean. The sample mean 
of population i will be denoted as usual by Yi. As a response variable we take the sample 

n 
sums, E Yij = nY; ,..., N(nJli,n(12) (i = 1, .. . ,k). For the maximum value of the response 

j=l 
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variables of the k populations we introduce 

n 

max LYij, 
l::;i::;k j=l 

corresponding to population lrM. For the reasons mentioned in the introduction 1, we 
propose the following procedure: 

Procedure 
• Take a sample of equal size n from each of the k populations. 

• Calculate the k sample sums. 

• Select all populations lri satisfying: 

n n 

LYij 2:: LYMj - C, (c2::0) (3.2) 
j=l j=1 

The introduced c in the procedure above is called the preference threshold, because the 
maximum sample sum of a population has to have a difference of at least this value c to 
the other populations in order to be selected as the only best one. We refer to selection 
rule (3.2) as Rn,c- As Bechhofer did, we divide the complete parameter space in the indif­
ference and preference zone, where the difference between the largest and second-largest 
mean is at least 0*. Assuming to be in the preference zone (J.l[k] J.l[k-l] 2:: 6*), we want our 
procedure to satisfy two requirements: 

Requirements 
1. The probability of selecting the best population, lr(k), only in the selected subset 

should be at least P* E (11k, 1). 

2. The overall probability of selecting 11'(1:) in the selected subset should be at least 
Q* E (11k, 1). 

In fact, this procedure is a kind of subset selection procedure, with the probability re­
quirement restricted to 0(0"), with an additional requirement, namely the probability that 
the selected subset includes the best population only should be at least P*. In the design 
stage of a selection experiment, we have to determine the values for preference threshold 
c and the smallest possible n in order to guarantee that we satisfy the two requirements, 
for given values of p", Q" and 0*. The values of p. and Q* should be E (11k, 1), because 
by just picking one population out of k we have already a probability of 11k of picking the 
best one, and of course every required probability should be less than 1. 

This idea of a preference threshold is first developed by Coolen and Van der Laan in 
[12]. They used the same first requirement as we do (selecting only the best population 
with a certain probability), however, their second requirement is different than ours and is 
based on the probability of a false selection. Other requirements would also be interesting 
and we briefly discuss some possibilities in chapter 8. 

3~3 Probability of a correct selection 

As we concluded before, our procedure is in fact a subset selection procedure with an 
additional requirement. This is reflected in the probability of a correct selection. A 
correct selection for our selection procedure occurs, like in Gupta's approach, when the 
best population, 11'(1:), is selected in the subset. This event, referred to as CS2 , should occur 
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with a probability of at least Q*. According to the additional requirement, we want the 
probability of correctly selecting the best population 7r(k) only, to be at least P*. We refer 
to this as CS1 (subscript 1 is denoting the event that only 1 population is selected). The 
two requirements the procedure has to satisfy, as mentioned in section 3.2, are: 

Inf P(CS1 I Rn c) > P* 
OW) , -

(3.3) 

and 

Inf P(CS2 1 Rn c) > Q*. 
0(0') , -

(3.4) 

The probability of a correct selection of 7r(k) only, is 

n n 

P(CSdRn,c) = P(LYck)j > 1<rrlkx_1LYci)j + c) 
j=1 - - j=1 

= P(nY(i) + c < nY(k); i = 1, ... , k -1) 
00 

= J P(nY(i) < y - c; i = 1, ... , k - 1)dP(nY(k) ~ y) 

-00 

00 k-1 
= J II [<I> ( Y - c - nJ.L[i])] d<I>( y - nJ.L[k]) 

. 'nu 'nu .=1 yl£ yl£ 
-00 

00 k-1 
= J II [<I>(Z + nJ.L[k] - nJ.L[i] - c)] d<I>(z). . Vnu 

-00 >=1 

(3.5) 

The minimum of this probability over 0(8*) is attained at the Least Favourable Configu­
ration (LFC), [1] and [7] and this configuration for the means is: 

J.L[1] = ... = J.L[k-1] = J.L[k] - 8*. (3.6) 

For ease of notation, we will refer to this configuration by J.LLFC(o.). The probability of a 
correct selection for the LFC becomes, 

Inf P(CS1 I Rn c) = P(CS1IRn c, LFC) 
0(0') , , 

00 

= J <I>k-1(z + n~~ c)d<I>(z) 
-00 

00 

= J <I>k-1(z + rI)d<I>(z), (3.7) 

-00 

where 

n8* - c 
r1 = r.:: . 

ynu 
(3.8) 

The first probability requirement, 

Inf P(CS1 I Rn c) > P* 
0(0') , -

(3.9) 

is satisfied if 
00 J <I>k-1(z + rI)d<I>(z) = P*. (3.10) 

-00 
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Values for 71 can be calculated for given values of p. and k using (3.10), thus giving a first 
relation between nand c, 

(3.11) 

In table C.1 these values for 71 are tabulated for k 2, ... , 10, 15,20,30,40,50 populations 
and p. 0.6,0.7,0.75,0.8,0.85,0.9,0.95,0.975,0.99. For the probability of selecting a correct 
subset using the distance c, the second requirement, we can derive the following: 

n n 

P(GS2 1R...,c):::: P(I:y(k)j ~ 1<~1:.1I:Y(I)j - c) 
j=l - - j=l 

::::P(nY(i)~nY(k)+c;i 1, ... ,k-l) 
00 

= J P(nY(i) ~ Y + Cj i 1, ... , k - l)dP(nY(k) ~ Y) 
-00 

00 k 1 

= J IT [t'fl( Y + c - nJ.L[i))] d<I>( y - nJ.L[k)) 
-00 .=1 Vn(J' Vn(J' 

00 k-l 
= -l }] [<I>(Z + nJ.L[k) -:;~[i) + C] d<I>(z). (3.12) 

Using a similar argument like Gupta in [18], we see that the infimum for (3.12) over n(o*) 
will be taken for the same LFC as for P(GS!), J.LLFC(o") , because of the monotonously 
increasing normal distribution function, so we have 

where 

Inf P(GS2 1 R... c) = P(GS2 1 R... c, LFG) 
0(0") , , 

-00 

00 

= J <I>k-1(z + 72)d<I>(z) , 
-00 

C+ no· 
Vn(J' . 

From this we can conclude that the second probability requirement, 

Inf P(GS2 I R... c) > Q* 
0(0") • -

will be satisfied if 
00 J t'flk-l(Z + 72)d<I>(z) = Q*. 

-00 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Note that (3.16) has exactly the same form as (3.10), so values of 72 can be derived 
analogously and we can use the same table C.1 for the values of 72. Using (3.14) we get a 
second relation 

(3.17) 

22 



Together these two relations (3.11) and (3.17) can be solved for n > 0 and c:::: 0, resulting 
in: 

and 

(j2 2 2 
C = 48" (T2 - Tl)' 

So, we should apply selection rule Rn,c for given k, P", Q" and 8" with: 

(3.18) 

To satisfy both requirements in practice, we have to take the nearest higher integer value 
for the sample size if n is not an integer. We must remark here, that because of the rounding 
of n, the values for Tl and T2 also change, and therefore the achieved probabilities for the 
two requirements are slightly different. Sample size n is always rounded upward, hence the 
achieved practical values for Inf P(GSl I Rn c) and Inf P(GS2 I Rn c) will be slightly larger 

0(5-) '0(6-) , 

than P" and Q" respectively. This follows from the positive correlation between Tl and n 
in (3.8) and between T2 and n in (3.14). In the simulations in chapter 7 there are some 
examples. 

3.4 Analysis on P* and Q* 

When considering the first and second requirement carefully we can remark that the re­
quirement of selecting a subset including the best population is a weaker condition than 
the requirement of selecting only the best one in the selected subset. If the latter condi­
tion should be satisfied with at least a probability of p", the probability for the selection 
of a subset including the best one (at least Q*) should be larger to make sense. Hence, 
we should have Q* > P*. This can also be made clear by putting the first and second 
requirements in the following slightly different way. Our conditions are: 

n n 

1. P(I)(k)j - :LYei)j > Cj \::Ii =j:. k) :::: P" (3.19) 
j=l j=l 

n n 

2. PC:Ly(k)j - :LYei)j > -c; \::Ii =j:. k):::: Q". (3.20) 
j=l j=l 

If the first requirement (3.19) is satisfied and Q* < P*, then the second (3.20) will surely 
be satisfied, because c:::: O. SO to determine both nand C we must have 

Q"::::P". (3.21) 

As the probabilities of a correct selection derived in (3.10) and (3.16) have the same 
functional forms and c»(.) is increasing, there are some remarks about the features of our 
procedure to be made. From conditions (3.10) and (3.16) we can derive 

Corollary 1 

P* = Q* ¢} Tl = T2 

Q* > P* ¢} T2 > Tl 
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The preference threshold procedure can easily be reduced to the standard indifference 
zone approach. If we choose P* = Q* then we apply in fact the standard Bechhofer 
approach. This can be seen from (3.22), because in case P* Q* we have 7"1 = 7"2, so using 
(3.18) we derive that nand c reduce to n = (~~:! )2 (r.)2 and c = 0, for which values 
Rn,e equals RB (section 2.1). 

Trying to derive the standard Gupta approach from our procedure, we can in effect 
delete the first requirement by choosing P* = O. By choosing 8* = 0, resulting in the 
parameter space Gupta is assuming, we get from (3.14) 7"2 = which is the relation we 
would find using Gupta's approach (2.16). 

Furthermore, from (3.23) and (3.18) it follows that we should choose Q* > P* to have 
a positive threshold c as is intended in our procedure. 

3.5 Analysis on nand c 

3.5.1 Intuitive explanation of functional form 

For a given k, P*, Q* and ()* the final result for the minimal required sample size nand 

the preference threshold c are given by (3.18) n = (0'(T~~T2») 2 and c = :02. (7"i - 7"f). Sample 

size n is increasing in both 7"1 and 7"2, what is to be expected, because a larger value for P* 
(resp. Q*), hence a larger 7"1 (7"2) signifies that we want to select the one best population 
with a higher probability and thus we need to take more observations in order to achieve 
this probability. Remark that n is increasing in (J' and decreasing in 8*. This is also easy 
to understand, for a larger variance compels us - for the sample sums would vary more 
and one of the k -1 non-best populations could coincidently produce a sample sum larger 
than the best population- to take more observations to stabilize the sample sums. A larger 
value of ()* means that the indifference zone becomes larger, hence we do not have to be 
as accurate as before, so the sample size does not need to be that large. 

The preference threshold value c is increasing in 7"2 (related to Q*) and decreasing in 
7"1 (related to P*). This is logically justifiable, for a larger value for Q* would mean a 
higher probability to include the best population in the selected subset, thus the threshold 
c, the difference from the maximum sample sum, should be enlarged. Moreover, when 
the value for P* is raised, we want to select only the one best population with a higher 
probability, therefore the difference c should get smaller in order to increase the probability 
of selecting only the population with the largest sample sum. Like n, c is increasing in (J' 

and decreasing in ()*. When the variance becomes larger, the value for c should also become 
larger to ensure the same probability requirements. When ()* is increased, the indifference 
zone is enlarged and thus in a larger area we are indifferent with regard to a selection and 
therefore the value for c will be smaller for larger values of 8* . 

3.5.2 Comparison of sample size with standard approaches 

It is interesting to compare the value we get for the sample size n to the value we would get 
using the standard indifference zone approach. If we would apply Bechhofer's procedure, 
(section 2.1), we would find under fJ-LFC(6')' the LFC, 

00 k-1 
P(GSIRB, LFG) J P <I>k-1(z + 7"B)d<I>(z), 

-00 t:1 

(3.24) 
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where 

(3.25) 

according to (2.8) and (2.10). For the mimimum required sample size to satisfy probability 
requirement (2.9), with P* replaced by pI and associated with Tpl, the relation following 
from (3.25) holds 

(
(7'TPI) 2 

npl= --
8* 

(3.26) 

Remember that for our procedure Rn,c sample size n is (O(1"~0~1"2)) 2. If we choose P* for 

our threshold selection procedure and we choose pI = P* for Bechhofer's procedure, we 
find 'II = Tpl. Also, according to the restriction for P* and Q*, we choose Q* > P* leading 
to (using (3.23)) '12 > 'II' Now we can derive 

(3.27) 

Analogously, if we choose pI = Q*, with pI for Bechhofer's procedure, we can derive 

_ ((7'('11 + '12))2 ((7'(2'12))2 _ ((7'(TPI)) 2 
_ . 

n - < - - np .. 
28* 28* 8* 

(3.28) 

Therefore, assuming Q* > P*, we have 

(3.29) 

with n~o, denoting the minimum required sample size according to the standard Bechhofer 
approach with probability requirement Inf P(CS) 2: P*. In other words, we conclude that 

0(0 0
) 

our sample size n will always be greater than the one we would require for the standard 
indifference zone approach for P*, but n will be always smaller than the one we would 
require for Bechhofer's approach with probability Q*, assuming Q* > P*. Intuitively 
this is logical for the following arguments. We need at least a sample size as large as 
for the standard indifference zone approach with P*, because we also need to satisfy the 
requirement that only the best population will be selected with probability P*. However, 
we need a sample size smaller than the size required for the standard indifference zone 
approach with Q*. For by taking samples of this size, we know that we select the one best 
population with this probability Q* and thus also our additional requirement that with 
probability Q* a subset of best populations is certainly satisfied. 

3.6 Selection procedure with second probability require­
ment on 0 

In section 3.3, we have defined a correct subset selection, referred to as CS2 , as having 
the actual best population, '1I"(k) , included in the selected subset. However, we assumed 
J.L E D(8*) and this is different from Gupta's subset selection approach, which allows con­
figurations of J.L to be in the complete parameter space D. Concern about selection in case 
the actual configuration for the means is not in the preference zone, but in the indifference 
zone, could be a reason to consider this approach in our procedure. By not making any 
restriction on the parameter space for the second requirement, we have at least the guar­
antee that, although we are in the indifference zone and hence the first requirement is not 
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valid anymore, the second requirement is and thus we select a subset including the best 
population with at least probability Q*. Let us consider what happens if we apply this to 
our preference threshold procedure. When we have no restrictions on the parameter space 
for the second requirement, we refer to the procedure as R~,e' The probability of a correct 
selection, CS2 is analogous to (3.12), 

(3.30) 

But J1. E fl, so the infimum of this probability will be attained for the Least Favourable 
Configuration, J1.[I] = ... = J1.[k-l] = J1.[k] , [18] and we get 

where 

-00 

00 

= J q,k-l(z + rr)dq,(z), 

".0_ 
'2 -

-00 

C 

Our second probability requirement becomes 

Irg P(CS21 R~,e) :::: Q*, 

which will be satisfied if 
00 J q,k-l(z+rr)d<p(z) = Q*. 

-00 

Together with the first relation (3.11) we get two relations for nand C; 

c rrVncr 

and 

so we can solve this for n > 0 and c:::: 0, resulting in: 

and 

nS* rl Vncr = rr Vncr 

Vn{ VnS* cr( rl + rf)} = 0 

Vn 
cr( rl + rr) 

n 
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(3.36) 
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If we compare this to the sample size say (3.18) no. = (O'(T~i:T2))2 we found for the approach 
with the assumption of J..l E 0(6*), we see that for the same values of P* and Q* the sample 
size in case of J..l E 0 is four times the value of the sample size we would get under the 
assumption J..l E 0(6*). This factor four can be explained by defining two 6 values, one 
corresponding to each requirement. Hence, we impose 6i on the first requirement and 6; 
on the second. The Least Favourable Configurations are in this case defined by, for the 
first requirement 

J..l[l] = ... = J..l[k-1] = J..l[k] - 6; 
and for the second requirement 

J..l[1] = ... = J..l[k-1] = J..l[k] - 6;. 
Instead of relation (3.11) and (3.17) we now get respectively, 

and 

We solve these two relations for nand c, resulting in 

and 

(12 { 6i 2 2 } 
C = 6i + 6; 6i + 6; (7'1 + 7'2) - (7'1 + 7'17'2) . 

(3.39) 

(3.40) 

(3.41 ) 

(3.42) 

(3.43) 

(3.44) 

From (3.43) it is easy to see that 6; = 6i, as mostly used in this thesis, yields a four times 
smaller value for n then for the case where 6; = 0, as suggested in this section. Of course, 
by imposing restrictions on the parameter space and by doing so reducing the parameter 
space, we will never need to take more observations then we would have to take when 
considering the complete parameter space O. 

Denoting the c value for the approach with a restriction on the parameter space by co' 
(3.18), and the c value for the approach without a restriction by cn (3.38), we have 

(12 2 2 
co' = 46* (7'2 - 7'1 ) 

(12 

< 6*(7'; + 7'17'2) 

= cn , (3.45) 

because for equal values of P* and Q* we have 7'2 = 7'f. This is an intuitively logical result, 
for 0(6*) is a special case of 0, therefore the value of cn will be larger than the value of co' 
to satisfy the same probability requirements. 

The introduction of the two different 6i and 6; as in (3.39) and (3.40), raises the question 
if we are completely free in specifying different 6i and 6; values for our procedure. The 
answer is 'no', due to the fact that we need to have c ~ O. From (3.44) we see that c ~ 0 
implies 

6i > 7'[ + 7'17'2 

6i + 6; - (7'1 + 7'2)2 ' 
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so 

(3.47) 

Remark that P* > 11k and Q* > 11k imply 1'1 > 0 and 1'2 > O. It is easy to see that the 
fraction multiplying 8; on the righthandside is E (0,1), because 1'1 ~ 1'2 (3.21). To be able 
to specify n we need to have at least one of the 8 values not equal to 0, this is also dear 
from (3.43). Therefore 

8r;/; 0, (3.48) 

because 8i == 0, (3.47) implies 8; == 0 by (3.47). If 8; = 8i, like in section 3.2 with restriction 
on the parameter space, (3.47) is always satisfied. If 8; == 0 and 8r is not, then (3.47) is 
also satisfied, so the approach with no restrictions on the parameter space in this section 
also satisfies (3.47). 

3.7 Selection of t best populations 

After considering the selection of one best population, we can generalize to selecting 
t (t 2: 1) best populations from k independent normally distributed populations with un­
known means and common known variance 0-2(> 0). Using the same notation as before, 
we need to introduce the ordered sample sums 

n n n n 

L:: Y(1)j ~ •.. ~ L:: y[k-t]j ~ L:: y[k-t+1]j ~ ..• ~ L:: Y[kli' (3.49) 
i=1 j=1 j=1 j=1 

After taking a sample of size n from each of the k populations we apply the following 
selection rule: select all populations satisfying 

n n 

L::Yij 2: L::Y[k-t+1]j - C, (c 2: 0). (3.50) 
j=1 j=1 

We will refer to this selection rule as R~ c' A little example may illustrate the procedure. 
Suppose we have 5 different populations and we want to select the t 2 best ones. We 
specify the values for P* and Q* and use a certain nand c. Let us say c == 1. We take a 
sample of each of the populations and calculate their sample sums, resulting in for example: 

n 

L:: Y1j == 10, 
j=1 

n 

L:: Y2j == 8.3, 
j=1 

n n n 

n 

L::Y3j 
j=1 

4.9, 
n 

L:: Y4j == 9.3, 
j=1 

n 

L:: YSj == 12.5. 
j=1 

Thus, L y[k-t+1]j L Y[4]j == L Y1j and we select all populations with sample sums larger 
j=1 j=1 j=1 

than or equal to 10 - 1 = 9, leading to the selection of 11'5,11'1 and 11'4. 

3.7.1 Second requirement on restricted space 

If, again, we assume Ji. to be in the preference zone, now defined by 

Ji.[l] ~ ... ~ Ji.[k-t] ~ Ji.[k-t+1] - 8* 

Ji.[k-t+l] ~ ... ~ Ji.[k] 

and denoted by Ot(8*), we have to satisfy two requirements similar to those in section 3.2 
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1. The probability of selecting only the t best populations, 1I"(k-t+l), ... , 1I"(k)' in the se­
lected subset should be at least P*. 

2. The overall probability of selecting 1I"(k-t+1), ... , 1I"(k) in the selected subset should be 
at least Q*. 

We denote the Correct Selection of only the t best populations by CSt and the Correct Se­
lection of a subset including the t best populations is denoted by CSts • The first probability 
requirement is 

(3.51) 

and the infimum will be attained for the means in the the Least Favourable Configuration, 
which is, see [1] and [7], 

J.L(k] = ... = J.L(k-t+l] 

J.L(k-t+1] - J.L(k-tJ = 0* 

J.L[k-tJ = ... = J.L[I]· 

(3.52) 

Remark that in the LFC, the distributions for 1I"(k-t+l),"" 1I"(k) are exactly the same. For 
the probability of selecting only t populations, we have (analogously as in [1]) 

n n 

P(CStIR~c,LFC)=P( min "1(.);> max "1(i)j+c) 
I k-t+l <i<k L...J 1 <,<k-t L...J 

- - j=1 - - j=1 

00 

t J p( ~ax nYci) + C < y::; min. nYci» dP(nYck-t+l) ::; Y) 
l~.:9-t k-t+2~':9 

-00 

00 

= t J p( ~ax nYci) < y - c)p(y ::; min. nYc.») dP(nYck-t+1) ::; y) 
l~.~k-i k-t+2::;':9 

-00 

-00 

-00 

00 

= t J <llk-i(Z + n~~ c) [1 - <ll(Z)]i-l d<ll(z). 

-00 

Our first requirement is satisfied when 

where 

00 

t J <lIk-i(z + Tid [1 - <ll(Z)]i-1 d<ll(z) = P*, 

-00 

no* - c 
Til = r.:: 

yn(J' 
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(3.53) 

(3.54) 

(3.55) 



The second requirement is 

(3.56) 

Using the selection rule, we get 

(3.57) 

n n 
For the first requirement it is possible to replace r: y[k-t+1]j with r.p.ax r: 1(i)j, because 

}=1 1StSk-t j=1 
all sample sums corresponding to the t best populations should be larger than all other 
sample sums, in order to select the t best populations alone. For the second requirement, 
the probabilities are not equal, using the same replacement, since a correct subset can 

n n 
include a non-best population. However, if we do replace r: y[k-t+1li with r.p.ax r: 1(i)j 

j=1 1StSk-t j=1 
we find at least a lower bound of P(CSt3 ), for we have 

00 

= t <lik-t(z + -=--J n6" + [1- <li(z)]t-1 d<)(z). (3.58) 
-00 

Therefore, (3.56) is satisfied if 

00 

t J <)k-t(z + 'l"d [1 - <li(z)]t-1 d<li(z) Q*, (3.59) 
-00 

with 

'l"t2 = 
n6" + c 

(3.60) 

With the tables provided in appendix C.2 we can solve the relations for nand c, given 
k, P* , Q* and 6*, getting these results 

n = (IT('I"tl + 'l"t2») 
2 

and 
26* 

(3.61 ) 

We remark that it may be possible to find lower values for nand c, when one does not have 
to use the lower bound for the second requirement to determine a relation for nand c. To 
satisfy both requirements in practice, we have to take the nearest higher integer value for 
the sample size if n is not an integer. Like before, because of the rounded value of n, 'l"tl 

and 'l"t2 change and we get slightly higher practical values for P* and Q* . 

Comment on tabled values 

We notice in the table in appendix C.2 that the values for 'l"tl are the same for example 
for the selection of 2 populations out of 5 and the selection of 3 populations out of 5. In 

30 



general, the values are the same for the selection of t populations out of k populations and 
for the selection of k - t populations out of k. The following analysis is the explanation 
for this feature. From (3.54) we see that in that case we should have an equality of the 
probabilities of correct selections, so 

00 00 

t J cpk-t(z + Ttl) [1 - cp(z)]t-l dCP(z) = (k - t) J cpt(z + Ttl) [1 - cp(z)t-t-l dCP(z). 
-00 -00 (3.62) 

We can prove this to be true; starting from the left-handside we get (by using partial 
integration) : 

00 

t J cpk-t(z + Ttl) [cp( _Z)]t-l ¢(z)dz = 
-00 

00 

= t J cpk-t(z + Ttl) [cp(_z)]t-l ¢(-z)dz 

-00 

00 

= J cpk-t(_x + Ttl)dCPt(x) 
-00 

00 

= - J cpt(x)dCPk-t(_x +Ttd 

-00 

00 

= -(k-t) J cpt(X)cpk-t-l(_X + Ttl)¢(-X + Ttl)d(-x) 
-00 

00 

= -(k - t) J cpt(w + Ttl)cpk-t-l(-w)¢(-w)d(-w - Ttl) 
-00 

00 

= (k - t) J cpt(z + Ttl)cpk-t-l( -z)¢(z)d(z). (3.63) 

-00 

Hence, we have equality and it is proven that the expressions for the probability of a CS 
are exactly the same when selecting t populations out of k and selecting k - t out of k 
populations. 

3.7.2 Second requirement on n 
The selection of the t best populations without a restriction on the parameter space is based 
on similar analyses. The first probability requirement remains the same and is satisfied 
when (3.54) holds. For the second requirement, the parameter space n is now defined by 

J.L[1] ~ J.L[2] ~ ••• ~ J.L[k]. (3.64) 

If we assume to be in the Least Favourable Configuration, see [1] and [7], 

J.L[1] = J.L[2] = ... = J.L[k] (3.65) 
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so all the means as close as possible to each other, we get for the probability of correctly 
selecting the t best populations in the subset 

n n 

P(CSt8IR~nc) > P( min '"'y(i)j> max '"'Y(i)j - C I LFC) 
, - k-t+l<i<kL..., - l<i<k-t~ 

- - j=1 - - ;=1 

-00 

00 

= t J ~k-t(z + ./ncr)[1 ~(z )]t-l d~(z). (3.66) 

-00 

The minimal value of this is attained for the LFC, hence, the second probability require­
ment, 

is satisfied when 

where 

00 

t J ~k-t(z + 'T8)[1 ~(Z)]t-l d~(z) = Q*, 

-00 

n C 
'Tt 2 = r:;; . yncr 

With the relations we have now (3.54) and (3.68) we determine nand c by 

cr( 'Ttl + 'T~) )2 cr2 ( n) n 
n = (8* and c = ~ 'Ttl + 'Tn 'Tn· 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

The form of these functions for nand c are the same as for the selection of 1 best population 
with no restrictions on the parameter space, so the same as in (3.37) and (3.38). Therefore, 
the same analysis concerning the comparison of these values with the values when we have 
a restriction on the parameter space applies, as we have done in the end of section 3.6. 
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Chapter 4 

Properties of preference threshold 
proced ure Rn,c 

4.1 Expected subset size 

Besides our procedure Rn,c satisfying the two probability requirements, we would like the 
size of the selected subset to be small. This size, S, is a random variable and S can take 
the values 1,2, ... , k. It can be expected that our procedure will produce a smaller size 
of the selected subset than the standard Gupta subset selection approach, because of our 
additional requirement of selecting only the best population with at least probability p". 
We can express the expected subset size in the following way [18] 

k 

E(S) LP(Selecting 1r(i». (4.1) 
i=1 

For, if we introduce a variable Zi, defined by 

z. = { 0 if population i is not selected, 
• 1 if population i is selected . 

(4.2) 

then 

k k k 

E(S) = E(LZi) LE(Zi) = LP(Selecting 1r(i»' (4.3) 
i=1 t=1 i=1 
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In order to express the expected size of the selected subset as in (4.1), we first derive the 
probability of selecting popUlation 11"(;) for procedure Rn,c' This is 

n n 

P(Selecting 11"(;) IRn,c) = P(LY(i)i 2:: l~l!lk:L Y(I)i c) 
i=l - - j=l 

= P(nYcl) :::; nYc;) + Cj I 1, ... , kj 11: i) 
00 

= J P(nYcI) :::; Y + Cj 1= 1, ... , k; 11: i)dP(nYci) :::; y) 
-00 

00 k 
= J II [<I>( Y + C - nJt[I])] d<I>( y - nJt[i]) 

..;nO' ..;nO' 
-00 1=1 

l;1!i 

00 It 

= J II [<I>(Z + nJt[i] - nJt[I] + C)] d<I>(z). 
1:::1 ynO' 

-00 l;1!i 

Hence the expected size of the selected subset becomes: 
k 00 It 

E(SIRn,c) = E J ;g [<I>(z + nJt[i] -;':[1] + c)] d<I>(z). 

-00 l¢i 

(4.4) 

(4.5) 

Gupta shows that the maximum value of the expected size of the subset in the preference 
zone n(o"'), will be attained for the LFC (3.6), therefore we have 

00 

max E(SIRn c) J <I>k-1(Z + n~: c)d<I>(z) 
O( 0*) , 

-00 

00 

+ (k - 1) J <I>k-2(z + ::: )<I>(z + C ?nO" )d<I>(z). (4.6) 
ynO' nO' 

-00 

Due to the second probability requirement (with n not rounded up to the nearest higher 
integer value) we can rewrite this to get 

00 

max E(SIRn c) 
0(0*) , J k C C - no" 

Q* + (k - 1) <I> -2(z + r.; )<I>(z + yn )d<I>(z). (4.7) 
ynO' nO' 

-00 

It is easy to see that an upperbound for the maximum expected subset size in n(o") is 
kQ'" , when we impose Q* on our second probability requirement, because 

00 

J k C c-n~ 
max E(S) = Q* + (k - 1) <I> -2(z + r.; )<I>(z + yn )d<I>(z) 
0(0*) y nO' nO' 

-00 

-00 

= kQ*. (4.8) 

The maximum of the expected subset size with no restrictions on the parameterspace 
n, is attained for 1'[1] = ... = Jt[k] [18] and given by 

00 

m:ix E(SIRn,c) = k J <I>k-l(z + ;O')d<I>(Z) = kQ"'. (4.9) 
-00 
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We see that the former upperbound kQ"' is now actually achieved. 
The results Gupta presented [18] are analogous, with our c threshold replaced by his 

distance d. He found that the maximum of his expected subset size over Q using rule Ra 
as described in section 2.2 is attained for J.l[1] = J.l[2] = ... = J.l[k] and 

00 

mAx E(SIRa) k J <1>k-l(Z + J;O")d<1>(Z) = kQ"'. (4.10) 

-00 

Gupta also derived the expected subset size assuming that we are in the preference zone, 
Q(o*). In this case the maximum of the expected subset size is attained at the LFC (3.6) 
and becomes 

00 

J d+no"' 
max E(SIRa) = <1>k-l(z + ..;n )d<1>(z) 
0(0)) nO" 

-00 

00 

+ (k - 1) J <1>k-2(z + ;; )<1>(z + d :;;0", )d<1>(z). (4.11) 
. ynO" nO" 

-00 

4.1.1 Comparison of expected subset sizes 

It is interesting to compare the expected size of the selected subset for the standard subset 
selection approach to that of our preference threshold procedure. However, the only sensi­
ble comparison can be made when the sample size n is equal for both procedures. Hence, 
we specify P"' and Q* for respectively the first and second probability requirement of the 
preference threshold procedure, and we specify 0*. We can now calculate the minimum 
required sample size n to satisfy both requirements for the preference threshold procedure 
Rn,e, because we assume to know the value of the common variance 0"2. For the standard 
subset selection procedure, we impose the same value as Q"' for the probability requirement 
of including the best population in the subset, implying 72 = 7a (sections 3.3 and 2.2). We 
can calculate the distance d according to Gupta's approach. Remember 11k < P* ~ Q* < 1 
and 72 2': 71' Since 

c+ no* d 
..;nO" 

(4.12) 

when taking the same value of Q* in the second requirement of our procedure Rn,c as the 
value for the requirement in the standard subset selection approach, we have, taking the 
same sample size n (> 0) for both procedures, 

E(SIRn,e) 
Ie 00 Ie 

L J IT [<1>(z + nJ.l[i] - :~[I] + c)] d<1>(z) 
1=1 ..;n 
l¢' 

Ie 00 Ie 

< ~ J IT [<1>(Z + nJ.l[.] -;;!;[f] + d)] d<1>(z) 
t=l_ oo 1=1 

I¢i 

E(SIRa). (4.13) 

Of course, we are considering the same J.l values. Obviously, the same holds for the maxi­
mum of the subset sizes, so 

max E(SIRn c) < max E(SIRa). 
0(0") , 0 

(4.14) 
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Intuitively, this result can be justified by noting that no* > 0 (due to our assumption of 
being in the preference zone) implies c < d according to (4.12) and hence the selection 
threshold in our approach is smaller than in Gupta's approach, so we select less or an 
equal number of populations. 

If we assume no restrictions for the parameter space to satisfy the second requirement 
of procedure Rn,c, then, for the same value of Q* and the same sample sizes n for both 
procedures, 

c d 
VnO' = 

holds, according to (2.15) and (3.34). This results in 

E(S!Rn,c) = E(SIRa). 

(4.15) 

(4.16) 

Therefore, in case of no restriction on the parameter space to satisfy the second probability 
requirement of Rn,c and equal Q* values, for the determined sample size n both procedures 
yield exactly the same subset, thus the same expected subset size. However, it should be 
noted that using the preference threshold procedure, we can determine the sample size n, 
where this is given for the standard subset selection procedure. 

4.2 Probability of correct selection given that one popula­
tion has been selected 

When we apply the preference threshold procedure, we only select a single population if its 
sample sum has 'enough' distance to all other sample sums. Due to our first requirement 
we design the experiment in such a way that the probability of correctly selecting a single 
population is at least P*. However, after the experiment has been carried out and we 
have selected a single population, it is interesting to be able to make a statement about 
the probability of a correct selection given that only one population has been selected. 
Obviously this probability should be greater than P*. We need to consider the following 
probability, where SI denotes the selection of one single population, CS1 one correctly 
selected single population and FSl a false selection of a single population; 

with 

p(csnSd 
P(SI) 
P(CSI) 

= P(Sl) 

Therefore, using Pj.t(CS) with subscript J..l to stress the dependence on J..l, 

Pj.t(CSd + Pj.t(FSd· 

(4.17) 

(4.18) 

(4.19) 

We take products over an empty domain to be equal to 1 by definition and sums over 
an empty domain are obviously equal to zero. Remember the probability of a Correct 
Selection of a single population is expressed (3.5) 

(4.20) 
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and for the probability of a False Selection of one population we get 

k-1 n n 

P/J(FSI) = L peL Ycl)j > L Yci)j + c, i = 1, ... , k, i", I) 
1=1 j=1 j=1 

k-1 00 k L J II <I>(z + nJ.l[1J - nJ.l[i] - c)d<l>(z). 
1=1 ;=1 Vnu 

-00 i¢l 

(4.21) 

4.2.1 Local minimum in the Least Favourable Configuration 

In this subsection we will prove that the probability of a CS given that only one population 
has been selected attains a local minimum in the LFC. 
So, we want to prove: 

peGS I Sd attains a local minimum in the LFC. 

Let us define the differences between the actual means as 

J.l(k] 

J.l[k-1] = J.l[k] - 0* - fk-1 

J.l[k-2] = J.l[k-1] - fk-2 

J.l[k-3] = J.l[k-1] - fk-2 fk-3 

J.l[1] J.l[k-l] - fk-2 - ... fl, where fj 2: 0 for all j = 1, ... , k - 1, 

k-1 

(4.22) 

so J.l[;] = J.l[k] - 0* - L: fj. We rewrite the expressions for P/J(GSI) and P/J(FSI) and take the 
j=' 

partial derivative of these expressions to fj. First, the probability of a correct selection of 
one population is 

( 4.23) 

and its partial derivative with respect to fj is (see appendix B) 

OP/J(CS1) _ 
Ofj -

Vn Joo t [¢(Z + n(fm + ... + fk-1 + 0*) - c) IT <I>(z + n(f; + ... + fk-1 + 0*) - C)] ¢(z)dz. 
u -00 m=1 Vnu i=1 Vnu (4.24) 

i¢tn 

For ¢O and <1>(.) are positive, it is easy to see that we have 

oP/J(GSd I . - k o > 0 for a I J - 1, ... , - 1. 
fi 

( 4.25) 

This implies that the larger the distances between the means become, the larger the 
probability of a CS1 becomes, which is logicaL The probability of a False Selection 
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<p(z _ n(f/ + ... + fk-1 + 6*) + c)cfi(z)dz 
..;nO' 

(4.26) 

and the partial derivative of this expression to fj is (see appendix B) 

oPp.(FSd = _ t (/00 IT <p(z + n(ei + ... + fl-l) - c) * IT <p(z _ n(fl + ... + fi) + C)* 
Of]' 0' / . 1 . !nO' . !nO' =1 00 .= V" .=1 V" 

+ 

In the LFC, 1'[1] 
become 

<p(z - ~--------.:=--=-~- + 

1-1 ( ) k-2 ( ) 
II <p(z+ n ei +"';fl - 1 -c)II<p(z- n fl+';jn+ei +C)* 

i=j+1 nO' i=1 nO' 

<p(z - n(el + ... +Fn~l + 6*) + C)cfi(Z)dZ)' (4.27) 

... = I'[k-l] ::;:: I'[k]- 6*, we have fj = 0, j ::;:: 1, ... , k -1, and the derivatives 

00 

..;n .( . / ( C k 3 C n6* + C ) --J k - J -1) cfi z - -)<p - (z - -)<p(z - )cfi(z dz 
0' ..;n0'..;n0' ylnO' 

-00 

-00 
00 

yin '(k . ) / ( C k 3( c) n6* + c) ( ) + -J - J - 1 cfi z - --)<p - z - -- <p(z - cfi z dz 
0' ..;n0'..;n0' ylnO' 

-00 

(4.28) 
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Therefore, the partial derivative of PJ1 (FS1) for each fj is strictly less than zero in the LFC 
(4.>(.) > 0 and ¢O > 0): 

for j = 1, ... , k - 1. (4.29) 

This means that the gradient 

'V PLFC(FS1) < 0 (in every element of this vector) (4.30) 

and this is a sufficient condition for a local maximum of PJ1(FSt) in the LFC. From (4.25) 
we have that PJ1 (GS1) attains a global minimum in the LFC. The probability of a correct 
selection given that one population has been selected (4.19) is of the form I(x, y) = 
where 0 < x, y ~ 1. For this function we have 

fJI(x, y) 
fJx 

y > 0 and 
(x + y)2 

fJI(x, y) 
fJy 

-x 
(x + y)2 < 0, (4.31) 

hence I(x, y) is increasing in x and decreasing in y. Substituting PJ1(GSt) for x and PJ1(FS1) 
for y, we conclude that the probability of a Correct Selection given that one population 
has been selected (4.19) attains a local minimum in the LFC. 

4.2.2 Necessary condition for global minimum 

Intuitively, if we start in the LFC, and increase the difference between the largest and 
second-largest mean, by increasing fk-l and thus also increasing the difference between 
the best and the other means, we expect the probability of a False Selection to decrease, 
because it becomes 'harder' for the non-best populations to beat the best one. We will 
justify this in this subsection. The difference between the largest and second-largest mean 
in Q(6*) is given by fk-l, see (4.22). Taking the derivative to fk-l of PJ1(FSt) yields (4.27) 

k 1 00 1 
fJPJ1(FSt) Vn~ J TIm( n(fi+"'+fl_1)-C) 
--,~---=~ = - - L..J ~ z + * 

fJ f k-l G' 1=1_
00 

i=1 VnG' 
.¢! 

k-l ( ) ( ) TI 4.>(z - n fl + ... + fi-l + C)¢(z n fl + ... + ~-1 + 6* + c)¢(z)dz. (4.32) 
i=l+l VnG' vnG' 

It is easy to see (4.>0> 0 and ¢O > 0) that 

fJPJ1(FSt) . 
fJ <0, forallfi~O,,=I, ... ,k-1. 

fk-l 

Therefore a necessary condition for a global maximum of PJ1(FSl) is 

fk-l = 0 

(4.33) 

(4.34) 

and because fk-l = 0 is also a necessary condition for a global minimum of PJ1 (GS1), ac­
cording to (4.25), by using the same feature of P(GSIS1) as before (4.31), we see that 
fk-l = 0 is a necessary condition for a global minimum of P(GSISl)' 

Because of the probability of a false selection of one single population not having a 
nice monotonous behaviour ([12]), it is difficult to find the global minimum of P(GSISt). 
This would be very interesting, we could use this as a alternative second requirement, by 
imposing a probability Q* on this global minimum. We have the conjecture that the global 
minimum of the P(GSIS!) is attained in the LFC, where fi = 0, (i = 1, ... , k - 1), however 
this remained unproven and can be a topic for future research. 

39 



Chapter 5 

Robustness 

5.1 Varying variances 

Both Bechhofer's and Gupta's approach assume equal known variances for all populations, 
but in practice this is usually not the actual situation. It has been shown by Driessen, Van 
der Laan and Van Putten [14] that departures from the assumption of a common known 
variance in the case of normal populations for the Indifference Zone approach and the 
Subset Selection approach, can cause an actual lower bound of the probability of a Correct 
Selection that is seriously lower than the pretended lower bound P* of the probability of 
CS based on the assumption of a common known variance. 

Some procedures have been presented in the literature to deal with the problem of 
selecting the best population out of k normal populations with unknown variances, both 
with and without the assumption of equality of these variances. When the variances of 
the k populations are common but unknown, a two-stage procedure has been suggested 
by Bechhofer, Dunnett and Sobel in [2]. Also, a sequential procedure based on the work 
of Robbins, Sobel and Starr in [26] has been developed to tackle this problem. For un­
equal and unknown variances of the k populations a two-stage procedure can be applied 
as proposed by Dudewicz and Dalal [15]. We will summarize the procedures as they are 
presented in [16]. The two-stage procedure for common but unknown variances consists 
of taking a first sample of size n from each population and computing the pooled sample 
variance. After that, in the ~econd stage, another sample of size N - n from each popu­
lation is taken, where N is depending on n, on the pooled variance as estimated from the 
first stage (that is treated like it were the actual common population variance) ,and on k, 6* 
and P*. Then the observations of the two stages are combined in a single sample and the 
sample with the largest sample mean is considered to be the best one. 

Another possible procedure is the sequential procedure, where in each stage one obser­
vation of each population is taken and after each stage r, the pooled sample variance s~ is 
computed until we reach a stage N for which s~ is smaller than a certain value, depending 
on N, 6*, P* and k. At that moment, the sample with the largest sample mean is asserted 
to be the best one. 

Assuming nothing about the variances, so unequal and unknown variances, the two­
stage procedure consists of taking a sample of size n in the first stage, computing the k 
sample means and sample variances sJ. In the second stage a second sample of size Nj - n 
is taken from the jth population, where Nj is depending on n, sJ, 6* ,P* and k. Based on a 
weighted mean of the first and second stage means for each population, the largest one of 
these is asserted to correspond to the best population. 
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In this chapter, we show the results for the robustness of the probability of a CS against 
deviations from the assumption of a common known variance, in a similar manner as in 
[14]. We consider again our problem of selecting the best population out of k independent 
normally distributed populations with unknown means J1.i, but we allow the standard 
deviations 0"1,0"2, ... ,O"k of populations 11"1, ... ,1I"k to vary in the interval [-y-1 0"0, rO"o] (r ~ 1) 
where 0"0 is a chosen value. For ease of notation we write 0" = (0"1,0"2, ... , O"k) and by 
G = G(r, 0"0) we denote the set (r- 10"o,rO"o]k E jRk, so 0" E G. 

Using sample sums as response variables, the probability of correctly selecting one 
population related to our procedure Rn,c (corresponding to the first requirement) is 

n n 

P(CS1IRn,c,0") = P(E1(k)1 > :L1(i)j + c; i = 1, .. . ,k -1) 
1=1 1=1 

00 
= / P(ni(;) < y - c; i = 1, ... , k -1)dP(ni(k) ~ y) 

-00 

(5.1) 

We define the loss function as proposed by Driessen et al. [14J to measure the robustness 
under investigation. This loss is a function of k, r, rand 0"0 and defined by 

loss(k,P*,r,O"o) = minP(CS1 1(0"0, ... ,0"0»- min P(CS1 10"). (5.2) 
.11(6*) nU*),I7EG 

In words, it is the loss of the lower bound of P(CSt) for J1. E 0(0*) and 0" = (0"0,0"0, ... ,0"0) 
compared to the lower bound of P(CSl 10") for J1. E 0(6'") and 0" E G. For fixed 0" E G, 
the same LFC, J1.[1] = ... = J1.[k-1J J1.[k] - 0*, as in the problem with common known 
variances applies, resulting in the minimum probability of P(CS11 0") (again using that <I?O 
is increasing) 

min P(CS1 10") = min P(CS1 10", LFC) 
n(S*),I7EG I7EG 

. /00 krr-1 [ O"k no* - c ] 
= mm <I?(z- +..;n ) d<I?(z) 

I7EG 0"' nO"' -00 ;=1 l t 

(5.3) 

and because P(CS1 10", LFC) is a decreasing function of 0"1, 0"2,"" O"k-1 (Driessen [14J and 
Tong and Wetzell [29J 1) 

minP(CS110",LFC)= min P(CS11(rO"o, ... ,rO"O,O"k),LFC) 
I7EG 17k El1,-1170,1'170] 

-00 
1 Tong and Wetzell [29] show, by using an application of Slepian's inequality, that P(GS1 10-) is decreasing for 

Ti, j #- k, defined by Tt = o-t In, ; i = 1, ... , k, when the other Ti, i #- j are kept constant. Hence in our case, with 
sa.Illple sizes n fixed, We derive that P(GS1 10') is decreasing in 0'" i #- k. 
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The expression for P(GS1 1(1', LFG) is not a monotonous function for (1'k as Driessen et al. 
point out in [14] and P(GS1 1 (r(1'o, .. " r(1'o, (1'k), LFG) is difficult to analyze. For the defined 
loss function, these results lead to 

loss(k, P*, r, (1'0) = min P(GS1 1«(1'0,"" (1'0» min P(GS1 1(1') 
OW) O(o*),(fEG 

00 . J I: 1 Z(1'1: n6* - c = P(GS1 1«(1'0,"" (1'0), LFG) - mm <I> - (-+ yn )d<l>(z) 
(f/oEh- 1 (fo,'),(foJ r(1'o nr(1'o 

where 

-00 

= P* 
-00 

-00 

00 

p. - min J <l>1:-1(r-17"0,1 + sz)d<l>(z) 
'Y-2$.~1 

-00 

00 

n6* - C J 7"0,1 = yn(1'O and determined by <l>1:-1(y + 7"o.dd<l>(y) = p •. 

-00 

(5.5) 

An interesting conclusion is that loss(k, P*, r, (1'0) is not depending on (1'0. Thus we can 
say loss(k, P*, r, (1'0) = loss(k, P*, r). Result (5.5) is of the same functional form as Driessen 
et al. found, so we can use the tables and figures they provided in [14]. These figures 
we present in appendix D. Like them, we will also consider the subset selection approach, 
particularly for our procedure, that is the probability of a correct selection by including the 
best population in the selected subset (we have referred to this event by GS2 ). Remember 
our assumption 11[1] ::::; 11[2] ::::; ... ::::; II[I:J - 6*. If again we allow the variances to be in the 
interval [r- 1(1'0, r(1'o] , thus (1' E G, we find 

n n 

P(GS2 IRn,c,(1') = P(LY(I:)j 2:: LY(;)j - c; i = 1, .. . ,k -1) 
j=1 j=1 

00 

= J P(nY(;)::::; y + c; i = 1, ... , k - 1)dP(nY(l:) ::::; y) 

-00 

The minimum probability of P(GS2 I (1') over n(6*) is attained for II in the LFC, because 
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CPO is increasing, resulting in 

min P(CS2 IiT)::::: min P(CS2IiT, LFC) 
$1(s·),O"EG O"EG 

00 k-l [ *] . iTk n8 + C 
::::: mm J II cp(z- +..fii ) dcp(z). 

O"EG. iTi niTi 
-00 ,=1 

(5.7) 

This function is decreasing for iTl, ... , iTk-l as for (5.3) and therefore 

00 

minP(CS2IiT,LFC)::::: min J cpk_l(ZiTk + ~ +c)dcp(z). (5.8) 
O"EG O"kEb-10"o,-yO"o] "'(iTo n"'(iTo 

-00 

The definition of the loss function will be analogous to (5.2) 

loss(k,Q","'(,iTO)::::: minP(CS2 I (iTo, ... ,iTo))- min P(CS2 IiT) (5.9) 
$1W) $1W),O"EG 

and using the derived results gives 

loss(k, Q*, ",(,iTo) ::::: min P(CS2 I (iTO," .,iTo)) min P(CS2 liT) 
$1W) $1(8"),O"EG 

00 . J k 1 ZiTk n8* + C P(CS21 (iTo, ... , iTo), LFC) - mm cp - (- +..fii )dcp(z) 
O"kE(-y-10"0;YO"01 "'(rro wyiTo 

where 

TO,2 

-00 

00 

::::: Q* - min J cpk-l(",(-I To ,2 + sz)dcp(z), 
-y- 2 Ss S1 

-00 

00 

n8* +C . J Vii and determIned by cpk-l(y + TO,2)dcp(y) ::::: Q". 
niTo 

-00 

(5.10) 

The loss (5.10) has the same functional form as (5.5), so we can use the same figures 
provided in [14] and reproduced in appendix D. They show that the loss can be quite 
high, especially for a large number of population, such as k = 50 or k 100. 

5.2 Known variance (Jb others in interval 

As the minimum of the probability of a correct selection where all standard deviations are 
allowed to vary in the interval [-;,-liTO,"'(iTO] is hard to be found numerically, Driessen et al 
used a discretization procedure. In both cases, the Indifference Zone approach and the 
Subset Selection approach, we ended up with the same form of probability of a Correct 
Selection (CS1 or CS2) in the LFC, 

00 

min P(CS liT) ::::: min J cpk-l( ZiTk + ,-1 To)dcp(z), 
O"EG O"k Eb-1 O"o,-YO"o] ,iTO 

(5.11) 
-00 

where according to considering the Indifference Zone approach or the Subset Selection 
approach, respectively 

n8* - C n8* + C 
To ::::: TO 1::::: .;;:; or 'To = 1'0,2 ::::: 

, yniTo 
(5.12) 

44 



To calculate the value of this minimum to use it in the loss function, Driessen used a 
discretization procedure, and although this is not exact, it yielded a lower bound for the 
loss. If we assume the value of I1'k to be known, which is still a considerable smaller re­
quirement than the assumption of knowing all 11' values like we did before, we can solve 
the problem numerically. So, we assume I1'k = 11'0, that is all the other standard devia­
tions are allowed to vary around I1'k. We can also regard at this model as by allowing all 
variances to vary around some kind of a pivot value I1'Q and only assume I1'k = 11'0. We 
did consider some instances (10 populations, P* = 0.6,0.75,0.9) where all (including I1'k) 

standard deviations could vary in [r- l l1'o, rl1'o] and by a discretization procedure (at 20 
points with equal distance from each other), we found that the largest value for TO with 
the righthandside of (5.11) equal to P* were always attained for I1'k = rl1'o and thus for 
all 11', = rl1'o, i = 1, ... , k. In that case, we can apply the normal preference threshold pro­
ced ure and use table C.1 and just take common standard deviation rl1'o to calculate nand c. 

In this model, we assume I1'k = 11'0 and therefore (5.11) reduces to 
00 

P(GS I 11') = J <Ilk-1(r-1 z + 1 To)d<ll(z). (5.13) 
-00 

So, if we want our procedure to satisfy the two requirements that we defined in section 
3.2, we have to look for the values of TO satisfying 

00 J <Ilk- 1( r-1 z + r-1To)d<ll(z) P* (5.14) 

-00 

where we replace P* by Q* to find the value of TO required to have a GS2 with probability 
at least Q*. In appendix C.3 we provide a table for the values of TO for different values 
of P* or Q* and r. Remark that all entries are larger than their corresponding values in 
table C.l, where we assumed to have known and equal variances. The relations we find 
for nand c are the same as in section 3.3 and thus (3.18), where T1 := TO,l and T2 := TO,2 

n = (I1'O(TO,l + TO,2»)2 11'5 2 2 28* and c 48* (TO,2 - TO,l ). (5.15) 

We refer to the specification of nand c in this manner by a robust design. We must how­
ever keep in mind that the value of I1'k is assumed to be known. 

For the selection of t (t > 1) best populations, the results are more difficult, because 
the probability of a correct selection of the t best ones is not clearly monotonous for 
l1'[k-t+l], .•. ,I1'[k]' This probability is namely (under the LFC (3.52)) 

n n 

P(GStIR~ c) = P( min L: Yc')j > max L:Yci)j + c) 
, k-t+1$i$k. 1 l$i$k-t. 1 ,= ,= 

k n n n 

= '" P( f.!1ax "'Yci)j+C<"'Ycl)j:::; min. L:Yci)j) L..t 1<s<k- t L..t L..t k-t+l<s<k. 
l=k-t+1 - - j=1 j=1 i¢.1 - ,=1 

(5.16) 

We could try to find to minimum for P(GStIR~ c), when all standard deviations are allowed 
to be in [r- 111'0, rl1'o] , but as we can see, it is difficult to conclude whether l1'[i] for 
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i = k - t + 1, ... , k should be large or small in the minimum. To solve this, we should solve 
this t dimensional optimization problem, which we do not consider here. 
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Chapter 6 

Bayesian approach 

6.1 Introduction 

Having used frequentist statistics in the former chapters, we now take a look at our selection 
problem from a Bayesian viewpoint. A Bayesian approach to the selection problem seems 
to be promising, because it enables us to get rid of some of our assumptions, such as 
to know the variances. However, if we want to handle the selection problem in all its 
aspects in a Bayesian way, the selection problem should be regarded as a decision problem 
especially with respect to the determination of the sample sizes and it would take too much 
to analyze it in this thesis. Anyway, it is an interesting problem for future research and 
in section 6.4 we give some remarks on a full Bayesian approach. We restrict ourselves to 
the problem considered in the former chapters, the selection of the best population among 
k independent normally distributed populationsand we do not consider determination of 
sample sizes, but only a Bayesian data analytic approach after the experiments have been 
performed. First we assume all variances to be equal and known, but we will consider later 
the problem of unknown variances. 

6.2 Equal and known variances 

To get the idea of what is going on we first look at a single population. In this section we use 
the results derived in [10, par. 2.2]. We assume the population is normally distributed with 
unknown mean J1. and known variance ,,2 > O. Like before, we denote the random variables 
by capital letters and the observations of this random variable by lowercase letters. We 
take a sample of n (fixed) observations, Yj, j = 1, ... , n, assumed to be independent and 
equally distributed 

(6.1) 

In the previous chapters, in particular in section 3.2, we developed the procedure in order 
to design the experiment in order to find the minimum sample size n to take from each 
population and still satisfy the two conditions we imposed. This value for n and for 
the preference threshold value c, to prevent us from selecting a single population that 
is only slightly better than another population, could be determined by specifying two 
probabilities for the two probability requirements and by dividing the parameter space 
into a preference and an indifference zone, by introducing a 8* value for the difference 
between the largest and second-largest mean. In the Bayesian approach in this chapter, 
we cannot determine n beforehand. 

In Bayesian statistics the important formula is 

(6.2) 
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where p(JlI(Yl, ... , Yn)) is the posterior probability density function of Jl after collecting the 
data Yl, .. " Yn, 0( means proportional to, l(JlI(Yl,"" Un» is the likelihood function of Jl 
based on data Yl, ... , Yn and p(Jl) is the prior distribution of Jl. The likelihood function 
based on the model and data Yl, ... , Yn is 

(6.3) 

so Y '" N(Jl, :;) is a sufficient statistic for updating the probability distribution function for 
Jl. We take a so-called non-informative prior, meaning the form of the posterior is (almost) 
equal to the form of the likelihood function. For this location problem we take prior 

(6.4) 

where c > 0 is a constant. Remark that this is not a proper probability distribution, 
because the integral over (-co, co) does not exist, but it can be used as an approximation. 
We can assume that this prior is locally uniform and thus, approximately, 

(6.5) 

After calculating the normalizing constant to make the righthand-side integrate to one, we 
get 

2 

( I( - (1 -1/2 [ n ( - 2] PJl Yl,· .. ,Yn))-(21r-) exp --
2 

2 Jl-Y) , n (1 
-co < Jl < co. (6.6) 

Hence, the posterior distribution is Jl '" N(y, :;). 

Now suppose that we have k normally distributed populations and suppose 

1. we take a sample of n observations from each popUlation 

2. the variances of each population are all equal to a known (12 > 0 

3. the observations within a sample are independent, conditional on having the same 
distribution and also the populations are independent of each other. 

Like before, we denote the jth observation of the ith population by Yij and we know that 
the sample means are distributed as 

(6.7) 

The posterior distribution for Jli related to prior (6.4) is 

(6.8) 

Hence, given the data Yij, we have k posterior distributions for Jli, i = 1, ... , k. We are 
interested in the probability 

k 

Pi := P(population i is the best one) = P(Jli = max JlI)' 
I=l, ... ,k 

(6.9) 

Remark that 2: Pi = 1 and this can be used as a control of the result. Using the posterior 
i=! 
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distributions for Pi! 

Pi = P(Pi > PI; I 1, ... , k, I f i) 

= /00 Ilk ell ( m - iii ) dell ( m - iii ) 
1=1 rFlfo rFlfo 

-00 I¢' 

= j IT clI(z + ~/-; )dcll(z). 
-00 1=1 

I¢i 

(6.10) 

After getting the data, these probabilities can be calculated. The values for the probabili­
ties we find in this manner can be used to determine a subset of minimal size that counts 
for at least a specified amount of probability of containing the best population. The idea 
behind this is similar to the standard subset selection approach, where we selected a subset 
that should include the best one with at least a specified probability. We will show some 
results for some simulations in chapter 7. 

6.3 Both unknown mean J.l and unknown a 2 

In this section we consider the case of an unknown variance rF2 for all populations. In a 
non-Bayesian approach, as in the previous part of this thesis, the calculations when rF2 is 
assumed unknown and not necessarily equal for all populations tend to be very complicated. 
Some procedures have been developed to deal with this problem, we described some of them 
briefly in section 5.1. Two of the methods described are two-stage procedures and the other 
one is a sequential procedure. Here, from a Bayesian viewpoint, we first look at a single 
population and the observations of this population are denoted by Yj; j = 1, ... , n. This 
section is again based on Box & Tiao [10, par. 2.4]. There it is shown that the sample 
mean Y and the sample variance 

n 

52 = v-I L:(Yj - y?, v = n - 1, 
j=1 

are jointly sufficient for (p, rF 2
). The likelihood function is (defined on P E ffi., rF > 0) 

[(p, rF, (Yl,"" Yn)) DC rF-"exp { - 2~2 [V52 + n(p- y)2]} . 

(6.11) 

(6.12) 

We assume that P and rF are independent and therefore the prior p(p, rF) = p«p)p(rF). 
Following Box & Tiao, we take the same non-informative prior 

p(p) DC C (6.13) 

and it turns out that 

p(rF) DC rF- 1 for rF> 0 (6.14) 

is a non-informative prior for rF. Now the posterior distribution for -CX) < P < CX), rF > 0 
becomes 
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Our selection problem is concerned with the values of p., so we are interested in this and 
not in u. Hence, we take the marginal posterior distribution of p. 

and, after defining 

we have for -00 < t < 00 

00 

p(P.I(Y1' ... , Yn)) J p(p., UI(Yl, .. " Yn»du, 
o 

p.-y 
t = sjFn' 

1 (t2) -t(II+1) 

P(tl(Y1, ... , Yn)) = B( ~1I, t)y'V 1 + -; , 

(6.16) 

(6.17) 

(6.18) 

where B(p, q) is the beta function B(p, q) = r(p)r(q)jr(p + q). This function is Student's 
t-distribution with 1I = n - 1 degrees of freedom. Note that p. is the random variable and 
(y, s2) are known sample quantities. Summarizing, using the Bayesian approach, we find 
that the posterior distribution of }j/n is Student distributed with n-l degrees of freedom. 

Now, suppose we have k populations, and 

1. we take a sample of n observations of each population 

2. the means P.i and the variances a} are independent from each other 

3. the observations within a sample are independent, conditionally on having the same 
distribution and also the populations are independent of each other. 

Hence, we do not assume known variances. We are interested in the probability 

Pi : = P(P.i = max P.') 1=1, ... ,1e 

00 Ie 

= J II P(P.' ~ m)dP(p.; ~ m) 
-00 1=1 

I¢i 

(6.19) 

where Tn - l denotes the cumulative distribution function of the Student distribution with 
n - 1 degrees of freedom and Si the sample variance of the ith population. In chapter 7 we 
discuss some simulations of the data analysis proposed in this section. 

6.4 Remarks on full Bayesian approach 

In a full Bayesian approach, this selection problem should be regarded as a decision pro­
blem. Doing this, we can handle this problem in a broader way, without having too many 
restrictions. The idea would be to use a utility function, in which all kind of aspects 
could be taken into account. This can be the costs per observation we take (this will have 

50 



a negative influence on the utility), and other aspects such as the time could be taken 
into account. Obviously, the utility function should depend on the value we attach to 
a correct selection. Perhaps there is a restriction on the maximum sample size to take, 
but certainly the sample size n will play an important role. To design the procedure we 
would want to optimize the expected utility over this value n and in that manner be able 
to determine n. In [24] Lindley describes the way decisions should be made based on a 
Bayesian approach under uncertainty. This book can be used as a first guideline to gain 
insight in Bayesian theory. Lindley and also Bernardo and Smith [6] strongly argue for 
maximizing the expected utility as the only sound criterion for decision making. The book 
by Bernardo and Smith describes how the Bayesian theory should be applied to approach 
this problem. An important role, next to the sample size n, will be played by the prior 
distribution, which should be used to model current beliefs. It is however quite likely that 
we can not delete a model assumption, because we have to decide about the design of the 
experiment before the data is taken. A full Bayesian approach seems to be very promising 
and can be a nice topic for future research. 
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Chapter 7 

Simulation studies 

In order to illustrate our preference threshold procedure and to be able to compare it 
to other approaches, we present a number of simulations of the selection problem in this 
chapter. For this aim, it is most useful to be in control of all input like the variance or 
the means. Therefore, we use Mathematica (Version 2.2, for the X Window System) to 
produce (pseudo-) random samples of the populations we want to consider. We should 
remark however, that we have some doubts about the generator producing realistic normal 
distributed observations. Although the sample variance estimators for a random sample 
still were in a 95% confidence interval, they were often close to the edge. Still, the worries 
are not too alarming, and we can refer to Bowman [9] who pays some attention to the 
performance of random generators. 

7.1 Some cases 

First we apply the different procedures on one instance to illustrate how they work. In the 
next section 7.2 the simulations will be repeated for at least 1000 times and with that we 
can draw some conclusions. 

7.1.1 Preference threshold and standard procedures 

Suppose we want to choose the best population out of k = 10 independent normally dis­
tributed populations with common variance (1'2 == 1 and we are indifferent about the se­
lection if the difference between the largest and second-largest actual mean is less than 
0" = 0.5. Furthermore, we want to satisfy the probability requirements of the preference 
threshold procedure with probability p" 0.75 for the first one (3.3) and Q" = 0.9 for the 
second one (3.4). According to (3.18) and table C.1, we have to take a sample of size at 
least (1 * 2.263~~t~598293)2 = 27.5268 and the value for c becomes c = 1.88683. We have to 
round the value of the sample size upward to the nearest integer value, this means we have 
to take a sample of size n = 28 of each population. Because the value for n is rounded up­
ward, the probabilities with which we satisfy the two requirements have slightly changed. 
For n == 28, according to (3.8), the value forT} becomes 'I} = 2.28917 and therefore the 
probability for the first requirement becomes 0.7568 from (3.9), instead of the specified 
P" = 0.75. Also for n = 28 we have '12 3.00233 from (3.14) and the value associated with 
Q* becomes (3.13) 0.9028 instead of the specified Q* = 0.9. We see that these changes are 
considerably small. 

We choose the actual means to be in the least favourable configuration, for example we 
take l' = (19.5, ., .,19.5,20) and we draw the related populations using the random generator 
for these means and variance (1'2 == 1. Of course, the actual means are unknown in practice. 
We take 100 observations of each of the 10 populations and take the first 28 of each 
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Pop. Sample sum Rank 
1 543.04 1 
2 551.69 9 
3 547.71 7 
4 546.61 6 
5 547.85 8 
6 544.24 3 
7 544.51 5 
8 544.50 4 
9 543.48 2 
10 554.35 10 

Table 7.1: Preference threshold procedure 

population as sample. This results in the following (rounded) sample sums in table 7.1. 
The largest sample sum is achieved by population 10 and the second-largest by popUlation 
2. The distance between these two is 2.66. The threshold value c = 1.88683, so we only 
select populations with sample sums larger than or equal to 554.35-1.88683 = 552.463, thus 
only 11"10. This is actually the best one, so this is a correct selection. 

If, in this situation, we would apply the stand81'd indifference zone approach as 
described in section 2.1, on the same data with 0* = 0.5 and P* = 0.75, then according 
to (2.11), we would have to take samples of at least size (h20~:367)2 = 20.4968, so rounded 
to the next larger integer we have n = 21. From the same population as before we now 
take instead of the first 28 observations, the first 21 observations of each population. This 
results in (rounded) sample sums, given in vector format: 

(410.57,418.87,408.24,414.32,410.94,406.60, 407.34, 408.77, 405.64,417.99). 

The maximum of the sample sums is achieved by 11"2, hence according to Bechhofer's pro­
cedure we would select 11"2, which turns out to be not the actual best one. Remark that 
this is just coincidence for this run, in 75 % of all runs it should select the actual best one. 

If, instead of p. = 0.75, we would have used P* :::: 0.9 then the sample size would become 
n = 36 and by taking the first 36 observations of each population from the data as before, 
the sample sums become 

(702.84,709.82,701.33,706.20,702.85,699.57, 696.70, 701.78, 695.46, 711.06). 

We select again the population with the largest sample sum, so now we select the actual 
best one, 11"10. We can remark that, as stated in (3.29), the sample size for the preference 
threshold procedure with p. and Q* is between the values for the sample size we would 
need for the standard indifference zone approach with p. and Q. respectively, for we have 
21 < 28 < 36. 

In section 4.1 we discussed the expected subsetsize of the preference threshold proce­
dure. We showed that we can make a statement about the maximum expected subset size, 
although in this instance, where JJ is in the LFC, the expected subset size is equal to the 
maximum expected subset size. This is, (4.6), for n :::: 28, c 1.88683,0· = 0.5 and k = 10 

-00 

00 

+ (k - 1) f ~k-2(z + ~ )~(z + c -;;0. )d~(z) = 1.21374 (7.1) 
v nO" nO" 

-00 
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The theoretical value n = 27.5268 yields a maximum expected subset size 1.22102. 

If we apply the standard subset selection approach (section 2.2) on the samples of the 
first 28 (sample size we found in the designing phase of the preference threshold procedure) 
observations of each drawn population sizes we find the value of d = 2.98293*v'28* 1 = 15.784 
(rounded) according to (2.15) and table C.1, for p. = 0.9. Consequently we then select all 
populations with sample sum larger or equal to 554.35 - 15.784 = 538.566, resulting in the 
selected subset of all populations. The maximum expected subset size with dis 

max E(SIRG) = 10 * 0.9 = 9. o 

This result is achieved by applying (4.10). The subset size of 10 we found in this run 
is consequently not very surprising. We have to keep in mind that the former result is 
without restrictions on the parameter space, hence we allow J.I. to be in the entire space. 
With a restriction on the parameter space, so assuming we are in the preference zone, the 
maximum expected subset size can be calculated using (4.11) and this gives for n = 28 

max E(SIRG) = 6.20737, 
0(0*) 

a considerable smaller size compared to the maximum expected subset size of 9, we found 
without restrictions on the parameter space. 

7.1.2 Bayes, cr2 known 

As we explained in chapter 6, after getting the data we can establish the posterior dis­
tribution functions and from that make statements about the probability that a selected 
population is the actual best one. First, we look at the case where the variances for k = 10 
populations are known and equal, (1'2 = 1. For the simulation the mean vector is chosen 
to be J.I. = (19.5, ... ,19.5,20), so the first nine populations have the same mean value and 
the 10th is the best population. We use the same observations from the 10 populations 
as in 7.1.1, so we have the same sample sums with n = 28. After calculating the sample 
means, we can calculate the posterior probability that population i is the best population 
by using (6.10). The results are given in table 7.2. Indeed, the sum of these probabilities 

Pop. Sample mean Pi 
1 19.3942 0.0126 
2 19.7032 0.2409 
3 19.5612 0.0742 
4 19.5219 0.0509 
5 19.5662 0.0777 
6 19.4372 0.0208 
7 19.4468 0.0232 
8 19.4466 0.0231 
9 19.4100 0.0152 
10 19.7984 0.4614 

Table 7.2: Bayesiau probs., (1'2 known 

is 1. The actual best population 'lT10 has indeed the highest posterior probability to be the 
best one and if we want to have a minimum subset with at least a certain probability, let 
us say 0.9, to contain the best one, we select {'lT10, 'lT2, 'ITs, 'ITs, 'lT4} leading to total posterior 
probability 0.9051 that this subset contains the best population. 
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7.1.3 Bayes, o} unknown 

We can also not assume to know the actual variances and use the Bayesian analysis of the 
data as derived in section 6.3. Applying this method on the same data as in section 7.1.2 
we get the following in table 7.3: Note that the probabilities sum up to 0.9999 (rounding 

Pop. Sample mean Pi 
1 19.3942 0.0017 
2 19.7032 0.2010 
3 19.5612 0.0404 
4 19.5219 0.1413 
5 19.5662 0.0145 
6 19.4372 0.0107 
7 19.4468 0.1055 
8 19.4466 0.0284 
9 19.4100 0.0189 
10 19.7984 0.4375 

Table 7.3: Bayesian probs., ut unknown 

errors). The posterior probability Pi is calculated from (6.19). Population 11"10, indeed, 
has the largest posterior probability that it is the actual best populationand if we look 
for the minimum subset counting for at least 0.9 of the probability of including the best 
population in the selected subset, we get subset {1I"10, 11"2, 11"4, 11"1, 11"3}. Together they count 
for total posterior probability 0.92575 that this subset includes the best population. The 
selected subset is only a bit different from the subset selected in section 7.1.2 and 11"10 and 
11"2 have the largest probabilities in both subsets. 

7.1.4 Sequential procedure 

To the same observations from the k populations as in the first simulation in section 7.1.1, 
we apply the sequential procedure as described in section 2.3. For the value of 1l' we 
take 1l' = 0.10, giving a boundary value of 9 8.97727, according to (2.18). We start the 
procedure by taking the first observation of each population. This gives sample sums (of 
a single observation) 

(19.94,20.30,20.33,21.49,19.09,19.85,18.68,18.40, 18.64, 19.99) 

and we do not eliminate any population because each sum is larger than 20.33 - 8.97727 = 
11.3527. We proceed by taking, at each stage, one more observation of each population 
and when n = 13 we have sample sums 

(252.083,261.369,255.235,256.343,254.219, 254.116,257.187,254.539,251.737,256.738), 

so we eliminate all populations having sample sums less than 252.392. Therefore, we 
eliminate populations 11"} and 11"9' For n 15 we eliminate 11"6, and for n = 19 we eliminate 
11"1. In the 20th stage we eliminate populations 11"3 and 11"8, in the 30th stage we eliminate 
11"5, in stage 40 population 11"4 is eliminated and finally in stage 45 we have sample sums 

(882.046,892.312), 

for 11"2 and 11"10 respectively, because they are the only ones left to be considered. In this 
stage 11"2 is eliminated and the process stops. The remaining population is 11"10 and this 
is the one we assert to be the best. Hence, after a total number of 75 observations the 
sequential procedure results in a single remaining population, and it is the actual best one, 
indeed, in this simulation. 
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7.2 Long run simulations 

In this section, the simulations consist of at least hundred runs, so we we can draw some 
conclusions. We will investigate the performance of the preference threshold procedure 
with J.l in the LFC, so we can compare it with the theoretical values, we carry out some 
Bayesian data analysis and we investigate the effects of departures from the assumption of 
known standard deviations. For some simulations it is necessary to take observations from 
the populations one by one, for example in case of a sequential procedure, but for others 
we can draw the sample sum directly from the random generator which is much faster. 

7.2.1 Means in least favourable configuration 

Preference threshold procedure Rn,c 

The first simulation we run is with 6* = 0.5, P* = 0.75 and Q* = 0.9 for k = 10 populations. 
We take J.l to be in the LFC for the simulations, so for example 

J.l = (19.5, ... ,19.5,20) (7.2) 

and we take the variances all equal to one. In order to satisfy both requirements (3.3) 
and (3.4) on the Rn,c we need to take samples of size n = 28 and the value for c must be 
c = 1.88683. In this simulation of 1000 runs, in each run we take a new set of 10 popu­
lations, for each population we take observations distributed with mean J.li and variance 
0'2 and apply Rn,c' The detailed results for the simulation (for the first 100 runs) can be 
found in appendix E.1 and the results for several starting values of the random generator 
for 1000 runs are presented in appendix E.2. In E.1 we took observations one by one, but 
in E.2 we drew the sample sum directly, distributed N(nJ.li, nO'2 ). 

The theoretical value ofthe (maximum) expected subsetsize is equal to 1.2137, according 
to (4.6), in the LFC when the rounded value for n is used and from the results in E.2 we 
see that the observed average subset size denoted by 5, is for every instance never far from 
this theoretical expected subset size. The average of the observed subset size over the nine 
runs is equal to 1.206. 

In each of these simulations, the number correct selections of a single population (C SI), 
are expected to be 756 and the actual observed values are close to this theoretical value. 
The average over the nine runs is 761.1. For the number of CS2 , correctly selecting a 
subset, we expect 902.8. In the nine runs, the values for CS2 are indeed around this value. 
The average is equal to 901.78. 

The number of correct selections in case only one population has been selected, as 
analysed in section 4.2, is for the first instance CSl/(CSI +FSI) = 768/846 = 0.9078. Indeed, 
this value is larger than P" = 0.75. We can calculate the theoretical value, using (4.20) 
and (4.21). For P(CSdLFC) we have of course P* = 0.75 and we calculate P(FSdLFC) = 
0.0751348. Therefore, the theoretical value for 

(7.3) 

The observed 0.9078 is very close to this. For the other eight runs the values are: 0.9197, 
0.9090, 0.9164,0.9187, 0.8970, 0.9110, 0.9036 and 0.9095. These results are also close to 
the theoretical value. 

Bayesian probabilities for known variances 

On exactly the same populations as used in the previous section 7.2.1 for the preference 
threshold procedure (J.l as (7.2) and the variances of the k = 10 populations all equal to 
one), we calculate the Bayesian posterior probability for each population to be the best 
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one, after taking a sample of n = 28 using (6.1O). The details are given in appendix E.3 
and they conform with the results in the previous section 7.2.1. In every run where the 
Bayesian probability of 11'10 is the maximum, it is selected by Rn,c as being the only best 
one, with the exception of 10 cases where 11'10 is selected in a subset of size larger than 1. 
Every time Rn,c makes a False Selection the chosen population has a fairly higher value 
than 11'10. 

Bayesian probabilities for unknown variances 

Assuming not to know the variances on exactly the same observations as before in subsec­
tion 7.2.1 for the preference threshold procedure, we must proceed as explained in section 
6.3 and use (6.19) to calculate the Bayesian posterior probabilities. Therefore we have to 
calculate the sample means and sample variances. The results can be found in appendix 
EA. For the greater part, these results conform with the Bayesian probabilities for known 
variances. Of course, the exact probabilities are not the same and the selected subset is 
sometimes a bit different than for known variances. In all runs, a subset not containing 
11"10 is never selected. 

Standard subset selection procedure 

To see how the standard subset selection procedure (section 2.2) performs and to see if the 
selected subset conforms with the subset found in E.3 (and EA) we carry out a simulation 
on the same data as before. We have p. in the LFC (7.2), Ie = 10 populations, 0'2 = 1 
(known) and we choose P* = 0.9. We have n = 28 and from (2.16) we get d = 15.784. 
Because we assume to be in the preference zone, with {;* = 0.5, the maximum expected 
subset (now equal to expected subset, for p. is in the LFC) can be calculated from (4.11) 
and is equal to 6.20737 for this value of nand d. In appendix E.5, where the results of this 
simulation is given, the actual subset size is 5.82, which is smaller. 

Remark that for this instance we assume to be in the preference zone, but for the 
calculation of d we take Gupta's LFC where all means are equal. Therefore, d is larger 
than necessary and this is reflected in the results in E.5. Comparing to E.3 and EA we 
notice that the subset selected in the Bayesian approach is always contained in the subset 
selected by Gupta's approach. 

Sequential procedure 

On the same data for the first 100 runs, we apply the sequential procedure of section 2.3 
with a = 0.1, hence boundary 9 = 8.97727. The results are in appendix E.6. After 200 runs, 
the procedure selects 190 times the actual best population and it selects 8 times a non­
best one. In the other 2 runs, the procedure needed more than 100 observations of some 
population to make a decision. We can say that the procedure selected 190 out of 200 times 
the right one (including two indecisive runs, when the stage was larger than 100), hence 
95%. At first sight this result is higher than expected (since a = 0.1 we expect 90% correct 
selections), but as we remarked in section 2.3 this 90 % is a lower bound. Furthermore, to 
come to this result, the sequential procedure needed a total number of 37,409 observations. 
Divided over 200 runs and 10 populations, this is equal to an average number of 18.705 
observations per population per run. Compared to the preference threshold where we have 
to take 28 observations per population per run, this is more economical. However, once 
again, we remark that a sequential method is not applicable in every situation. Remarkable 
is that the largest number of observations taken is not in an indecisive run, with stage larger 
than 100, but in run 104 for only 66 stages. Of course, this is possible if in the first stages 
popUlations are 'close' to each other and we can not exclude them. 
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7.2.2 Simulation with J.l not in LFC 

Preference threshold procedure Rn,e 

If we take 0* = 0.5 and we take 

J1. = (19, ... ,19,20) (7.4) 

then the actual J1. is not in the Least Favourable Configuration and the performance of 
our procedure is increasing. For a run of 500 with P* = 0.75, Q* = 0.9, k = 10,0* = 0.5 
and all variances equal to one, our preference threshold procedure Rn,e selects 500 times 
only the actual best population, hence no false selections at all. It shows that an increase 
in differences between the means increases the probability of the actual best population 
ranking best. 

Bayesian probabilities; q2 known 

Also for this configuration of J1. (7.4) we calculate the probability for each population to 
be the best one, based on the sample of size n = 28. We observe that for the first 100 
runs the probability assigned to 11"10 is always larger than 0.90823, thus the probability of 
population 10 to be the actual best one is very high. 

Sequential procedure 

If we apply the sequential procedure of section 2.3 with 0' = 0.1 to exactly the same 
populations ofthe first 200 runs, we see that it selects 200 times the actual best population, 
after taking in total 20715 observations. That is on average 10.3575 observations per run 
per population, compared to 28 observations per population per run needed for Rn,e, but 
that sample size had to be based on the least favourable configuration. This is considerably 
lower, however, it is not always possible to apply a sequential procedure, as we explained 
in section 2.3. Notice also that the number of observations per run per population with 
the means in this configuration is also lower than the average number of 18.7 observations 
needed for J1. in the LFC (see section 7.2.1 for the sequential procedure). This is a strong 
feature of the sequential procedure, that it can 'decide' in an early stage that it is possible 
to stop taking observations if a population is clearly worse. 

Preference threshold procedure Rn,e 

Taking a J1. c.onfiguration not as far as before from the least favourable configuration, we 
take for 0* = 0.5, 

J1. = (19,19,19,19.1,19.2,19.3,19.3,19.4,19.5,20). (7.5) 

The results of this simulations are in appendix E. 7. From that we draw the conclusion 
that also now the preference threshold procedure performs better than it would do with 
J1. in the least favourable configuration. The number of CS1 , correctly selecting only one 
population, is between 920 and 934, higher than the expected 756 for J1. in the LFC. The 
same is true for the number of CS2 , which is between 972 and 982, where we expected 900. 

7.2.3 Decreasing P* for fixed Q* 

What happens to the preference threshold procedure, if we decrease the value of P* and 
we keep Q* fixed? We will investigate this for the configuration 

J1. = (19.5, ... ,19.5,20). 
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We have the result for P'" = 0.75 and Q" = 0.9 in appendix E.2, now take P" 0.5. 
Then we have to take samples of size e"(L47;~~:t98293»2 = 19.8716, that means rounded 
upward n = 20. The value of the preference threshold is c = 3.36137, so we will select all 
populations with sample sums within this distance from the maximum sample sum. The 
results are summarised in table 7.4. It is logical that the subset size has increased, because 

s 1.812 Seed 1 
CSt 496 FSI 57 
CS+ 404 FS+ 43 
CS2 900 FS2 100 

Table 7.4: P" = 0.5 and Q" = 0.9 

the requirement on selecting one population is less strong. The number of CSt (expected 
value 500) and CS2 (expected value 900) are as expected. Now take p. = 0.3, resulting in 
samples of size (7"1 = 0.867933) n = 15. The preference threshold c becomes c = c = 4.07227. 
Taking the sample sums directly from the random generator we get table 7.5. Again, the 

s 2.548 Seed 1 
CSt 316 FB} 44 
CS+ 584 FS+ 56 
CS2 900 FS2 100 

Table 7.5: P" = 0.3 and Q. = 0.9 

subset size has increased, which is logical. The number of CSt is a bit higher than the 
expected 300, but the number of CS2 fits perfectly with the expected 900. Finally, we take 
P" = 0.1, then n = 9 and c = 4.44893, and the results are in 7.6. 

The maximum of the expected subset size in this situation n 9 and c = 4.44893 is 

max E(SIRn e) = 4.16122. 
0(0·) , 

The observed 4.117 is close to this theoretical value, like the observed number of CSt and 
CS2 conform to their expected values. It is very remarkable that in every instance the 
number of CS2 is exactly equal to 900, but this is just 'coincidence'. 

7.3 Selecting t = 3 best populations 

As an example of selecting more than one best population, we simulate the selection of 
t = 3 best populations out of k = 10 populations(see section 3.7). For 8* = 0.5 the least 
favourable configuration can be taken as 

11 = (19.5, ... ,19.5,20,20,20). (7.6) 

s 4.117 Seed 1 
CSt 107 FBl 24 
CS+ 793 FS+ 76 
CS2 900 FS2 100 

Table 7.6: P" = 0.1 and Q. = 0.9 
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We assume to know all variances equal, say CT2 = 1, and we specify p. = 0.75 and Q. = 0.9. 
For these values, by using table C.2, we find n = 40 and c = 1.98143. We simulate the 
experiment by drawing for each population the sample sum based on Pi and 0- and apply 
the preference threshold procedure for the selection of t best populations, R~ c' The results 
are in appendix E.B. We expect a number of about 750 for the value of CSt', the selection 
of the t best populations alone. The observed values are quite widely spread around this 
750, but the average is 752 which is close. As we remarked in section 3.7, for the second 
requirement, including the t best populations in the subset, we worked with a lower bound. 
Therefore, we expect the numbers of CSts to be larger than 900, and indeed the average 
of all observed values for CSt8 is 90B which is higher. 

7.4 Varying variances 

As we have seen in chapter 5, deviations from the assumption of equal and known variances 
can have serious effects on the actual lower bound of our probabilities of correct selection. 
In that chapter we allow the variances to be in an interval defined by 'Y and 0-0' We run 
several simulations to study the effects. First we consider a rather extreme instance, taking 
'Y = 1.25, signifying that all standard deviations can vary in the interval h-Io-o, 'Yo-o], where 
CTO is a known value. We design the experiment as if all standard deviations are equal to 
CTO = 1, but when we the samples are taken with the actual standard deviation equal to 
CT = 1.25 for all 10 populations, a situation that can appear for 'Y 1.25. The configuration 
for P is in the LFC, where 8· = 0.5, P* 0.75 and Q* = 0.9. Therefore, assuming CT = 1, 
we take samples of size n = 28 and use preference threshold c = 1.88683. In appendix E.9 
we find the results for this instance. For all five different starting values of the random 
generator (seed) the number of selecting only the best population (CS1) is considerably 
lower than the specified 75% and also the number of selecting the best one in the subset 
(CS2 ) is lower than the specified 90%. Of course, this is due to the larger variances. From 
the figures in appendix D, reproduced from Driessen et al [14], we find that the loss for 
p. = 0.75, Ie = 10 and 'Y = 1.25 is about 0.14. Thus with the means in the LFC (as in this 
instance) and the worst configuration for the variances (likely in this instance), we expect 
a number of single correct selections of about 750 - 140 = 610 in 1000 runs. The values 
observed in appendix E.g are in this neighbourhood. For Q. = 0.9, Ie = 10 and 'Y = 1.25 
we find a loss of 0.12. Therefore the expected number for correct subsets would be in this 
instance around 900 -120 = 780. In appendix E.9 we observe values close to this. 

To check, we ran for the same instance a simulation of the preference threshold proce­
dure, but now with a sample size and preference threshold based on the actual standard 
deviations 0- = 1.25. Then, for P* = 0.75 and Q* = 0.9, we have to take samples of size 
n = 44 and use preference threshold c = 2.94818. The results in appendix E.I0 show 
that now the observed number of CSI and CS2 are close to the specifications, hence Rn,c 
performs as expected. 

7.4.1 Robust design 

In a robust design we assume to know the value of the standard deviation of the population 
corresponding with the largest mean, so CTI: and we allow the other standard deviations 
to vary around this value. We now assume to know 0-1: = 0-0 = 1 and we allow the other 
standard deviations to be in the interval h-1CTO, 'Yo-o] where 'Y = 1.25. We run a simulation 
for P in the LFC, p = (19.5, ... ,19.5,20) for Ie = 10 populations, where 8· = 0.5 and we want 
to have p. = 0.75 and Q. = 0.9. Designing the experiment as if all variances are equal to 
one, we have to take samples of size n 28 with preference threshold c = 1.88683. The 
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actual value of the standard deviations we take are 

17 = (0.8,0.9,1,1.1,1.2,1.25,1.25,1.25,1.25,1). (7.7) 

In appendix E.ll the results are presented. Of course, the procedure doesn't achieve the 
expected probability of a correct selection, because of the variance in the standard devia­
tions. However, the result is not as bad as in the previous example (appendix E.9). There 
the number of CSl was around 630 and here it is around 700. This can be explained by 
the fact that there are populations in the instance of this section with standard deviations 
less than the assumed value 17 = 1 and in the other instance all standard deviations were 
equal to 1.25. 

However, if we assume to know that the standard deviations vary around the known 
Uk = 170 = 1 value with -y = 1.25, we can use a robust design, and by using table C.3, we have 
to take samples of size n = 38 and use preference threshold c = 2.39279. In appendix E.12 
the results of this simulation are presented. Indeed, the procedure performs better now, 
and even exceeds the expected number of correct selections. Again, this can be explained 
by the fact that there are populations with standard deviations less than the most extreme 
value (Ui = 1.25), but that value is still taken into account in the robust approach. Remark 
as a support for this, that in the first 100 runs, where we have the details from, it seldom 
happens that population lor 2 is selected in the selected subset, the only occasion is in run 
72. The ones with the largest standard deviations, populations 6,7,8,9 are more frequently 
selected in the subset. 

This effect disappears if we take for the simulation the most extreme case for all standard 
deviations, meaning to take 

17 = (1.25, ... ,1.25,1). (7.8) 

In appendix E.13 we assumed all 17 equal to one in the designing phase and hence applied 
the ordinary preference threshold procedure, so we had to take n = 28 and c = 1.88683. 
As a result, we see that it really performs very bad and the number of CSl is around 650 
instead of the expected 756. Comparing it to the instance before with 17 as in (7.7), it is 
indeed worse, due to the extreme configuration of u. In appendix E.14 and E.16 we have 
calculated the corresponding Bayesian probabilities for Ui unknown as in section 6.3 for 
respectively appendix E.13 and E.15. For the greater part, the posterior probability for 
population 10 to be the actual best one is larger for the robust design in E.16 than in the 
ordinary design in E.14. Applying the robust design, we see from table C.3 that we have 
to take samples of size n = 38 and c = 2.39279. This results in the numbers we expected to 
get, see appendix E.15, for example the number of CSl is around 755 and we expect 756. 
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Chapter 8 

Suggestions for future research 

Selection procedures have been considered from the 1950's on, but still prove to be an 
interesting topic. To determine in our preference threshold procedure both sample size n 
and threshold c, we had to define two requirements. The first one seems very natural, to 
select the single best population with at least a certain probability, there may however be 
other ideas for a second requirement. This would be interesting to discuss with people in 
the practical situation, however, it is disappointing to find out that, although the applica­
tion of selection procedures is useful in some areas, they are not much used. Reasons could 
be that selection procedures are relatively young and not often mentioned in basic statis­
tics textbooks. Secondly, one is often focussed on variance analysing methods for which 
numerous software packages have been developed. Consequently, we could not share the 
experiences from practice, but this is of course, still a useful and interesting topic to discuss. 

Coolen and Van der Laan [12] chose a second requirement related to the probability 
of a false selection of a single population, others could be considered, such as one related 
to the probability of a correct selection given that one population has been selected as 
suggested in section 4.2. In that section we proved that this probability P(C81 181) attains 
a local minimum for the means in the Least Favourable Configuration. It would be nice if 
it could be proven that a global minimum is attained in the LFC (as we suspect), or if it 
could be proven that the area for which the local minimum in the LFC of P( C 81 I 8d is 
a global minimum on that area, is such that for practical situations we can safely assume 
that the minimum of P(C81 181) is attained for the means in the LFC. The problem is 
the form of the probability of a false selection of a single population, and it seems to be a 
tedious analytical problem, but solved it would yield a nice result. 

A promising future research topic in selection procedures is the selection problem de­
fined in a Bayesian framework. In chapter 6 we presented a Bayesian way of data analysis, 
but in a full Bayesian approach we should regard the selection problem as a decision prob­
lem. In such an approach, a utility function and the modelling of prior information need 
to be considered, and one of the goals can be the determination of the sample size in the 
designing phase of the experiment, typically by maximizing the expected utility. Using a 
Bayesian approach enables us to get rid of some assumptions (such as assuming common 
known variance) and it will be interesting to see how a Bayesian method would behave 
compared to the frequentist approaches, such as our preference threshold procedure. 
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Appendix A 

Smallest mean 

The selection of the population with the smallest mean out of Ie populations using the 
preference threshold procedure is similar to the problem of selecting the largest mean, 
because of the symmetry of the normal distribution. This will be explained below. The 
selection rule is to select all populations corresponding to sample sums smaller than or 
equal to the minimum sample sum plus threshold c, that is, select 7ri if 

n n 

Lyij < min LY/i + C. 
j=1 - 199 ;=1 

We still rank the actual means as 

where the goal is to select Jl[1], but the preference zone now becomes 

Jl[I] + 8* ::; Jl[2] ::; ..• ::; Jl[kj· 

For the probability of a correct selection we have 

n n 

P(CS1IRn,c) = P(LY(l)i < 2fJ!}~k LY(i)i - c) 
;=1 - - i=l 

= P(nY(i) > nY(1) + c; i = 2, ... , Ie) 
00 

= J P(nY(i) > Y + c; i = 2, ... , le)dP(nY(1) ::; y) 
-00 

= ] fI [1 
-00 .=2 

00 Ie 

= J II [1- 4i(z + nJl[l] - nJl[i] + c)] d4i(z). - vn~ 
-00 .=2 

(A.1) 

(A.2) 

(A.3) 

(A A) 

The minimum of this probability over 11(8*) is attained at the Least Favourable Configu­
ration (LFC), and in this case the least favourable configuration is 

Jl[l] + 8* = Jl[2] = ... = Jl[k]- (A.5) 
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Then 

Joo [ 6* + ] k-l 
P(CSdRn,c, LFC) = 1- ~(z + -foO' c) d~(z) 

-00 

00 

= J ~k-l(_z + n~~ c)d~(z) 
-00 

00 

J n6* - c 
:: ~k-l(w + VnO' )q$( -w)d(w) 

-00 

00 

J n6* c 
= ~k-l(z + VnO' )d~(z). (A.6) 

-00 

This is the same as we found in derivation (3.7) and the this works analogously for CS2 , 

hence the problem of selecting the population with the smallest mean is similar to the 
problem of selecting the population with the largest mean. 
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Differentiation under integral 

We consider the function of a correct selection of one population and we use the notation 
for E; as introduced in (4.22) 

(B.1) 

We want to prove that differentiating P/J(CS1) with respect to Ej is equal to taking the 
derivative with respect to Ej first under the integral sign, hence we want to prove 

(B.2) 

To do this, we first look at a general function and substitute P/J(CSt) later. We prove the 
following 

Corollary 2 Define function 

00 

F(E) = J f(z, E)dz, with E > 0, (B.3) 
-00 

then, assuming 

f 00 

J J (:/(z,t))dZdt<oo with f(z, t) 2: 0, (B.4) 

o -00 

we have 
00 

8F(E) J 8 
~ = 8/(z, E)dz. (B.5) 

-00 

Proof: 

Assuming that the following expression is bounded, hence 

f 00 

J J (:/(z,t)) dzdt < 00, with f(z, t) 2: 0, (B.6) 

o -00 
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we have, by an application of Fnbini's theorem [25, p. 32] that states that the existence of 

< co 

J J l!f(Z,t)ldzdt 
o -00 

implies the existence and equality of 

00 f 

J J (;/(z,t») dt dz, 
-00 0 

that 
€ 00 00 £ 

J J (;/(z, t») dz dt = J J (;/(z, t») dt dz. 
o -00 -00 0 

Therefore we can derive, with 

00 

G(t) = J ! fez, t)dz, 
-co 

that 
< < 00 

F(O) + J G(t)dt = F(O) + J J (!f(z,t») dzdt 
o 0 -00 

co < 

= F(O) + J J (!f(z,t») dtdz 
-00 0 

co 

= F(O) + J {fez, c) - fez, On dz 
-00 

= F(c). 

Now, according to the definition of integrability, which says that if 

< 

F(c) = F(O) + J G(t)dt 
o 

and if G is a continuous function over t E [0, (0), then F is differentiable and 

FI(t) = G(t), for all t > O. 

Consequently (B.5) and the corollary is proved D. 

To prove (8.2, the original problem, we define for ease of notation 

n(ci + ... + Cj-i + t + CHi + ... + Ck-i + 0*) - c 
Cj = 

ynrr 
net + CHI + ... + Ck-I + 0*) - c 

C·-~--~~--~~~--~-)- ..jiirr 

-c 
Cj = ~-----~----"---

72 

for i < j 

for i > j 

(B-7) 

(B.8) 

(B.9) 

(B.lD) 

(B.ll) 

(B.l2) 

(B.l3) 

(B.l4) 



and we define the function 

k-l 

h(z, t,j) = II [4>(z + Ci)] ¢J(Z) (B.15) 
i=l 

for fixed values of n, 0* and €i; i:f. j with 1 :::; j :::; Ie - 1. We have 

(B.16) 

and of course 4>(z) :::; 1, so we can derive 

%th(z,t,j):::; [t; ¢J(z+ Ci)] ¢J(z) 

< J._1_ e-z2 

- .j2;i 

:::; (Ie _ e-z2 (B.17) 

With this result, we easily see that 

(B.1S) 

Hence, by applying corollary with the substitutes of F(f.) by Pp(CSt} and f(z, t) by h(z, t,j), 
we have that 

(B.19) 

The proof for Pp(FSt} is analogous, the only difference is that for Pp(FSt} we have a sum 
of integral, but the derivation as before can be applied similarly. 
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Appendix C 

Tables 

C.l Table of 71 and 72 for selecting one best population 

The tabled value r is the value satisfying 

00 J cI>k-l(z + r)dcI>(z) = p •. 

-00 

p. or Q* 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
2 0.358287 0.741615 0.953873 1.19023 1.46574 1.81238 2.32618 2.77181 3.28995 
3 0.885173 1.23795 1.43383 1.65241 1.90783 2.2302 2.71011 3.12843 3.6173 
4 1.15324 1.49325 1.6822 1.89317 2.13988 2.45157 2.91623 3.32195 3.79694 
5 1.32874 1.66137 1.84628 2.0528 2.29438 2.59971 3.05517 3.45318 3.91958 
6 1.45748 1.78518 1.96736 2.17087 2.40897 2.70996 3.15909 3.55175 4.01209 
7 1.55831 1.88242 2.06261 2.26391 2.49945 2.79722 3.24165 3.63029 4.08605 
8 1.64073 1.96207 2.14073 2.34032 2.57387 2.86914 3.30988 3.69535 4.14748 
9 1.71016 2.02928 2.20671 2.40493 2.63686 2.93012 3.36786 3.75074 4.19989 
10 1.76996 2.08725 2.26367 2.46075 2.69135 2.98293 3.41818 3.79889 4.24553 
15 1.98332 2.29468 2.46777 2.66114 2.88738 3.17341 3.60037 3.97384 4.41205 
20 2.1217 2.42967 2.60087 2.79209 3.0158 3.2986 3.72069 4.08985 4.52298 
25 2.22314 2.52884 2.69875 2.88852 3.11052 3.39113 3.80989 4.17609 4.6057 
30 2.30273 2.60676 2.77573 2.96444 3.18517 3.46417 3.88045 4.24444 4.6714 
40 2.42309 2.72477 2.89242 3.07962 3.29858 3.57527 3.98804 4.34887 4.77203 
50 2.51255 2.81263 2.97936 3.16554 3.38326 3.65836 4.06867 4.42729 4.84779 
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C.2 Table of Ttl and Tt2 for selecting t best populations 

The tabled value 7 is the value satisfying 
00 

t J <Jlk-t(z + 7)[1- <Jl(z)]t-1d<Jl(z) = P*. 

-00 

P* or Q*, t = 2 best populations 
k 0.8~4rn- 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
3 1.23795 1.43383 1.65241 1.90783 2.2302 2.71011 3.12843 3.6173 
4 1.40553 1.72534 1.90374 2.10354 2.33796 2.63527 3.08084 3.47202 3.93232 
5 1.6706 1.97647 2.14739 2.33906 2.56429 2.85049 3.2805 3.65909 4.10576 
6 1.84432 2.14206 2.30859 2.49548 2.71525 2.99479 3.41537 3.78622 4.22436 
7 1.97185 2.26412 2.42769 2.61132 2.82737 3.10235 3.5164 3.88182 4.31402 
8 2.07179 2.36006 2.52145 2.70269 2.916 3.18758 3.59677 3.95813 4.38577 
9 2.15353 2.43871 2.59841 2.77778 2.98895 3.25789 3.66325 4.0214 4.44542 

10 2.22241 2.50511 2.66345 2.84132 3.05076 3.31756 3.7198 4.07532 4.49637 
15 2.45923 2.7342 2.88829 3.06146 3.26545 3.52546 3.91777 4.26482 4.67622 
20 2.60734 2.87809 3.02984 3.2004 3.40137 3.65757 4.04427 4.38648 4.79227 
25 2.71398 2.98194 3.13215 3.30099 3.49994 3.75361 4.13654 4.47548 4.87746 
30 2.79677 3.06271 3.21179 3.37938 3.57686 3.82868 4.20884 4.54536 4.94455 
40 2.92077 3.18391 3.33143 3.49726 3.69269 3.9419 4.31818 4.65126 5.04643 
50 3.01223 3.27345 3.4199 3.58454 3.77856 4.02598 4.39956 4.73027 5.12262 

P* or Q*, t = 3 best populations 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 ~975 0.99 
4 1.15324 1.49325 1.6822 UHMH I ~.13988 2.45157 2.91623 2195 3.79694 
5 1.6706 1.97647 2.14739 2.33906 2.56429 2.85049 3.2805 3.65909 4.10576 
6 1.93425 2.22557 2.38874 2.57203 2.78783 3.06267 3.47692 3.84286 4.27601 
7 2.10708 2.38992 2.54852 2.72685 2.93703 3.20506 3.60973 3.9679 4.39257 
8 2.23401 2.51111 2.66662 2.84157 3.04791 3.31125 3.7093 4.062 4.4807 
9 2.33351 2.6064 2.75964 2.9321 3.13559 3.39545 3.78853 4.13713 4.55128 
10 2.4149 2.68454 2.83601 3.00653 3.2078 3.46494 3.85411 4.19947 4.610 
15 2.68189 2.94197 3.08821 3.25298 3.44765 3.69661 4.07397 4.40939 4.80872 
20 2.84168 3.0968 3.24032 3.40207 3.59325 3.83786 4.20889 4.53888 4.93208 
25 2.9544 3.20632 3.34808 3.50789 3.6968 3.93859 4.30545 4.63187 5.02096 
30 3.04085 3.2905 3.431 3.58941 3.77669 4.01643 4.38028 4.7041 5.09017 
40 3.16903 3.41555 3.55432 3.71079 3.89581 4.13272 4.49236 4.81254 5.19432 
50 3.26276 3.50716 3.64476 3.79992 3.98341 4.21838 4.57514 4.89281 5.27166 

............ _ ..... 

P* or Q*, t = 4 best populations 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
5 1.32874 1.66137 1.84628 2.0528 2.29438 2.59971 3.05517 3.45318 3.91958 
6 1.84432 2.14206 2.30859 2.49548 2.71525 2.99479 3.41537 3.78621 4.22436 
7 2.10708 2.38992 2.54852 2.72685 2.93703 3.20506 3.60973 3.9679 4.39257 
8 2.27938 2.55348 2.70741 2.88067 3.08511 3.34622 3.74122 4.09156 4.50778 
9 2.40593 2.67413 2.82488 2.99468 3.1952 3.45155 3.83983 4.18468 4.59492 
10 2.50515 2.76901 2.91742 3.08467 3.28228 3.53508 3.91834 4.25905 4.66473 
15 2.81135 3.06339 3.20538 3.36558 3.55514 3.79803 4.16709 4.49597 4.88851 
20 2.98499 3.23129 3.37014 3.52688 3.71246 3.9504 4.31231 4.63513 5.02082 
25 3.10461 3.34734 3.48422 3.63879 3.82185 4.05667 4.414 4.73295 5.11418 
30 3.19517 3.43538 3.57088 3.72391 3.90519 4.13778 4.49185 4.808 5.18599 
40 3.32794 3.56473 3.69835 3.84928 4.02813 4.25767 4.60725 4.91952 5.29304 
50 3.42413 3.65864 3.791 3.94053 4.11774 4.34522 4.69176 5.00138 5.37184 
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p. or Q* 1 t = 5 best populations 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
6 1.45748 1.78518 1.96736 2.17087 2.40897 2.70996 3.15909 3.55175 4.01209 
7 1.97185 2.26412 2.42769 2.61132 2.82737 3.10235 3.5164 3.88182 4.31402 
8 2.23401 2.51111 2.66662 2.84157 3.04791 3.31125 3.7093 4.062 4.4807 
9 2.40593 2.67413 2.82488 2.99468 3.1952 3.45155 3.83983 4.18468 4.59492 
10 2.53221 2.79438 2.9419 3.10819 3.30473 3.55625 3.93775 4.27709 4.68133 
15 2.89101 3.13832 3.2778 3.4353 3.62184 3.86111 4.22522 4.55017 4.93857 
20 3.08113 3.32183 3.45771 3.61125 3.79323 4.02688 4.38288 4.70102 5.08176 
25 3.20863 3.44534 3.57903 3.73016 3.90936 4.13956 4.49054 4.80444 5.18033 
30 3.30374 3.53769 3.66987 3.81932 3.99658 4.22437 4.57183 4.88273 5.2552 
40 3.44149 3.67176 3.80191 3.94911 4.12376 4.34829 4.69097 4.99777 5.36549 
50 3.54033 3.76817 3.89697 4.04268 4.2156 4.43795 4.77742 5.08146 5.44599 

P* or Q*, t = 6 best populations 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
7 1.55831 1.88242 2.06261 2.26391 2.49945 2.79722 3.24165 3.63029 4.08605 
8 2.07179 2.36006 2.52145 2.70269 2.916 3.18758 3.59677 3.95813 4.38577 
9 2.33351 2.6064 2.75964 2.9321 3.13559 3.39545 3.78853 4.13713 4.55128 
10 2.50515 2.76901 2.91742 3.08467 3.28228 3.53508 3.91834 4.25905 4.66473 
15 2.93797 3.18258 3.32062 3.47657 3.66137 3.89855 4.25979 4.58245 4.96845 
20 3.14799 3.38494 3.51882 3.6702 3.84976 4.08051 4.43249 4.74744 5.12476 
25 3.28447 3.51698 3.64843 3.79714 3.97363 4.20056 4.54704 4.85735 5.22943 
30 3.38462 3.61412 3.74393 3.89082 4.0652 4.28953 4.6322 4.93929 5.30771 
40 3.52778 3.75333 3.88096 4.02544 4.19704 4.4179 4.75549 5.05823 5.42165 
50 3.62944 3.85241 3.97862 4.12153 4.29129 4.50986 4.84408 5.14393 5.50404 

P* or Q* ! t = 7 best populations 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
8 1.64073 1.96207 2.14073 2.34032 2.57387 2.86914 3.30988 3.69535 4.14748 
9 2.15353 2.43871 2.59841 2.77778 2.98895 3.25789 3.66325 4.0214 4.44542 
10 2.4149 2.68454 2.83601 3.00653 3.2078 3.46494 3.85411 4.19947 4.61 
15 2.95992 3.20327 3.34066 3.49589 3.67988 3.91611 4.27601 4.59762 4.98249 
20 3.19434 3.42875 3.56129 3.71121 3.88912 4.1179 4.46715 4.77992 5.15492 
25 3.34113 3.5706 3.70043 3.84738 4.02189 4.24645 4.58963 4.89729 5.26657 
30 3.44689 3.67308 3.80112 3.9461 4.11833 4.34006 4.67914 4.98333 5.34866 
40 3.59592 3.81788 3.9436 4.086 4.25526 4.4733 4.80698 5.10658 5.46668 
50 3.70058 3.91982 4.04403 4.18478 4.3521 4.56774 4.89789 5.19448 5.55111 
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C.3 Table of T1 and T2 for selecting one best population with 
different values of I 

The tabled value r is the value satisfying 

00 J cpk-l(-),-l Z + ,-lro)dCP(z) P*. (C.1) 
-00 

P* or Q*, ,= 1.1 
k 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
2 0.376628 0.779578 1.0027 1.25116 1.54077 1.90516 2.44525 2.9137 3.45835 
3 0.953552 1.32126 1.52553 1.75356 2.02015 2.35681 2.85838 3.29599 3.80782 
4 1.2473 1.60017 1.79639 2.01562 2.27215 2.5965 3.08059 3.50382 3.99998 
5 1.43971 1.78397 1.97549 2.18953 2.4401 2.75708 3.23057 3.64498 4.13131 
6 1.58091 1.91939 2.10773 2.31826 2.56477 2.87671 3.34287 3.75109 4.23048 
7 1.69153 2.0258 2.21181 2.41976 2.66327 2.97146 3.43215 3.83572 4.30984 
8 1.78197 2.11299 2.2972 2.50314 2.74432 3.04959 3.50598 3.90587 4.37579 
9 1.85817 2.18658 2.36934 2.57367 2.81297 3.11587 3.56876 3.96564 4.43217 
10 1.92382 2.25007 2.43164 2.63463 2.87236 3.1733 3.62326 4.01761 4.48125 
15 2.15808 2.47733 2.65499 2.8536 3.08619 3.3806 3.82083 4.20671 4.66047 
20 2.31008 2.62532 2.80072 2.99679 3.22639 3.51699 3.95147 4.33228 4.78008 
25 2.42151 2.73406 2.90794 3.1023 3.32987 3.61787 4.0484 4.42571 4.86935 
30 2.50897 2.81954 2.9923 3.18539 3.41146 3.69753 4.12513 4.49981 4.94033 
40 2.64122 2.94901 3.12019 3.31151 3.53546 3.81879 4.2422 4.61312 5.04913 
50 2.73954 3.04542 3.21552 3.4056 3.62808 3.90952 4.33001 4.6983 5.13111 

P* or Q*! ,= 1.25 
k 0.6 0.7 0.75 0.8 0.85 0.95 0.975 0.99 
2 0.405553 0.839446 1.07971 1.34725 1.6591 148 2.63305 3.13747 3.72397 
3 1.05721 1.44871 1.66636 1.90947 2.19387 2.55333 3.08948 3.55785 4.10635 
4 1.38928 1.76276 1.97067 2.20314 2.47543 2.82011 3.33544 3.78684 4.31696 
5 1.60693 1.9699 2.17207 2.39823 2.6633 2.99909 3.50169 3.94256 4.46109 
6 1.76673 2.12261 2.32089 2.54277 2.80288 3.13255 3.62629 4.05976 4.5701 
7 1.89197 2.24265 2.43808 2.65679 2.91325 3.23834 3.72546 4.15334 4.6574 
8 1.99439 2.34107 2.53428 2.75052 3.00411 3.32564 3.80753 4.23097 4.73001 
9 2.0807 2.42415 2.61558 2.82984 3.08112 3.39974 3.87737 4.29716 4.79207 
10 2.15507 2.49586 2.68581 2.89842 3.14777 3.46398 3.93803 4.35475 4.84616 
15 2.42058 2.75268 2.93777 3.14495 3.38794 3.6961 4.15817 4.56452 5.04397 
20 2.59293 2.92003 3.10232 3.30635 3.54562 3.84904 4.30398 4.70407 5.17621 
25 2.71933 3.04306 3.22346 3.42534 3.66208 3.96225 4.41229 4.80804 5.27505 
30 2.81854 3.1398 3.31879 3.51909 3.75396 4.05172 4.49809 4.89057 5.35371 
40 2.9686 3.28638 3.4634 3.66146 3.89367 4.18801 4.62912 5.01691 5.47448 
50 3.08019 3.39557 3.57123 3.76774 3.9981 4.29005 4.72749 5.11197 5.56551 
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W 0.6 
P* or Q*, r =-./2 

0.7 0.75 0.8 0.85 0.9 0.95 0.975 0.99 
0.43881 0.908288 1.16825 1.45773 1.79515 2.21971 2.84897 3.39476 4.02934 
1.17199 1.59117 1.82439 2.08504 2.39016 2.77614 3.35253 3.85669 4.44778 
1.54581 1.94342 2.16501 2.41299 2.70374 3.07225 3.62418 4.10857 4.67845 

5 1.79095 2.1759 2.3906 2.63103 2.91316 3.2711 3.80799 4.28005 4.83653 
6 1.971 2.34739 2.5574 2.79267 3.06886 3.41949 3.94588 4.40922 4.95611 
7 2.11216 2.48225 2.68881 2.92027 3.19204 3.5372 4.05568 4.5124 5.05194 
8 2.22763 2.59285 2.79672 3.0252 3.29353 3.63438 4.14661 4.59806 5.13171 
9 2.32496 2.68626 2.88796 3.11402 3.37955 3.71691 4.22402 4.67114 5.1999 
10 2.40883 2.76689 2.96679 3.19085 3.45405 3.78848 4.29129 4.73475 5.25938 
15 2.7084 3.05583 3.24981 3.46725 3.7227 4.04735 4.53569 4.9667 5.47708 
20 2.90296 3.24425 3.43479 3.64835 3.89925 4.21812 4.6978 5.12123 5.6229 
25 3.04568 3.38282 3.57103 3.78196 4.02975 4.34464 4.81832 5.23647 5.73197 
30 3.15773 3.49181 3.67829 3.88728 4.13275 4.44469 4.91386 5.32803 5.81884 
40 3.32724 3.65703 3.84107 4.04729 4.28947 4.59717 5.05989 5.4683 5.95224 
50 3.45331 3.78013 3.96248 4.16679 4.40669 4.71143 5.16961 5.57394 6.05302 
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Appendix D 

Figures of robustness 

The figures in t.his appendix an' r('prodllc<,d 1'1'0111 Dri('ss(,11 ({ al. as t.hey were presented ill 
(l4J. 
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Figure D.I: Plot.s of loss (L:, O. i5, -r) '.IS a fllll('l.ioll of -; ror the ('as<'s I., = 1,:J, 5, ln, 25,50 and 100 
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Appendix E 

Simulations 

In this appendix E, we apply the preference threshold procedure and other procedures on artificial 
populations produced by the Mathematica random generator. We used the Mathematica, Version 
2.2, for the X Window System. In the presentation of the results of the simulations we use some 
notation, we need to introduce. We define: 

CSt : correct selection of one single best population. 
CS+ : correct selection of subset of size> 1 (including best population). 
C S2 : total of correct selections. 
F S} : false selection of one single population. 
FS+ : false selection of subset of size> 1 (not including best population). 
F S2 : total of false selections. 

Furthermore, in each run where a selection is done, we indicate the 'status' of the selection by a 
number. We use '1' to indicate a CSt, '2' for CS+, '3' for FS} and '4' to indicate a FS+. 
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E.l Simulation with J.L in LFC; Rn,c (100 detailed runs) 

We have taken p. to be in the LFC, for example, p. = (19.5, ... l 19.5,20), where o· 0.5, k = 10 and the 
variances all equal to (1'2 = 1. We apply the preference threshold procedure, Rn,c on this instance 
and choose p. 0.75, Q* = 0.9. For these values, the sample size becomes n 28 and the threshold 
is c = 1.88683. Because n is rounded, the practical values for P* and Q. become p. = 0.7568 and 
Q* 0.9028. We take from each population 100 observations and then take a sample of size 28. The 
results are: 

run SubsetSize Subset Status run Subset Size Subset Status 
1 1 10 1 51 1 10 1 
2 1 10 1 52 1 10 1 
3 1 10 1 53 1 10 1 
4 1 10 1 54 2 7,10 2 
5 1 10 1 55 1 10 1 
6 2 1,10 2 56 1 10 1 
7 1 3 3 57 1 10 1 
8 1 10 1 58 1 10 1 
9 2 4,7 4 59 1 10 1 
10 1 10 1 60 1 10 1 
11 1 10 1 61 1 10 1 

12 1 10 1 62 1 2 3 
13 2 2, 10 2 63 1 10 1 
14 3 7,8,10 2 64 1 10 1 
15 1 10 1 65 1 10 1 
16 2 9,10 2 66 1 10 1 
17 1 10 1 67 2 I, 10 2 
18 2 7, 10 2 68 1 10 1 
19 1 10 1 69 2 4, 10 2 
20 1 10 1 70 1 10 1 
21 1 10 1 71 1 10 1 
22 1 10 1 72 1 10 1 
23 1 10 1 73 1 10 1 
24 1 10 1 74 1 10 1 
25 1 10 1 75 1 4 3 
26 1 10 1 76 4 5,6,7,10 2 
27 1 10 1 77 1 10 1 
28 1 10 1 78 1 10 1 
29 1 10 1 79 1 10 1 
30 1 10 1 80 1 10 1 
31 2 I, 10 2 81 1 10 1 
32 1 3 3 82 1 10 1 
33 1 10 1 83 1 10 1 
34 3 4, 6, 10 2 84 1 10 1 
35 1 10 1 85 1 10 1 
36 1 10 1 86 2 2,10 2 
37 1 10 1 87 2 1, 10 2 
38 1 10 1 88 1 10 1 
39 1 10 1 89 2 8, 10 2 
40 1 10 1 90 1 10 1 
41 1 10 1 91 2 1, 10 2 
42 1 10 1 92 1 10 1 
43 1 10 1 93 1 10 1 
44 2 6, 10 2 94 1 10 1 
45 1 10 1 95 1 10 1 
46 1 10 1 96 2 9, 10 2 
47 1 10 1 97 2 4, 10 2 
48 1 10 1 98 1 10 1 
49 1 10 1 99 1 10 1 
50 1 10 1 100 1 10 1 

Subset size sum = 123, CS1 = 77, FS1 =4, CS+= 18, FS+= 1. 
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E.2 Simulation with J.l in LFC; Rn,c 

We take It to be in the LFC, for example, It = (19.5, ... ,19.5,20), k = 10 and the variances all equal to one. 
We apply the preference threshold procedure, Rn,c on this instance and choose p. = 0.75, q* 0.9 
and 5* = 0.5. For these values, the sample size becomes n = 28 and the threshold is c = 1.88683. Because 
n is rounded, the practical values for P* and q* become P* = 0.7568 and q* = 0.9028. Here we take the 
sample sums for samples of size n = 28 directly from the random generator, distributed N(28 * It., v'2ii). 
For different starting values of the random generator the results after each time 1000 runs are: 
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E.3 Simulation with p, in LFC; Bayes, 112 known 
For k = 10 populations with f.! = (19.5, ... , 19.5,20), ill variances equal to one, calculated is in each of 
the 100 runs the minimum set of populations that counts for at least 0.9 of the probability of containing 
the best one. The populations we used are exactly the same as in E.1, meaning populations of in total 
100 observations, with samples of size 28. 

Run Subset Probs 
1 10,2,5,3,4 0.4614,0.241,0.07771,0.07419,0.05091 
2 10,6,4 0.7134,0.1223,0.09071 
3 10,8 0.872, 0.05525 
4 10,6,5,8 0.6167,0.1473,0.1328, 0.04269 
5 10,2,5,8 0.5247,0.2116,0.1081,0.08172 
6 10,1,3 0.4352,0.357, 0.1155 
7 3, 10 0.6728, 0.2516 
8 10,3,2,4 0.7854,0.07284,0.03873,0.03166 
9 7,4,10,8 0.3901,0.2868,0.1723,0.1177 
10 10,3 0.6769, 0.247 
11 10,8,5 0.7198,0.1257, 0.09206 
12 10,6,8,2,1 0.3436,0.186,0.1592,0.1445,0.134 
13 10,2,5,6 0.3639,0.3261,0.1821,0.04842 
14 10,7, 8, 5, 2, 1,3 0.2706,0.2414, 0.1655, 0.07555, 0.06433, 0.06298, 0.05237 
15 10,3,5 0.8139, 0.08058, 0.06665 
16 9,10,5,1,6 0.3335,0.269,0.1788,0.08345,0.05813 
17 10,3 0.8816,0.05967 
18 7,10,8 0.4303,0.3752, 0.1068 
19 10 0.9269 
20 10, 9 0.8135, 0.1028 
21 10,9,5,3,6 0.528,0.1624,0.0966,0.06766,0.06722 
22 10 0.9977 
23 10,4,7 0.62,0.2482,0.04157 
24 10,9 0.5966, 0.3134 
25 10 0.9189 
26 10,5,6,8,9 0.4209,0.2358,0.09713,0.09277,0.08495 
27 10 0.9138 
28 10 0.9943 
29 10,5 0.8949, 0.03602 
30 10,2,7,6,8 0.6671,0.09353,0.06272,0.04978,0.04784 
31 I, 10 0.5241, 0.4013 
32 3, I, 10 0.5169,0.2607,0.1352 
33 10,2,5,6 0.6384,0.175,0.05767,0.03576 
34 6,10,4,8 0.3159,0.268,0.2637,0.07704 
35 10, 3, I, 5 0.6252,0.135,0.1188,0.06001 
36 10,6,9 0.5051,0.286,0.116 
37 10 0.9029 
38 10,2 0.8385, 0.06728 
39 10 0.9893 
40 10,3,9,4,1 0.625,0.1271,0.08347,0.05382,0.03867 
41 10 0.9784 
42 10,3,5 0.6856,0.194,0.0914 
43 10,9,8 0.7374,0.1302,0.05585 
44 10,6,5,8 0.3743,0.3342, 0.1573,0.1021 
45 10 0.9218 
46 10,3,8 0.8367,0.05865,0.03564 
47 10,9,3 0.5264,0.2864,0.108 
48 10 0.9835 
49 10 0.9191 
50 10 0.9423 
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RWl Subset Probs 
51 10,5 0.8929, 0.06985 
52 10,2 0.832, 0.08533 
53 10 0.9991 
54 10,7,8 0.4629, 0.378, 0.1184 
55 10,9,4 0.6699,0.1755,0.1234 
56 10,3 0.8893, 0.0577 
57 10 0.9583 
58 10 0.9 
59 10,3,5 0.6733,0.1216,0.1213 
60 10,8, I, 5 0.8254,0.03855,0.03487,0.02424 
61 10 0.9825 
62 2,10,6,8 0.4554,0.2659,0.1407,0.04736 
63 10,5 0.8768,0.06164 
64 10,9,6,2 0.7284,0.07167,0.06289,0.04326 
65 10 0.9729 
66 10,5 0.6172,0.3036 
67 10, I, 7 0.4176,0.414,0.1116 
68 10,8,2,3 0.6417,0.1432,0.09574,0.04095 
69 4,10,8 0.4549,0.4412,0.04776 
70 10,8,3 0.7114,0.1688,0.08371 
71 10,8, 1,4,6 0.4345,0.1829,0.1456,0.0734,0.07008 
72 10,4,5,3,8 0.4617,0.1836,0.1287,0.1037,0.06346 
73 10 0.9054 
74 10 0.9421 
75 4,10,7 0.6616,0.2052,0.109 
76 10,5,6,7 0.2963,0.2317,0.2204,0.183 
77 10, I, 7 0.5353,0.3014,0.1222 
78 10 0.9726 
79 10, 1 0.8408, 0.09501 
80 10 0.9127 
81 10 0.9915 
82 10,8 0.8886, 0.09949 
83 10,6,2,9 0.5221,0.2491,0.07829,0.0723 
84 10,5 0.8957, 0.03553 
85 10, 1,4 0.5386,0.3331,0.05379 
86 10, 2, 5,3, 1 0.3066,0.2237,0.1737,0.1336,0.06474 
87 1,10,9,4 0.4052,0.3185,0.1405,0.06126 
88 10 0.9635 
89 10,8,6,2 0.3407,0.2665,0.1842,0.1209 
90 10,4,7 0.77,0.07306,0.05756 
91 10,1,9,7 0.4413,0.3531,0.08367,0.05353 
92 10,4,9,6,7 0.546,0.123,0.1109,0.09193,0.05038 
93 10, 1 0.8101,0.1689 
94 10,4 0.701,0.2112 
95 10,3,5 0.5587,0.2669,0.09852 
96 10,9 0.4787,0.4346 
97 4, 10, I, 2 0.3816,0.2708,0.2308,0.0546 
98 10, 1,8 0.7772,0.099,0.03418 
99 10,6,4,7 0.468,0.1845,0.1621,0.09936 

100 10,5 0.6716,0.2346 
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E.4 Simulation with Jl in LFC; Bayes, a} unknown 

For k = 10 populations with p, = (19.5, ... ,19.5,20), all variances equal to one, calculated is in each of 
the 100 runs the minimum set of populations that counts for at least 0.9 of the probability of containing 
the best one. However, we assume not to know the variances and these are estimated to calculate the 
Bayesian probabilities. The populations we used are exactly the same as in E.1, meaning populations of 
in total 100 observations, with samples of size 28. 

Run Subset Probs 
1 10,2,4,7,3 0.4375,0.201,0.1413,0.1056,0.04035 
2 10,6,5 0.777,0.1033,0.05553 
3 10,1 0.8148,0.09335 
4 10,6,5,8,7 0.5927,0.12,0.09995,0.05094,0.04055 
5 10, 2, 8, 5, 1 0.4326,0.1885,0.1645,0.09385,0.07787 
7 3,10,4 0.6539,0.2058, 0.09183 
8 10,2, 1, 5 0.7019,0.1196,0.04642,0.03539 
9 7,4,10 0.3844, 0.2725, 0.254 

10 10,3 0.6995,0.2237 
11 10,5,8 0.7023,0.1254,0.09549 
12 10,6,2,1,8 0.3192,0.2448,0.1734,0.1019,0.09407 
13 10,2,5,9 0.376,0.3469,0.1678,0.03508 
14 10,8, 7, 1, 5, 3 0.281,0.2197,0.1756,0.08384,0.0759,0.07544 
15 10,3,5 0.7905,0.08472,0.0568 
16 9, 10, 5, 8, 6, 1 0.3495,0.2319,0.2056,0.05563,0.04128,0.03797 
17 10,3,6 0.7754,0.08447,0.05302 
18 7,10,3,8 0.4215,0.3614,0.092, 0.0756 
19 10,3 0.8888, 0.05947 
20 10,2,6 0.8363, 0.04935, 0.03967 
21 10,9,6,3 0.5796,0.1903,0.07992,0.06835 
22 10 0.9987 
23 10,4,6 0.6481,0.2199,0.06126 
24 10,9,2 0.5955,0.2603, 0.05341 
25 10,8 0.8771,0.1109 
26 10,5,8,9,6 0.3794,0.2388,0.1442,0.08288,0.08018 
27 10 0.9042 
28 10 0.9973 
29 10,5,6 0.8443,0.05408,0.03972 
30 10,8,7,1 0.6737,0.08656,0.08211,0.06155 
31 1,10,4 0.5007,0.3719,0.08036 
32 3,1, 10 0.5614,0.2706,0.08 
33 10,2,4,9 0.6963,0.1289,0.04237,0.0391 
34 10,4,6,8 0.3009,0.2711,0.2587,0.07874 
35 10,9,1,3,5 0.6086,0.09527,0.09454,0.09303,0.08166 
36 10,6,9 0.4637,0.3611, 0.07543 
37 10,8 0.8745,0.07758 
38 10,2,4,8 0.6546,0.1633,0.05122,0.04595 
39 10 0.9911 
40 10,9,3,4 0.6279,0.1313,0.09877,0.06359 
41 10 0.9479 
42 10,5,3 0.6509, 0.1717, 0.1124 
43 10,9,2 0.6511, 0.1709, 0.08804 
44 10,6,8,5 0.3775,0.3464,0.1584,0.1001 
45 10 0.9487 
46 10,3,4,8 0.7643,0.08247,0.05075,0.03961 
47 10,9,3 0.5115,0.3106,0.1119 
48 10 0.9701 
49 10 0.9284 
50 10 0.9454 
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Run Subset Probs 
51 10 0.9043 
52 10,1,5,2 0.7376,0.09083,0.06103,0.04276 
53 10 0.9989 
54 10,7,8 0.4046,0.3637,0.1862 
55 10,9,4 0.6911,0.1511,0.1142 
56 10 0.9042 
57 10 0.993 
58 10,3 0.8955, 0.06345 
59 10,5,3 0.6387,0.1645,0.1385 
60 10,5,8,1 0.7302,0.1068,0.04074,0.04017 
61 10 0.9748 
62 2,10,6,4 0.4187,0.2455,0.162,0.1052 
63 10,1,4 0.8118,0.06607,0.05539 
64 10, 6, 3, 9, 5, 7 0.6428,0.09011,0.05919,0.05692,0.04796,0.03852 
65 10 0.9659 
66 10,5 0.6486,0.2694 
67 1, 10 0.4654,0.4418 
68 10,8,2,6 0.561,0.1701,0.1651,0.06226 
69 4, 10 0.4672, 0.4464 
70 10,8,3 0.5993,0.1789, 0.1435 
71 10, I, 8, 5, 6 0.4663, 0.1689, 0.1683, 0.06752,0.06675 
72 10,4,3,5,8 0.4348,0.2491,0.1058,0.07312,0.06042 
73 10,9,2 0.822,0.04441,0.03784 
74 10,3 0.8894,0.06821 
75 4, 10 0.7294,0.2106 
76 10,7,5,6,2 0.2819,0.2232,0.2006,0.1667,0.0761 
77 10, I, 7, 2 0.5209,0.2133,0.132,0.1212 
78 10 0.957 
79 10,1 0.8882, 0.07205 
80 10,8 0.8607,0.07183 
81 10 0.99 
82 10,8 0.8669,0.1106 
83 10,6,3,2 0.5654,0.2072,0.07577,0.06966 
84 10,2 0.8833,0.04739 
85 10, 1,4,7 0.5052, 0.306, 0.05613, 0.04988 
86 10, 2,3,5, 1,6 0.3152,0.1807,0.1525,0.1433,0.07742,0.06524 
87 I, 10,9, 7 0.372, 0.3283, 0.1623, 0.05653 
88 10 0.9045 
89 10, 8, 6, 3, 1, 2 0.3386,0.1833,0.1744,0.1016,0.07675,0.06207 
90 10,4,7,2 0.6751,0.1014,0.08615,0.07758 
91 10,1,7,3,9 0.4322,0.373,0.05122,0.03679,0.03489 
92 10,9,4,3,7 0.5602, 0.1476, 0.1058, 0.05957, 0.03506 
93 10, 1 0.7745,0.2018 
94 10,4 0.792,0.1094 
95 10,3,5 0.5613,0.2455, 0.111 
96 10,9,7 0.4562,0.4085, 0.05601 
97 4,10,1,2 0.3718, 0.3153, 0.2089, 0.03537 
98 10, I, 8 0.7803,0.09334,0.04681 
99 10,4,6,7 0.4447, 0.2304, 0.1776, 0.09655 
100 10,5,4 0.5787, 0.2968, 0.04369 
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E.5 Standard subset selection; J-l in LFC 

We take Jt to be in the LFC, for example, Jt = (19.5, ... , 19.5,20), where 8* = 0.5, k = 10 and the variances 
all equal to one. We apply the standard subset selection procedure, RG on this instance and choose 
P* = 0.9. We take the same sample size n = 28 and the distance d becomes 15.784. 

Run SubsetSize Subset Status 
1 10 1,2,3,4,5,6,7,8,9,10 2 
2 6 2, 4, 5, 6, 9, 10 2 
3 3 1,8,10 2 
4 7 4, 5, 6, 7, 8, 9, 10 2 
5 7 1,2,3,5,6,8,10 2 
6 9 1, 2, 3, 4, 5, 7, 8,9, 10 2 
7 6 3, 4, 5, 6, 8, 10 2 
8 7 1, 2,3,4, 5,8,10 2 
9 7 1,3,4,5, 7,8,10 2 
10 6 2,3,5,8,9,10 2 
11 4 1,5,8,10 2 
12 10 1,2,3,4,5,6,7,8,9,10 2 
13 10 1,2,3,4,5,6,7,8, 9,10 2 
14 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 2 
15 5 3,4,5,9,10 2 
16 10 1,2,3,4,5,6,7,8,9,10 2 
17 3 3,8,10 2 
18 7 3, 4, 6, 7, 8, 9, 10 2 
19 4 3,5,9,10 2 
20 4 2,6,9,10 2 
21 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 2 
22 1 10 1 
23 9 1,2,3,4, 5, ~ 7,9, 10 2 
24 8 1, 2, 4, 5, 7, 8, 9, 10 2 
25 2 8, 10 2 
26 9 1,2,3,4, 5, ~8,9, 10 2 
27 4 1,5,9,10 2 
28 1 10 1 
29 5 3,5,6,8,10 2 
30 9 1, 2,3,5,6, ~ 8,9, 10 2 
31 5 1,2,4,9,10 2 
32 8 1,3, 4, 5,6,7,~ 10 2 
33 9 1, 2, ~4, 5, ~8,9, 10 2 
34 8 1,3, 4,~7,~ 9,10 2 
35 10 1,2,3,4,5,6,~~ 9,10 2 
36 8 1,3,4,5,6,7,9,10 2 
37 3 8,9,10 2 
38 5 2,3,4,8,10 2 
39 1 10 1 
40 9 1, 2, 3, 4, 6, 7, 8, 9, 10 2 
41 1 10 1 
42 5 3,4,5,7,10 2 
43 7 2,3,4,7,8,9,10 2 
44 8 2, 4, 5, 6, 7,8, 9, 10 2 
45 2 1, 10 2 
46 6 3, 4, 6, 7, 8, 10 2 
47 9 1,2,3,4, 5, ~7,9, 10 2 
48 1 10 1 
49 3 6,8,10 2 
50 3 2,6,10 2 
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R1lll SubsetSize Subset Status 
51 3 5,9,10 2 
52 4 1,2,4,10 2 
53 1 10 1 
54 6 1, 4, 6, 1, 8, 10 2 
55 6 1, 3,4,5,9, 10 2 
56 3 3,1,10 2 
51 2 1,10 2 
58 5 3,5,6,8,10 2 
59 6 2,3,4,5,9,10 2 
60 1 1,3, 4, 5, 1, 8, 10 2 
61 1 10 1 
62 9 2,3,4,5,6,1,8,9,10 2 
63 3 4, 5, 10 2 
64 10 1,2,3,4,5,6,1,8,9, 10 2 
65 2 8, 10 2 
66 6 I, 3, 5, 6, 1, 10 2 
61 5 1,4,1,8,10 2 
68 8 1, 2, 3, 6, 1, 8, 9, 10 2 
69 1 1,2, 3, 4, 1, 8, 10 2 
10 5 1,3,8,9,10 2 
11 9 1,~3,4, 5,6,8,9, 10 2 
12 8 1,2,3,4,5,6,8,10 2 
13 4 1,8,9,10 2 
14 3 3, 5, 10 2 
15 5 2,4,5,1,10 2 
16 9 1,2, 3, 5, 6, 1, 8, 9, 10 2 
11 5 1,2,4,1,10 2 
18 1 10 1 
19 4 1,1,8,10 2 
80 4 1,1,8,10 2 
81 1 10 1 
82 2 8, 10 2 
83 8 1,2, 3, 5, 6, 8, 9, 10 2 
84 4 2,4,5,10 2 
85 8 1,3,4,5,6,1,9, 10 2 
86 8 1,2,3,4,5,6,9, 10 2 
81 8 1,2,3,4,6,1,9, 10 2 
88 2 1, 10 2 
89 9 1,2,3,4,5, 6, ~8, 10 2 
90 5 1,2,4,1,10 2 
91 9 1, 2, 3, 5, 6, 1,8, 9, 10 2 
92 9 1, 2, 3, 4, 6, 1, 8, 9, 10 2 
93 3 1,4,10 2 
94 6 1,2,3,4,1,10 2 
95 9 1,2,3,4,5,6,1,9,10 2 
96 5 1, 4, 1, 9, 10 2 
91 9 1, 2, 3, 4, 5, 6, 8, 9, 10 2 
98 1 1, 2, 3, 4, 8,9, 10 2 
99 10 1,2,3,4,5,6,1,8,9,10 2 

100 5 3,4,5,9,10 2 

Subset size sum = 582, C81 = 9, F81 =O, C8+= 91, FS+= O. 
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E.6 Simulation with J.L in LFC; Sequential procedure 
For k = 10 populations with p. = (19.5, ... ,19.5,20); all variances equal to one, for cr = 0.1, hence 
boundary 9 = 8.97727, the result is, for exactly the same populations as in E.1 for the first 100 runs: 

run obs stage selected sta.tus run obs stage selected status 
1 260 45 10 1 51 176 27 10 1 
2 128 14 10 1 52 146 26 10 1 
3 119 23 10 1 53 120 17 10 1 
4 139 23 10 1 54 232 36 10 1 
5 193 48 10 1 55 219 40 10 1 
6 216 41 10 1 56 141 25 10 1 
7 189 41 10 1 57 111 15 10 1 
8 169 24 10 1 58 142 21 10 1 
9 269 49 10 1 59 157 25 10 1 
10 201 49 10 1 60 188 24 10 1 
11 199 32 10 1 61 130 20 10 1 
12 253 43 10 1 62 308 78 10 1 
13 202 38 10 1 63 171 28 10 1 
14 305 52 10 1 64 160 23 10 1 
15 202 25 10 1 65 89 17 10 1 
16 293 58 10 1 66 172 40 10 1 
17 130 22 10 1 67 217 44 10 1 
18 327 94 10 1 68 226 31 10 1 
19 102 23 10 1 69 256 61 10 1 
20 107 15 10 1 70 78 9 10 1 
21 256 49 10 1 71 246 42 10 1 
22 118 15 10 1 72 261 37 10 1 
23 192 32 10 1 73 126 16 10 1 
24 224 38 10 1 74 122 19 10 1 
25 91 11 10 1 15 245 46 7 3 
26 283 41 10 1 76 263 44 10 1 
27 91 15 10 1 77 193 40 10 1 
28 125 18 10 1 78 116 16 10 1 
29 162 22 10 1 79 178 26 10 1 
30 144 19 10 1 80 175 25 10 1 
31 207 52 10 1 81 114 16 10 1 
32 293 79 3 3 82 162 20 10 1 
33 256 42 10 1 83 233 31 10 1 
34 262 47 10 1 84 103 25 10 1 
35 223 31 10 1 85 176 25 10 1 
36 225 50 10 1 86 286 58 10 1 
37 142 19 10 1 87 279 59 10 1 
38 93 21 10 1 88 110 16 10 1 
39 140 23 10 1 89 304 69 10 1 
40 234 32 10 1 90 118 24 10 1 
41 156 22 10 1 91 210 46 10 1 
42 184 30 10 1 92 306 47 10 1 
43 135 23 10 1 93 166 32 10 1 
44 278 54 10 1 94 173 33 10 1 
45 112 15 10 1 95 184 32 10 1 
46 137 25 10 1 96 194 41 10 1 
47 126 18 9 3 97 315 61 10 1 
48 119 14 10 1 98 207 44 10 1 
49 158 21 10 1 99 206 39 10 1 
50 157 25 10 1 100 189 35 10 1 
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run obs stage selected 
101 225 40 5 
102 180 25 10 
103 113 14 10 
104 384 66 10 
105 242 31 10 
106 191 39 10 
107 285 57 10 
108 193 37 10 
109 169 35 10 
110 119 21 10 
111 105 14 10 
112 201 40 10 
113 173 32 10 
114 167 35 10 
115 187 40 10 
116 155 21 10 
117 127 16 10 
118 204 37 10 
119 181 41 10 
120 254 36 10 
121 165 20 10 
122 172 22 10 
123 118 17 10 
124 219 28 10 
125 110 16 10 
126 199 41 10 
127 235 42 10 
128 187 30 10 
129 143 22 10 
130 216 39 10 
131 258 51 10 
132 310 76 10 
133 230 43 10 
134 225 51 10 
135 128 21 10 
136 134 20 10 
137 249 45 10 
138 245 60 10 
139 189 59 10 
140 159 18 10 
141 111 17 10 
142 171 35 10 
143 182 28 10 
144 120 14 10 
145 190 24 10 
146 273 78 10 
147 225 40 10 
148 252 31 10 
149 138 23 10 
150 127 31 10 

For this simulation, the total results are: 
CS = 190 
FS = 8 
Runs without decision (stage> 100) = 2 
Total number of observations is 37409 
The maximum number of obs was 384 

status 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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run obs stage selected status 
151 289 54 10 1 
152 77 9 10 1 
153 182 54 10 1 
154 193 35 10 1 
155 126 18 10 1 
156 207 35 1 3 
157 181 31 10 1 
158 297 100 2 3 
159 183 43 10 1 
160 144 19 10 1 
161 209 29 10 1 
162 148 23 10 1 
163 172 24 10 1 
164 179 31 10 1 
165 233 33 10 1 
166 155 38 10 1 
167 173 27 10 1 
168 84 13 10 1 
169 185 30 10 1 
170 195 52 10 1 
171 78 11 10 1 
172 273 43 10 1 
173 146 23 10 1 
174 179 37 10 1 
175 171 18 10 1 
176 254 42 10 1 
177 265 46 10 1 
178 207 35 10 1 
179 245 56 10 1 
180 164 24 10 1 
181 160 31 10 1 
182 105 12 10 1 
183 168 42 10 1 
184 125 23 10 1 
185 133 17 10 1 
186 171 22 10 1 
187 128 19 10 1 
188 85 14 10 1 
189 264 51 8 3 
190 103 18 10 1 
191 89 14 10 1 
192 272 66 10 1 
193 280 44 10 1 
194 200 27 10 1 
195 190 23 2 3 
196 165 24 10 1 
197 130 18 10 1 
198 154 32 9 3 
199 254 46 10 1 
200 379 100 2 3 



E.7 Simulation with p, not in LFC; Rn,c 

We take iL not in the LFC, but, iL = (19,19,19,19.1,19.2,19.3,19.3,19.4,19.5,20), where 6* :::::; 0.5, k = 10 
and the variances all equal to one. We apply the preference threshold procedure, Rn,c on this 
instance and choose P* = 0.75 and Q* = 0.9. For these values, the sample size becomes n::::: 28 and the 
threshold is c = 1.88683. Because n is rounded, the practical values for P' and Q* become p. = 0.7568 
and Q* = 0.9028. Here we take the sample sums for samples of size n = 28 directly from the random 
generator, distributed N(28 * iLi, J2i3). For different starting values of the random generator the results 
after 1000 runs are: 

8 1.057 Seed 1 
CSl 925 FSI 25 
CS+ 47 FS+ 3 
CS2 972 FS2 28 

i 1.058 Seed 2 

CSt 934 FSI 15 
CS+ 48 FS+ 3 
CS2 982 FS2 18 

8 1.063 Seed 3 
CSt 920 FSI 26 
CS+ 53 FS+ 1 
CS2 973 FS2 27 

S 1.056 Seed 4 
CSt 927 FSI 24 
CS+ 46 FS+ I 3 
CS2 913 FS2 27 

8 1.076 Seed 5 
CSt 921 FSI 16 
CS+ 60 FS+ 3 
CS2 981 FS2 17 
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E.8 Simulation selection t 
LFC; R~c , 

3 best populations with J-t in 

We take p to be in the LFC, for example, p = (19.5, ... ,19.5,20,20,20), k = 10 where we want to select 
the t = 3 best populations, and the variances all equal to one. We apply the preference threshold 
procedure, R~.c on this instance and choose p. = 0.75, Q. = 0.9 and 6· = 0.5. For these values, the 
sample size becomes n = 40 and the threshold is c = 1.98143. In this simulation we take the sample sums 
for samples of size n = 40 directly from the random generator, distributed N(40 * p;, V40). For different 
starting values of the random generator the results after each time 1000 runs are: 

s 3.223 Seed 1 
CSt 732 FSt 89 
CS+ 161 FS+ 18 
CSt. 893 FSt• 107 

s 3.189 Seed 2 
CSt 781 FSt 61 
CS+ 146 FS+ 12 
CSts 927 FSts 73 

s 3.193 Seed 3 
CSt 746 FSt 90 
CS+ 145 FS+ 
CSts 891 FSIs 

3.201 Seed 4 
766 FSt 63 
153 FS+ 18 
919 81 

s 3.203 Seed 5 
CSt 762 FSt 66 
CS+ 154 FS+ 18 
CSts 916 FSIs 84 

S 3.217 Seed 6 
CSt 741 FSt 79 
CS+ 158 FS+ 22 
CSt. 899 FSts 101 

s 3.243 Seed 7 
CSt 736 FSt 75 
CS+ 180 FS+ 9 
CSt. 916 FSts 84 
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E.9 Robustness simulation in LFC 
The /L we have chosen is in the LFC, /L == (19.5, ... ,19.5,20), where 5" = 0.5 and we design the experiment 
as if C! = 1 for the k = 10 populations. Hence we take samples of size n = 28 and have c = 1.88683 for 
p. = 0.75 and Q. == 0.9. However, the real standard deviation we use to take the samples, is C! = 1.25 
for all populations. This situation can appear when "Y = 1.25. The sample sums are directly gained from 
the random generator with initializing seed value equal to 1. 

nm SubsetSize Subset Status run SubsetSize Subset Status 
1 1 10 1 51 1 10 1 
2 1 10 1 52 2 1,10 2 
3 1 10 1 53 1 10 1 
4 1 10 1 54 1 10 1 
5 1 10 1 55 1 8 3 
6 1 10 1 56 1 10 1 
7 1 10 1 57 2 5, 10 2 
8 1 10 1 58 1 10 1 
9 1 10 1 59 1 10 1 
10 1 10 1 60 1 10 1 
11 2 3. 10 2 61 1 6 3 
12 1 10 1 62 1 10 1 
13 1 10 1 63 2 7,8 4 
14 3 2,3,10 2 64 1 10 1 
15 1 10 1 65 1 10 1 
16 1 10 1 66 1 8 3 
17 3 2,5,6 4 67 1 10 1 
18 1 10 1 68 1 5 3 
19 1 10 1 69 1 10 1 
20 1 10 1 70 1 10 1 
21 1 8 3 71 2 4,10 2 
22 1 10 1 72 1 1 3 
23 2 7, 10 2 73 1 10 1 
24 1 10 1 74 1 10 1 
25 1 10 1 75 1 10 1 
26 1 10 1 76 1 10 1 
27 2 4, 10 2 77 3 2,3,10 2 
28 3 1,8,10 2 78 1 7 3 
29 1 10 1 79 1 10 1 
30 1 6 3 80 3 1,3,9 4 
31 1 10 1 81 1 10 1 
32 1 10 1 82 2 8, 10 2 
33 1 10 1 83 1 10 1 
34 4 1,2,9,10 2 84 1 10 1 
35 1 9 3 85 1 10 1 
36 1 10 1 86 1 10 1 
37 1 10 1 87 1 10 1 
38 1 10 1 88 1 4 3 
39 1 10 1 89 1- 6 3 
40 2 2,7 4 90 1 10 1 
41 1 10 1 91 1 10 1 
42 1 10 1 92 2 I. 10 2 
43 1 3 3 93 1 10 1 
44 1 10 1 94 1 10 1 
45 1 10 1 95 1 10 1 
46 1 10 1 96 1 10 1 
47 1 10 1 

Ii 
1 10 1 

48 1 10 1 2 5,8 4 
49 1 10 1 2 6,10 2 
50 1 10 1 1 10 1 

Subset size sum = 125, CSl 70, FSl =12, 
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After a total of 1000 runs, we have: 

S 1.278 Seed 1 s 1.276 Seed 2 
CSt 629 FS} 158 CSt 619 FS} 160 
CS+ 162 FS+ 51 CS+ 181 FS+ 40 
CS2 791 FS2 209 CS2 800 FS2 200 

S 1.244 Seed 3 S 1.268 Seed 4 
CSt 639 FS} 165 CSt 611 FS} 174 
CS+ 151 FS+ 45 CS+ 164 FS+ 51 
CS2 790 FS2 210 CS2 775 FS2 225 

s 1.246 Seed 5 
CSt 627 FS} 156 
CS+ 172 FS+ 45 
CS2 799 FS2 201 
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E.I0 Preference threshold procedure with (1 = 1.25 

In this instance, p. = (19.5, ... , 19.5, 20) and the standard deviation is for all k = 10 populations equal to 
(! = 1.25. P* = 0.75, Q* = 0.9 and 8* = 0.5. Therefore, c = 2.94818 and n = 43.0106 rounded upward 
to n = 44. Therefore the practical Tl becomes 2.297736 and the practical value for p. is p. = 0.759104. 
The practical value for T2 becomes 3.00886 and the realized Q" is Q" = 0.903761. We take our the sample 
sums directly from the random generator with different seed values. 

8 1.198 Seed 1 
CSl 770 FSl 78 
CS+ 132 FS+ 20 
CS2 902 FS2 98 

8 1.205 Seed 2 
CSl 769 FSI 66 
CS+ 144 FS+ 21 
CS2 913 FS2 87 

8 1.201 Seed 3 
CS1 762 FSI 76 
CS+ 139 FS+ 23 
CS2 901 FS2 99 

s 1.228 Seed 4 
CSl 756 FS1 69 
CS+ 158 FS+ 17 
CS2 914 FS2 86 

8 1.196 Seed 5 
CSt 770 FSl 66 
CS+ 136 FS+ 28 
CS2 906 FS2 94 

8 1.230 Seed 6 

. ,CS1 741 FSl 83 
CS+ 156 FS+ 20 
CS2 897 FS2 103 

8 1.192 Seed 7 
CS1 769 FSt 74 
CS+ 123 FS+ 34 
CS2 892 FS2 108 
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E.11 Robustness; Ordinary procedure but I' = 1.25 
We take IL in the LFC (IL = (19.5, ... , 19.5,20)), the standard deviations to be 
(f = (0.8,0.9,1,1.1,1.2,1.25,1.25,1.25,1.25,1), where 8* =: 0.5, P* = 0.75 and Q* = 0.9. However, in our 
design we assume all variances to be equal to one, so the sample size should be n = 28 and c = 1.88683. 
This situation can appear when r = 1.25. Because n is rounded, the practical values for P* and Q* 
become P* = 0.756833 and Q* = 0.902824, because we now have Tl = 2.28917 and T2 = 3.00233 (if the 
variances were really all equal to one). 

Run Subset Size Subset Status Run SubsetSize Subset Status 
1 1 10 1 51 1 10 1 
2 1 10 1 52 1 10 1 
3 1 10 1 53 1 10 1 
4 1 10 1 54 1 7 3 
5 1 10 1 55 1 10 1 
6 1 10 1 56 1 10 1 
7 1 3 3 57 1 10 1 
8 1 10 1 58 1 10 1 
9 1 7 3 59 1 10 1 

10 1 10 1 60 1 10 1 
11 1 10 1 61 1 10 1 
12 2 6, 10 2 62 3 2,6,10 2 
13 3 2,5,10 2 63 1 10 1 
14 3 7,8,10 2 64 1 10 1 
15 1 10 1 65 1 10 1 
16 1 9 3 66 2 5,10 2 
17 1 10 1 67 1 10 1 
18 1 7 3 68 1 10 1 
19 1 10 1 69 2 4,10 2 
20 1 10 1 70 1 10 1 
21 1 10 1 71 2 8,10 2 
22 1 10 1 72 1 10 1 
23 1 10 1 73 1 10 1 
24 2 9,10 2 74 1 10 1 
25 1 10 1 75 1 4 3 
26 2 5, 10 2 76 4 5,6,7,10 2 
27 1 10 1 77 1 10 1 
28 1 10 1 78 1 10 1 
29 1 10 1 79 1 10 1 
30 1 10 1 80 1 10 1 
31 2 1, 10 2 81 1 10 1 
32 1 3 3 82 1 10 1 
33 1 10 1 83 2 6, 10 2 
34 1 6 3 84 1 10 1 
35 1 10 1 85 1 10 1 
36 2 6,10 2 86 3 2, 5, 10 2 
37 1 10 1 87 2 1,10 2 
38 1 10 1 88 1 10 1 
39 1 10 1 89 3 6, 8, 10 2 
40 1 10 1 90 1 10 1 
41 1 10 1 91 1 10 1 
42 1 10 1 92 1 10 1 
43 1 10 1 93 1 10 1 
44 1 6 3 94 1 10 1 
45 1 10 1 95 1 10 1 
46 1 10 1 96 1 9 3 
47 2 9, 10 2 97 1 4 3 
48 1 10 1 98 1 10 1 
49 1 10 1 99 1 10 1 
50 1 10 1 100 1 10 1 

Subset size sum = 124, CSl= 72, FS1=1l, CS2= 17, FS2= O. 
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After 1000 runs we have for different seed values (when the sample sums are directly taken from the 
random generator): 

S 1.213 Seed 1 S 1.237 Seed 2 
aSI 702 FSI 121 aSI 696 FSI 115 
as+ 156 FS+ 21 as+ 174 FS+ 15 
aS2 858 FSz 142 aS2 I 870 FS2 130 

S 1. Seed 1~ s 1.249 Seed 4 
aSI 706 FSI as} 694 FSI 108 
as+ 145 FS+ 20 as+ 172 FS+ 26 
a S2 851 FS2 149 aS2 866 FS'], 134 

s 1.198 Seed 5 
aSI 717 FSI 118 
as+ 142 FS+ 23 
as'], 859 FS2 141 
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E.12 Robustness; Robust design with '1 = 1.25 

We take p, in the LFC (p, = (19.5, ... ,19.5,20)), the standard deviations to be 
U = (0.8,0.9,1,1.1,1.2,1.25,1.25,1.25,1.25,1), where 8" = 0.5, P" = 0.75 and Q" = 0.9. In the robust 
design we have Uo = 1 and i = 1.25, hence we need to take n = 38 and c = 2.39279. For this rounded 
value of n the practical values for P" and Q" become P* = 0.75206 and Q* = 0.900863, because we now 
have TO,l = 2.69405 and TO.l = 3.47037. 

Run SubsetSize Subset Status Run SubsetSize Subset Status 
1 1 10 1 51 1 10 1 
2 1 10 1 52 1 10 1 
3 1 10 1 53 1 10 1 
4 1 10 1 54 1 10 1 
5 2 5, 10 2 55 1 10 1 
6 1 10 1 56 1 10 1 
7 1 10 1 57 1 10 1 
8 1 10 1 58 1 10 1 
9 1 4 3 59 1 10 1 
10 1 10 1 60 1 10 1 
11 1 10 1 61 1 10 1 
12 2 6, 10 2 62 3 2,6,10 2 
13 1 10 1 63 1 10 1 
14 1 5 3 64 1 10 1 
15 1 10 1 65 1 10 1 
16 1 9 3 66 1 10 1 
17 1 10 1 67 2 7,10 2 
18 1 7 3 68 1 10 1 
19 1 10 1 69 1 10 1 
20 1 10 1 70 1 10 1 
21 1 10 1 71 1 10 1 
22 1 10 1 72 1 10 1 
23 1 10 1 73 1 10 1 
24 1 10 1 74 1 10 1 
25 1 10 1 75 1 7 3 
26 1 10 1 76 1 10 1 
27 1 10 1 77 1 10 1 
28 1 10 1 78 1 10 1 
29 1 10 1 79 1 10 1 
30 1 10 1 80 1 10 1 
31 1 10 1 81 1 10 1 
32 3 1,3, 10 2 82 1 10 1 
33 1 10 1 83 1 10 1 
34 3 4,8,10 2 84 1 10 1 
35 1 10 1 85 1 10 1 
36 2 6, 10 2 86 1 10 1 
37 1 10 1 87 2 9, 10 2 
38 1 10 1 88 1 10 1 
39 1 10 1 89 1 8 3 
40 1 10 1 90 1 10 1 
41 1 10 1 91 1 10 1 
42 1 10 1 92 1 10 1 
43 1 10 1 93 1 10 1 
44 1 10 1 94 1 10 1 
45 1 10 1 95 1 10 1 
46 1 10 1 96 1 10 1 
47 1 10 1 97 3 1,4,10 2 
48 1 10 1 98 1 10 1 
49 1 10 1 99 1 10 1 
50 1 10 1 100 1 10 1 

Subset size sum = 113, CSl = 85, FSl = 6, CS+= 9, FS+ = O. 
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After 1000 runs we have for different seed values (when we take the sample sums directly from the 
random generator): 

§ 1.141 Seed 1 II § 1.166 Seed 2 
OS1 807 FSt 66 OS1 801 i FSt 56 
CS+ 112 FS+ 15 OS+ 135 FS+ 8 
CS2 919 FS'J, 81 C S2· 936 ~. """ 64 

§ 1.150 I Seed 3 S 1.191 Seed 4 
OS1 799 I FSt 66 CSt 792 FSl 55 
08+ 126 FS+ 9 OS+ 142 FS+ 11 
OS2 925 FS2 75 OS2 934 FS2 66 

§ 1.145 Seed 5 
OSt 810 FSt 65 
OS+ 113 FS+ 12 
CS2 923 FS2 77 
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E.13 Ordinary design, but, = 1.25; (J extreme 
We take I' in the LFC (I' ::: (19.5, ... ,19.5,20)), the standard deviations to be (T = (1.25, ... , 1.25, 1) for 
k = 10 populations, where 6* = 0.5, P* 0.75 and Q* = 0.9. However, in our design we assume all 
variances to be equal to one, so the sample size should be n = 28 and c = 1.88683. Because n is rounded, 
the practical values for P* and Q* become P* = 0.756833 and Q* = 0.902824, because we now have 
T1 = 2.28917 and T2 = 3.00233 (if the variances were really all equal to one). 

Run SubsetSize Subset Status Run Subset Size Subset Sta.tus 
1 2 2, 10 2 51 1 10 1 
2 1 10 1 52 1 10 1 
3 1 10 1 53 1 10 1 
4 1 10 1 54 1 7 3 
5 1 10 1 55 1 10 1 
6 2 1, 10 2 56 1 10 1 
7 1 3 3 57 1 10 1 
8 1 10 1 58 1 10 1 
9 2 4, 7 4 59 1 10 1 
10 1 10 1 60 1 10 1 
11 1 10 1 61 1 10 1 
12 2 6, 10 2 62 1 2 3 
13 2 2, 10 2 63 1 10 1 
14 3 7,8,10 2 64 1 10 1 
15 1 10 1 65 1 10 1 
16 1 9 3 66 2 5, 10 2 
17 1 10 1 67 1 1 3 
18 1 7 3 68 1 10 1 
19 1 10 1 69 1 4 3 
20 1 10 1 70 1 10 1 
21 1 10 1 71 2 8,10 2 
22 1 10 1 72 1 10 1 
23 2 4, 10 2 73 1 10 1 
24 2 9,10 2 74 1 10 1 
25 1 10 1 75 1 4 3 
26 2 5,10 2 76 4 5,6,7,10 2 
27 1 10 1 77 2 1, 10 2 
28 1 10 1 78 1 10 1 
29 1 10 1 79 1 10 1 
30 1 10 1 80 1 10 1 
31 1 1 3 81 1 10 1 
32 1 3 3 82 1 10 1 
33 1 10 1 83 2 6, 10 2 
34 2 4,6 4 84 1 10 1 
35 1 10 1 85 2 1, 10 2 
36 2 6, 10 2 86 3 2,5,10 2 
37 1 10 1 87 1 1 3 
38 1 10 1 88 1 10 1 
39 1 10 1 89 3 6,8,10 2 
40 1 10 1 90 1 10 1 
41 1 10 1 91 2 1, 10 2 
42 1 10 1 92 1 10 1 
43 1 10 1 93 1 10 1 
44 1 6 3 94 1 10 1 
45 1 10 1 95 2 3, 10 2 
46 1 10 1 96 1 9 3 
47 2 9,10 2 97 1 4 3 
48 1 10 1 98 1 10 1 
49 1 10 1 99 1 10 1 
50 1 10 1 100 1 10 1 

Subset size sum = 127, CS1 = 64, FSl=14, CS+= 20, FS+= 2. 

105 



After 1000 runs we have for different seed values (when we take the sample sums directly from the 
random generator): 

s 1.280 Seed 1 § 1.271 Seed 2 
CSI 651 FSI 134 CSI 637 FSI 137 
CSt 181 FS+ 34 CSt 195 FS+ 31 
CS2 832 FS2 168 CS2 832 FS2 168 

§ 1.240 Seed 3 

I t::t' ~ .... tI 4 
CSI 659 FSI 146 CSI FSl 146 
CSt 164 FSt 31 CSt 186 FS+ 34 
CS2 823 F S2 177 FS2 180 
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E.14 Bayes, a} unknown, for ordinary design with "y = 1.25 

We have for the k = 10 populations with p, = (19.5, ... ,19.5,20) (6* = 0.5), and standard deviations 
(f = (1.25, ... ,1.25,1) and P* = 0.75 and Q* = 0.9. For the first 100 runs of the simulation in E.13 we 
have calculated the minimum set of populations that counts for at least 0.9 of the probability of containing 
the best one. However, we assume not to know the variances and these are estimated to calculate the 
Bayesian probabilities. 

Run Subset Probs 
1 10,2,4,7,3,8 0.2366, 0.2256, 0.1852, 0.149, 0.06245, 0.05144 
2 10,6,5,4 0.4886,0.2004,0.1251,0.103 
3 10,1,8,4 0.6171,0.1697,0.08772,0.07004 
4 10, 6, 5, 8, 7, 9, 2 0.3412,0.1598,0.1365,0.08565,0.07237,0.07096,0.05292 
5 10,2,8,5,1 0.233,0.2232,0.2094,0.1282,0.1171 
6 1,10,7,3,6 0.2712,0.2296,0.2213,0.1747,0.04986 
7 3,4,10,6 0.6495,0.1421,0.07723,0.04513 
8 10,2, I, 5, 6,3 0.4849,0.1808,0.08264,0.06922,0.05497,0.04395 
9 7,4,10,8 0.4025,0.3138,0.1137,0.09707 
10 10, 3, 9, 6 0,4698,0.3247,0.07918,0.04914 
11 10,5,8,1 0.4307,0.2158,0.1791,0.142 
12 6,2, 10, 1, 8, 3 0.2679,0.2004,0.1654,0.1245,0.1114,0.05084 
13 2,10,5,9,6 0.3716,0.2137,0.2038,0.06137,0.05641 
14 8,7,10,1,3, 5,2 0.2372,0.1737,0.1445,0.1079,0.09988,0.09682,0.04645 
15 10,3,5,9,4 0.5926,0.1389,0.09776,0.05916,0.04611 
16 9, 5, 10, 8, 6, 7, 1 0.3496,0.2227,0.1123,0.08158,0.05748,0.0551,0.05016 
17 10,3,6,9,8 0.6186,0.1179,0.09814,0.0533,0.03792 
18 7,10,3,8,6 0.4397,0.2054,0.1389,0.1094,0.04638 
19 10,3,8 0.696,0.1411, 0.09095 
20 10,2,6,9,4 0.627,0.1045,0.08888,0.05739,0.05158 
21 10,9,6,3,5 0.3629,0.245,0.125,0.1097,0.08342 
22 10 0.975 
23 10,4,6,7,9,1 0.3289,0.3234,0.1221,0.06379,0.05869,0.04337 
24 9, 10,2,7, 1, 5 0.3524,0.3016,0.1053,0.06261,0.0616,0.05717 
25 10,8 0.7039, 0.2389 
26 5, 8, 10, 9, 6, 4 0.2867,0.1838,0.1831,0.116,0.1116,0.06487 
27 10, 9, 7, 1, 5 0.6557,0.08365,0.08094,0.07701,0.04579 
28 10 0.9665 
29 10,5,6,8 0.5939,0.1245,0.09965,0.08511 
30 10,8,7,1,2 0.4315,0.1402,0.1327,0.1072,0.09092 
31 1,10,4,6 0.5559,0.1859,0.1349,0.0588 
32 3,1,6,10 0.5245,0.2829, 0.09013,0.0304 
33 10,2,4,9,5,6 0.4289,0.1882,0.08733,0.07873,0.06553,0.05237 
34 4,6,10,8,3 0.3004,0.2784,0.154,0.1101,0.07219 
35 10,9,1,3,5 0.3778,0.1503,0.1377,0.1325,0.129 
36 6,10,9,1 0.4172,0.2683,0.1155,0.1097 
37 10,8,9 0.656,0.1831,0.1208 
38 10,2,4,8,3 0.4719,0.2198,0.07716,0.06925,0.06889 
39 10 0.9412 
40 10,9,3,4,8 0.3754,0.1947,0.149,0.1098,0.07879 
41 10,4 0.8421,0.06352 
42 10,5,3,9 0.404,0.2573,0.191,0.1139 
43 10,9,2,8 0.4315,0.2387,0.1455,0.1059 
44 6, 8, 10, 5 0.398,0.218,0.176,0.1507 
45 10,2,1 0.8406, 0.04826, 0.03402 
46 10,3,4,8,7 0.5717,0.1314,0.09256,0.07019,0.05693 
47 9,10,3,7 0.3642,0.3348,0.1585,0.07058 
48 10,4 0.8712, 0.05971 
49 10,6,8 0.7148,0.1068,0.09924 
50 10, 1,6 0.8016,0.06753,0.04615 
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Run Subset Probs 
51 10,5,9,4 ., 0.7261,0.09269,0.07765,0.0504 
52 10,1,5,4,2 0.5073,0.1504,0.1133, 0.07186,0.07105 
53 10 0.9826 
54 7,8,10,4 0.4095,0.244,0.2261,0.05181 
55 10,9,4,3 0.4322,0.2444,0.1976,0.07959 
56 10,3,7 0.6951, 0.1349, 0.07386 
57 10 0.9133 
58 10,3,5,8 0.6545,0.1517,0.05496,0.04573 
59 10,5,3,9 0.3849,0.2456,0.2154,0.06513 
60 10, 5, 8, 1, 3, 4 0.4857,0.1712,0.07777,0.07739,0.07367,0.03639 
61 10,6 0.8651, 0.05052 
62 2,6,4,10,5 0.411,0.1981,0.1453, 0.1086,0.05195 
63 10,1,4,5 0.6067,0.1322,0.1127,0.08829 
64 10,6, 3, 5, 9, 7, 2 0.4789,0.1205,0.09242,0.07513,0.0724,0.05794,0.05201 
65 10,8 0.8056, 0.1100 
66 10, 5, 7, 1 0.3926,0.3814,0.09239,0.04084 
67 1,10,7,4 0.5542,0.2059,0.1319,0.05654 
68 10,8,2,6 0.359,0.2226, 0.22,0.1046 
69 4, 10, I, 8 0.5105,0.2943,0.06624,0.03441 
70 10,8,3, 1 0.433, 0.212, 0.1956,0.06942 
71 10, 1,8,5, 6, 4 0.2868,0.2083,0.1989, 0.1037,0.09656,0.05738 
72 4, 10, 3, 5, 8, 1 0.2899,0.2294,0;1426,0.09827,0.09144,0.06117 
73 10,9,2,7,1 0.5843,0.09493,0.08825,0.08671,0.05796 
74 10,3,4 0.7509,0.1336,0.05278 
75 4, 10, 7 0.7526,0.0971,0.08029 
76 7,5,6,10,2 0.2513,0.2218,0.1878,0.135,0.1088 
77 10, 1, 7, 2 0.2927,0.2803,0.197,0.1848 
78 10,4,2 0.8371,0.04076,0.03339 
79 10,1,7 0.6385,0.1941,0.09737 
80 10,8,7,1,6 0.6085, 0.1569, 0.07972, 0.05279, 0.03481 
81 10 0.9161 
82 10,8 0.6674,0.2373 
83 10,6,3,2,9 0.3039,0.2727,0.1298,0.1195,0.08805 
84 10,2,5,7 0.7172,0.104,0.07587,0.03628 
85 1,10,4,7,3 0.3421,0.3196,0.08823,0.0878,0.07309 
86 2, 3, 5, 10, 1, 6, 9 0.1948,0.1794,0.1631,0.159,0.1047,0.09384,0.08028 
87 1,9,10,7,4 0.3769,0.1984,0.1883,0.09039,0.06155 
88 10,3,7 0.7438,0.1061,0.09559 
89 6, 10, 8,3, I, 2, 7 0.1923,0.1909,0.1836,0.1352,0.1089,0.0763,0.06072 
90 10,4,7,2,3 0.4371,0.1586,0.1399,0.1281,0.07114 
91 1, 10, 7,3,9, 2,5 0.4111,0.1809,0.09142,0.07167,0.0681,0.04934,0.04854 
92 10, 9, 4, 3, 2, 7, 6 0.283,0.2061,0.1558,0.1035,0.06758,0.06627,0.05911 
93 10,1,8 0.5555,0.3375, 0.03164 
94 10,4,3 0.4984, 0.2466,0.1595 
95 10, 3, 5, 2, 1 0.3399,0.307,0.1675,0.08329,0.04741 
96 9,10,7,1 0.4693,0.2531,0.1029,0.08623 
97 4, I, 10, 2, 3 0.3922,0.2379,0.1781,0.05556,0.04849 
98 10, 1,8,3, 6, 9 0.5013, 0.1692, 0.1011,0.07387, 0.04225, 0.04117 
99 4,6,10,7,8 0.2818,0.2279,0.2185,0.1428,0.04579 
100 5,10,4,9, 1,8 0.3686, 0.3397, 0.08593, 0.06058, 0.04376, 0.03614 
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E.15 Robust design with 'Y = 1.25; (j extreme 
We apply the preference threshold procedure, Rn,c, on the instance where we take p. in the LFC 
(p. = (19.5, ... ,19.5,20)), the standard deviations (7 = (1.25, ... ,1.25,1), and 6" = 0.5, P" = 0.75 and 
Q* = 0.9. In the robust design with r = 1.25, we need to take n = 38 and c = 2.39279. For this rounded 
value of n the practical values for P' and Q' become P' = 0.75206 and ~r = 0.900863, because we now 
have 1"0,1 = 2.69405 and 1"0,2 = 3.47037. The sample sums, N(38p.;, 380';), are taken directly from the 
random generator. 

RtUl SubsetSize Subset Status Run Subset Size Subset Status 
1 1 10 1 51 1 10 1 
2 1 10 1 52 1 10 1 
3 1 10 1 53 1 10 1 
4 1 10 1 54 1 10 1 
5 1 5 3 55 1 10 1 
6 2 1, 10 2 56 1 10 1 
7 1 10 1 57 1 10 1 
8 1 10 1 58 1 10 1 
9 1 4 3 59 1 10 1 
10 2 3,10 2 60 1 10 1 
11 1 10 1 61 1 10 1 
12 2 6, 10 2 62 1 2 3 
13 1 10 1 63 1 10 1 
14 1 5 3 64 1 10 1 
15 1 10 1 65 1 10 1 
16 1 9 3 66 1 10 1 
17 1 10 1 67 2 7, 10 2 
18 1 7 3 68 1 10 1 
19 1 10 1 69 2 4, 10 2 
20 1 10 1 70 1 10 1 
21 1 10 1 71 1 10 1 
22 1 10 1 72 1 10 1 
23 1 10 1 73 1 10 1 
24 1 10 1 74 1 10 1 
25 1 10 1 75 1 7 3 
26 1 10 1 76 2 5,10 2 
27 1 10 1 77 2 1,10 2 
28 1 10 1 78 1 10 1 
29 1 10 1 79 1 10 1 
30 1 10 1 80 1 10 1 
31 1 1 3 81 1 10 1 
32 1 1 3 82 1 10 1 
33 1 10 1 83 1 10 1 
34 1 4 3 84 1 10 1 
35 1 10 1 85 1 10 1 
36 2 6, 10 2 86 1 10 1 
37 1 10 1 87 2 9,10 2 
38 1 10 1 88 1 10 1 
39 1 10 1 89 1 8 3 
40 1 10 1 90 1 10 1 
41 1 10 1 91 1 10 1 
42 1 10 1 92 1 10 1 
43 1 10 1 93 1 10 1 
44 1 10 1 94 1 10 1 
45 1 10 1 95 1 10 1 
46 1 10 1 96 1 10 1 
47 1 10 1 97 1 1 3 
48 1 10 1 98 2 1,10 2 
49 1 10 1 99 1 10 1 
50 1 10 1 100 1 10 1 

Subset size sum = 110, CS1 = 78, FS1 =12, CS+ = 10, FS2 = O. 
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After 1000 runs we have for different seed values (when we take the sample sums directly from the 
random generator): 

8 1.178 Seed 1 s 1.204 Seed 2 
CSl 768 FSl 79 CSl 751 FSI 75 
CS+ 131 FS+ 22 CS+ 156 FS+ 18 
CS2 899 FS2 101 CS2 907 FS2 93 

3 S 1.217 Seed 4 
1 81 CSI 743 FSI 77 

CS+ 147 18 CS+ 165 FS+ 15 
CS2 901 99 CS2 902 FS2 92 

S 1.178 Seed 5 
CSl 762 FSI 83 
CS+ 131 FS+ 24 
CS2 903 FS2 107 
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E.16 Bayes, (J; unknown, for robust design with 'Y = 1.25 

We have for the k = 10 populations with J.I. = (19.5, ... ,19.5,20) (5· = 0) and standard deviations 
(T = (1.25, ... ,1.25,1) p. = 0.75 and Q. = 0.9. For the first 100 runs of the simulation in E.15 we have 
calculated the minimum set of populations that counts for at least 0.9 of the probability of containing 
the best one. However, we assume not to know the variances and these are estimated to calculate the 
Bayesian probabilities. 

Run Subset Probs 
1 10,2,4,8,7 0.3126,0.2706,0.2047,0.06094,0.05195 
2 10,4,6 0.7241,0.1285,0.0879 
3 10,8,4,1,3 0.652,0.1253,0.0597,0.05213,0.05075 
4 10,8,5,2,6,9,1 0.3431,0.2057,0.09281,0.08721,0.0712,0.0593,0.05035 
5 5, 2, 10, 8, 1 0.3294,0.2371, 0.1568, 0.1424, 0.08631 
6 10,1, 7,3,6 0.2934,0.2085,0.1999,0.18,0.06989 
7 10,3,2,4,6 0.3814,0.255,0.112,0.111,0.08136 
8 10,2,3, I, 6 0.5955, 0.1137,0.08185,0.06689,0.05502 
9 4,10,7,8 0.6617,0.1269,0.1028,0.06123 

10 3,10 0.5027, 0.3983 
11 10,5,1 0.6665,0.1941,0.1095 
12 6, 10, 4, 8, 3, 1 0.3729,0.3051,0.1223,0.04483,0.03471,0.03334 
13 10, 2, 6, 5, 1 0.5462,0.1461,0.1124,0.07023,0.04093 
14 5,8,7,4,1 0.3646,0.2132,0.1598, 0.1179,0.04738 
15 10,9,8,4 0.7327,0.08427,0.05688,0.03612 
16 9,10,5,8,7 0.4576,0.1711,0.1292,0.08463,0.07726 
17 10,6,3 0.8253,0.04459, 0.04345 
18 7,10,3 0.5443, 0.3337, 0.05664 
19 10,3 0.8593, 0.06792 
20 10,1,9,2 0.6596,0.1016,0.09408,0.07086 
21 10,9,6,3,7 0.4503, 0.2716,0.08008, 0.06639,0.05131 
22 10 0.9888 
23 10,4,6 0.5354,0.2541,0.1122 
24 10, 9, 8, 1, 7, 2 0.4798,0.1692,0.09672,0.07628,0.05759,0.04016 
25 10, 8 0.7353,0.222 
26 10, 5,4, 8, 6, 2 0.2358, 0.169,0.1583,0.1463,0.1378,0.05691 
27 10,5,7 0.8159,0.0831,0.03272 
28 10 0.9742 
29 10,3,5,9 0.7718,0.0608,0.05743,0.04913 
30 10,8,2,7,1 0.6307, 0.1019,0.09279, 0.05138,0.04367 
31 1,10,9,4 0.5454,0.2099, 0.1132,0.07496 
32 1,3,10 0.4969, 0.3782, 0.04767 
33 10,2,4,5 0.4731,0.2567,0.1066,0.08286 
34 4,10,3,8,6 0.3331,0.199,0.1727,0.1269,0.1053 
35 10,3,9,5, 1 0.521,0.1192,0.1147,0.08789,0.08422 
36 6,10,9,5,1 0.4261,0.2505,0.1129,0.09096,0.04246 
37 10,8 0.7133,0.22 
38 10, 2, 8, 4, 9, 5 0.5151,0.1157,0.09439,0.08555,0.07626,0.07617 
39 10 0.9303 
40 10,9,5,3 0.4814,0.2585, 0.1025,0.07456 
41 10,3 0.8835, 0.0379 
42 10,5,9 0.5435,0.2179,0.1415 
43 10,9,1,2 0.4932,0.2926,0.06862,0.05434 
44 8, 10, 5, 6, 4, 9 0.3034, 0.2925, 0.1348,0.09773,0.06864,0.06104 
45 10 0.9294 
46 10,8,3,5 0.5954,0.2158,0.08148,0.04756 
47 10,9,3,5 0.539,0.2735,0.06187,0.04249 
48 10,2 0.8635, 0.0512 
49 10,6,8 0.7781,0.09784,0.04581 
50 10,6, 1,2 0.5417,0.2364, 0.1045,0.05487 
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Run Subset Probs 
51 10,3,5 0.8078,0.09141,0.05221 
52 10, 1, 5, 2,4 0.6706,0.09481,0.08276,0.05177,0.03439 
53 10 0.9833 
54 10,8,7,4 0.4588,0.225, 0.2112, 0.06167 
55 10,4,9 0.6117,0.205, 0.08717 
56 10,3,6 0.6802,0.2095,0.05807 
57 10 0.9744 
58 10,8,3 0.8267, 0.05451, 0.05246 
59 10,5,3,9 0.5608,0.2644,0.0743,0.05199 
60 10,5,3,4,9 0.6911,0.08323,0.07466,0.03801,0.02992 
61 10,8 0.8914,0.04645 
62 2,6,10,4,8 0.3972,0.1853,0.139, 0.1384, 0.05156 
63 10,4,1,5 0.594,0.2047,0.08187,0.06012 
64 10,2,5,7,3 0.6555,0.1138,0.05018,0.04871,0.04678 
65 10,8 0.8328,0.1042 
66 10,5, 7, I, 3 0.5117,0.2319,0.08841,0.04655,0.0432 
67 7,1,10,6,4 0.312,0.2616,0.2151,0.05968,0.05464 
68 10,2,8 0.8096,0.07367,0.0402 
69 4,10,8,3 0.3954,0.3616,0.09053,0.05662 
70 10,3,1,8,9 0.4525,0.238,0.1129,0.05838,0.0422 
71 10,1,6,8,4,5 0.3923,0.173,0.1419,0.1295,0.06311,0.05527 
72 10, 4, I, 2,6,8, 5 0.3757,0.1337,0.1268,0.1029,0.09097,0.05561,0.04866 
73 10,9, 1,4 0.7735,0.06436,0.05455,0.03825 
74 10,4,3 0.7419,0.09837,0.07232 
75 7,4,2 0.6374,0.2357,0.05549 
76 10,5,7,8,2 0.3694,0.2641,0.1469,0.09427,0.07493 
77 10,1,7,2 0.4584,0.3065,0.1134,0.1099 
78 10,5,4,3,9 0.7017,0.08387,0.05912,0.03831,0.03059 
79 10,7,1 0.5818, 0.3086, 0.08827 
80 10,7,8 0.8466,0.05031,0.04704 
81 10, 5 0.7825,0.1195 
82 10, 8 0.6999,0.2261 
83 10,3,9,2 0.7354,0.07391,0.05421,0.04557 
84 10,2 0.8554, 0.06778 
85 10,1,3,4,7 0.457,0.208,0.09744,0.07501,0.06485 
86 10, 3, 5, 2,6, 1, 9 0.2412,0.1899,0.1297,0.1229,0.118,0.0886,0.0559 
87 9, 10, I, 7, 3, 4 0.3256,0.2659,0.1566,0.09693,0.05216,0.04863 
88 10,7,3 0.7274,0.1363,0.05057 
89 8,3,6,1,10 0.2727,0.1953,0.1744,0.1661,0.1396 
90 10,2,4,7 0.4461,0.3129,0.111,0.06974 
91 1, 10, 7, 3, 9, 8, 4, 2 0.2077,0.2064,0.2007,0.08508,0.06373,0.0535, 0.05161, 0.05038 
92 10,9,6,4,3,2 0.2942,0.2633,0.1375,0.1127,0.06828,0.04339 
93 10,1 0.8,0.1728 
94 10,4,3 0.802, 0.08629, 0.05503 
95 10,5,3,2 0.5734,0.2012,0.09216,0.04645 
96 10,9,4,7,1 0.3812,0.2918,0.1126,0.09201,0.08137 
97 1,4, 10, 2 0.4386,0.2142,0.1933,0.08027 
98 1, 10,8, 4,6,2 0.3705,0.3484,0.06885,0.05766,0.04938,0.03354 
99 10,4,6,3,9 0.3584,0.2137,0.1918,0.1098,0.04578 
100 10,5,9,8,3 0.5182,0.2026,0.0714,0.06765,0.05129 
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