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Abstract

Nonparametric Predictive Inference (NPI) is a frequentist statistical method that is

explicitly aimed at using few modelling assumptions, with inferences in terms of one

or more future observations. NPI has been introduced for diagnostic test accuracy, yet

mostly restricting attention to one future observation. In this thesis, NPI for the accuracy

of diagnostic tests will be developed for multiple future observations. The present thesis

consists of three main contributions related to studying the accuracy of diagnostic tests.

We introduce NPI for selecting the optimal diagnostic test thresholds for two-group

and three-group classification, and we compare two diagnostic tests for multiple future

individuals.

For the two- and three-group classification problems, we present new NPI approaches

for selecting the optimal diagnostic test thresholds based on multiple future observations.

We compare the proposed methods with some classical methods, including the two-group

and three-group Youden index and the maximum area (volume) methods. The results of

simulation studies are presented to investigate the predictive performance of the proposed

methods along with the classical methods, and example applications using data from the

literature are used to illustrate and discuss the methods.

NPI for comparison of two diagnostic tests is presented, assuming the tests are applied

on the same individuals from two groups, namely healthy and diseased individuals. We

also introduce weights to reflect the relative importance of the two groups.
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Chapter 1

Introduction

Diagnostic tests are often used to differentiate patients between two states, healthy and

diseased. The results of the diagnostic test may take two values (binary tests), or real

values (continuous tests), or a value in a finite number of ordered categories (ordinal tests)

[59]. The focus in this thesis is on tests that yield real-valued results.

Assessing the accuracy of diagnostic tests is crucial in many application areas in-

cluding medicine and health care. The receiver operating characteristic (ROC) curve is

a useful tool to assess the diagnostic test accuracy, and the area under the ROC curve

(AUC) is often used as a single global measure of the overall performance of the dia-

gnostics test. For medical applications, it is important to select an appropriate threshold,

or differentiation value, such that a person is assessed to be diseased or healthy, depend-

ing on ehether their corresponding diagnostic test result is greater than the threshold

value or not. Therefore, threshold selection methods have been an active field of study

[11, 35, 47, 72]. Several methods for selecting thresholds are based on the ROC curve,

including the Youden index [33, 72], closest-to-(0,1) [11, 65], maximum area [47] methods

and other methods as discussed by Greiner et al. [35].

In this thesis, we introduce a nonparametric predictive approach, called NPI, for

selecting the optimal threshold of a diagnostic test, where the inferences focus on future

observations. The NPI method uses a direct predictive method to select an optimal

threshold, focusing on a limited number of future individuals. NPI is a frequentist



2 Chapter 1. Introduction

statistical method that is explicitly aimed at using few modelling assumptions, enabled

through the use of lower and upper probabilities to quantify uncertainty. NPI has been

introduced for many application areas where the predictive nature of this method plays

an important role, including reliability, survival analysis, operations research and finance.

Restricting attention to one future observation, NPI has been developed for diagnostic

test accuracy considering different types of data. For example, Coolen-Maturi et al. [25]

introduced NPI for diagnostic test accuracy with binary data, while Elkhafifi and Coolen

[32] presented NPI for diagnostic tests with ordinal data. Coolen-Maturi et al. [24, 26]

proposed NPI for two- and three-group ROC analysis with continuous data. The results

in [32] have been generalised by Coolen-Maturi [21] for three-group ROC analysis with

ordinal data. Recently, Coolen-Maturi [22] considered NPI for scenarios where two or

more diagnostic tests are combined in order to improve the overall accuracy.

This thesis develops a new NPI approach, based on multiple future individuals, for

selecting the optimal diagnostic test threshold for the two-group scenario and also for

selecting the two thresholds needed in a three-group scenario. We focus on the two- and

three-group classification problems which are the most used in practice. However, the

proposed NPI method is straightforward to generalise for a disease with k groups (stages),

as will be briefly mentioned in Section 3.8, the concluding remarks.

Classical methods often focus on estimation rather than prediction. The end goal of

studying the accuracy of diagnostic tests is to apply these tests on future patients. Thus,

it is of interest to consider the use of a predictive inference method. Another issue would

be the validity of the underlying assumptions required by some of these classical methods,

which are often difficult to justify in practice.

The important difference of the NPI approach compared with the alternatives in

the literature is that the inferences are explicitly in terms of a given number of future

individuals. In this thesis, we will show that the number of future individuals considered

might influence the choice of the optimal thresholds. If one should make a decision for a

predetermined number of future patients, the direct prediction of NPI-based inferences in

terms of m patients is clearly attractive. We compare our proposed methods with some
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empirical classical methods, including the empirical Youden index and maximum area

methods, as these methods also take only few model assumptions.

This chapter is organised as follows. Section 1.1 presents an introduction to the

concepts of the accuracy of diagnostic tests. Section 1.2 introduces methods in the

literature for establishing the thresholds. In Section 1.3, we provide a brief introduction

to NPI. A detailed outline of this thesis is given in Section 1.4.

1.1 Accuracy of diagnostic tests

In two-group classification, accuracy of a diagnostic test is determined by the ability of a

test to distinguish between healthy and diseased individuals. Measuring the accuracy of

diagnostic tests is an important goal in medical research. Parametric and nonparametric

approaches have been introduced for accuracy of diagnostic tests [59, 73]. Test outcomes

can be either binary, continuous or ordinal. The focus in this thesis is on continuous

diagnostic tests. Let Y be a continuous random quantity representing the outcome of a

diagnostic test. Studying a suitable choice of a value of c, called threshold, is the main

objective for the accuracy of diagnostic tests. We assume through this thesis that for a

specific value of a threshold c ∈ R, the test result indicates disease if Y > c (‘positive’

test results), and if Y ≤ c the test result indicates non-disease (‘negative’ test results)

[59]. Sensitivity (Sn) of a diagnostic test is the probability of a positive test result for an

individual with the disease, it is also known as True Positive Fraction (TPF). Specificity

(Sp) is the probability of a negative test result for an individual without the disease [59].

A diagnostic test is considered ideal if it has both sensitivity and specificity equal to one

[59]. The False Positive Fraction (FPF) is the probability of a positive test result for an

individual without the disease, so FPF=1− Sp.

Let X be used to refer to the test result for the healthy group and let Y be used

to refer to the test result for the diseased group, and let nx and ny be the numbers of

individuals in the healthy and the diseased groups, respectively. Let the FPF and TPF
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corresponding to the threshold c be FPF(c) and TPF(c), respectively, so

TPF (c) = P [Y > c] (1.1)

FPF (c) = P [X ≥ c] (1.2)

The Receiver Operating Characteristic (ROC) curve plots TPF(c) versus FPF(c) over

all possible diagnostic thresholds c ∈ R. The ROC curve has become a popular statistical

tool for assessing the accuracy of a diagnostic test. The ROC curve can be defined as

ROC = {(FPF (c), TPF (c)), c ∈ (−∞,∞)} (1.3)

A perfect diagnostic test completely distinguishes between healthy and diseased individuals

for a particular threshold c?, so FPF(c?) = 0 and TPF(c?) = 1. In contrast, the diagnostic

test has no ability to separate individuals with and without disease if FPF(c)=TPF(c)

for all c ∈ R [59].

The ROC curve depends on the distributions of X and Y , however these distributions

are usually unknown. A nonparametric empirical approach has been introduced for

estimating the ROC curve for a diagnostic test with continuous results [59]. This approach

is commonly used due to its flexibility to adjust entirely to the available data [59, 73].

The corresponding ROC curve is called the empirical ROC curve.

To introduce the empirical ROC curve, we use the following notation. Suppose that

we have test data on nx individuals from a healthy group and ny individuals from a disease

group, denoted by {xj, j = 1, ..., nx} and {yi, i = 1, ..., ny}, respectively. Assume that

these two groups are fully independent, in the sense that any information about measure-

ments on individuals in one group does not contain any information about measurements

on individuals in the other group. For the empirical ROC approach, these observations

for both groups are assumed to be realisations of random quantities that are identically

distributed as X for the healthy group, and as Y for the disease group. The empirical

ROC curve is defined by [59]

ROCe = {(FPFe(c), TPFe(c)), c ∈ (−∞,∞)} (1.4)
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with

TPFe(c) =
∑ny

i=1 1[yi > c]
ny

(1.5)

FPFe(c) =
∑nx
j=1 1[xj ≥ c]

nx
(1.6)

where 1[A] is the indicator function which is equal to 1 if A is true and 0 otherwise.

The area under the ROC curve, AUC, is a global measure of the overall ability

of the diagnostic test to distinguish among those individuals with and without disease,

which has been widely studied in the literature [42, 59, 73]. It is equal to the probability

that a randomly selected individual from the diseased group has a test result that is

higher than that of a randomly chosen individual from the healthy group, so P [Y > X]

[59]. The maximum possible value of the AUC is 1, which indicates an ideal test, and

AUC= 0.5 indicates an uninformative test [59, 73]. Pepe [59] and Zhou et al. [73]

presented overviews of statistical methodology for diagnostic test accuracy and ROC

curve, considering parametric and nonparametric methods of inference on the ROC curve.

The ROC curve has been applied in a variety of areas such as medical imaging and

radiology [48], credit scoring [9], psychiatry [40] and epidemiology [3].

1.2 Methods for selection of a threshold

To completely define a diagnostic test, selecting the optimal threshold is needed such

that the test provides good differentiation of the individuals with and without the disease.

Methods for the selection of the optimal threshold based on the ROC analyses have been

discussed by Greiner et al. [35] and Schäfer [62]; one of these methods is to maximise the

Youden index (YI) [33, 72]. Formally, the Youden index is defined as

YI = max
c
{Sn(c) + Sp(c)− 1} (1.7)

Geometrically, YI represents the maximum vertical distance between the ROC curve and

the diagonal line. The empirical estimate of the Youden index (EYI) is given by

EYI(c) = 1
nx

nx∑
i=1

1{xi ≤ c}+ 1
ny

ny∑
j=1

1{yj > c} − 1 (1.8)
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where perfect separation of the two groups results in EYI= 1 whereas complete overlap

yields EYI= 0 [64].

In medical applications, the Youden index is presented as a useful measure for evalu-

ating the diagnostic test procedures. For example, Aoki et al. [3] identified the optimal

threshold level of serum pepsinogens for gastric cancer screening using the Youden index.

They suggested that the Youden index is useful for identifying the optimal threshold level

of serum pepsinogens for gastric cancer screening. Pekkanen and Pearce [58] examined the

assessment between bronchial hyperresponsiveness (BHR) and symptom questionnaires

of discriminating between asthma and nonasthma by computing the Youden index. The

results showed that the symptom questionnaires have a higher Youden index, which could

be considered more accurate than BHR. Demir et al. [30] applied the Youden index to

measure and compare the assessment of eight discrimination indices in differentiating

between thalassemia and iron deficiency anemia (IDA). First, they calculated eight dis-

crimination indices in a number of patients with IDA and a number of patients with

thalassemia, then they applied the Youden index for each index to determine which is the

best for differentiating thalassemia from IDA. The Youden index was shown to be useful

to obtain accurate indices in differentiating thalassemia from IDA. Jalali and Rezaie [41]

compared the predicting pressure ulcer risk (PrUs) validity of 4 commonly used PrUs

assessment tools using the Youden index as measure of validity between them.

There is a recognizable large body in literature of the Youden index, which addresses

other issues such as the estimation of the Youden index and its optimal threshold [33, 43,

50, 63, 64]. This is not directly related to our work.

Another approach for establishing the optimal threshold is the closest-to-(0,1) method

(MD). This method selects the optimal threshold that corresponds to the point on the

curve closest to (0,1) (i.e. the point closest to perfection with Se(c) = 1 and Sp(c) = 1).

The optimal threshold is the value that minimises the distance between a point on the

curve and (0,1) point. This method can be found mathematically by

MD = min
c
{
√

(1− Sp(c))2 − (1− Sn(c))2} (1.9)
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Perkins and Schisterman [60] discussed a comparison of optimal thresholds selected by

this method and the Youden index method. They recommend the use of the Youden

index as it offers clear clinical meaning in terms of the probability of correct classification

rate. In the literature, the closest-to-(0,1) method has received little attention compared

to the Youden index [60].

Recently, Liu [47] proposed an alternative to these methods based on the concept

of the area under the ROC curve (AUC), which is the maximum area method (MA).

This method defines the optimal threshold as the point that maximising the product of

specificity and sensitivity, given by

MA = max
c
{Sp(c)× Sn(c)} (1.10)

Liu [47] also discussed a comparison of optimal thresholds selected by this method, the

Youden index and the closest-to-(0,1) methods, via a simulation study. The maximum

area criterion has a simple and more meaningful maximising function, which evaluates

the classification accuracy of binary classification at threshold c. The empirical estimator

for the maximum area method (EMA) is given by

EMA(c) = 1
nx

nx∑
i=1

1{xi ≤ c} × 1
ny

ny∑
j=1

1{yj > c} (1.11)

Several other approaches for selecting the optimal threshold based on the ROC curve are

discussed by [35, 59, 62, 66]. For example, Unal [66] proposed an approach called Index

of Union (IU). In this method the value of AUC is computed first, then we search for

a threshold c from the coordinates of the ROC curve whose specificity and sensitivity

values are simultaneously very close or equal to the value of AUC. Mathematically, the

IU method can be defined by the following equation

IU = min
c

(|Se(c)− AUC|+ |Sp(c)− AUC|) (1.12)

such that the optimal threshold c can be found by minimising the IU(c) function [66]. A

different method for the optimal threshold selection, which is not based on the ROC curve,

employs the use of a maximally selected statistics that maximises a measure of difference
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among the two groups [10, 39, 49]. For example, the minimum P value method (min P)

presented by Miller and Siegmund [49], defines the optimal threshold that maximises the

standard chi-square statistic with one degree of freedom. In Section 2.5 we will compare

our proposed NPI method with the EYI method, Equation (1.7), and EMA method,

Equation (1.11), since both methods also take only few model assumptions. It is of

interest to compare our NPI approach with, for example, IU and min P methods, but we

leave that for further research.

1.3 Nonparametric Predictive Inference

1.3.1 A brief introduction

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework based

on Hill’s assumption A(n) [37], which yields direct probabilities for one or more future

observations, based on n observations for related random quantities. A(n) does not

assume anything else and it can be considered as a post-data assumption related to

exchangeability. Inferences based on A(n) are nonparametric and predictive, and can be

considered appropriate if there is hardly any information or knowledge about the random

quantities of interest, other than the n observations [38]. Such inferences based on limited

knowledge have also been called ‘low structure’ predictive inferences [34].

The assumption A(n) partially specifies a predictive probability distribution for one

future observation as follows. Suppose that X1, . . . , Xn, Xn+1 are continuous, real-valued

and exchangeable random quantities. Suppose that the ordered observations ofX1, . . . , Xn

are denoted by x1 < x2 < ... < xn, and define x0 = −∞ and xn+1 =∞ for ease of notation

(or x0 = 0 when dealing with non-negative random quantities). We assume that ties do

not occur between the data observations; ties can be dealt with by assuming that tied

observations differ by small amounts, a common approach to break ties in statistics

[38]. These n observations partition the real-line into n+ 1 intervals Ij = (xj−1, xj), for

j = 1, 2, . . . , n + 1. The assumption A(n) is that the future observation Xn+1 is equally
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likely to fall in any of these intervals with probability 1
n+1 [14], for each j = 1, . . . , n+ 1,

P (Xn+1 ∈ Ij) = 1
n+ 1 (1.13)

NPI has been introduced as predictive methodology, based only on the A(n) assumption.

It is important to emphasize that no further assumptions are made on the distribution of

probability 1
n+1 within an interval Ij. In NPI uncertainty is quantified by lower and upper

probabilities for events of interest. Augustin and Coolen [6] introduced predictive lower

and upper probabilities based on A(n), which are in line with De Finetti’s fundamental

theorem of probability [29]. The lower probability P (.) and upper probability P (.) for the

event Xn+1 ∈ B with B ⊂ R, based on the intervals Ij = (xj−1, xj) for j = 1, 2, . . . , n+ 1,

created by n real-valued non-tied observations, and the assumption A(n), are given by

P (Xn+1 ∈ B) = 1
n+ 1

n+1∑
j=1

1{Ij ⊆ B} (1.14)

P (Xn+1 ∈ B) = 1
n+ 1

n+1∑
j=1

1{Ij ∩B 6= ∅} (1.15)

The lower probability (1.14) is achieved by taking only probability mass into account that

is necessarily within B, which is only the case for the probability mass 1
n+1 per interval Ij

if this interval is completely contained within B. The upper probability (1.15) is achieved

by taking all the probability mass into account that could possibly be within B, which

is the case for the probability mass 1
n+1 , per interval Ij, if the intersection of Ij and B is

non-empty. NPI has strong consistency properties in the theory of interval probability

[6, 69], and it never leads to results that are in conflict with inference based on empirical

distributions.

NPI has been introduced for a variety of data types, NPI for multinomial data with

an unknown number of unordered categories was presented by Coolen and Augustin [15]

and Baker [7]. Elkhafifi and Coolen [32] presented NPI for ordinal data, based on a latent

variable representation with the categories represented by intervals on the real line to

reflect the known ordering of the categories. NPI for right-censored data was introduced

by Coolen and Yan [19, 20]. In Chapters 2 and 3, we apply NPI for future order statistics

as presented by Coolen et al. [16] and Alqifari [2], and in Chapter 4 we apply NPI for
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Bernoulli data introduced by Coolen [13].

1.3.2 NPI for future order statistics

In Section 1.3 NPI was only introduced for one future observation, but it can also be

generalized for multiple future observations, where we are interested in m ≥ 1 future

observations, Xn+i for i = 1, . . . ,m. It is important to emphasize that the future ob-

servations Xn+i are assumed to derive from the same data collection process as the n

data observations. We link the data and future observations via Hill’s assumption A(n)

[37], or more precisely, via consecutive application of A(n), A(n+1), . . . , A(n+m−1), we refer

to these all together as A(.), which can be considered as a post-data version of a finite

exchangeability assumption for n + m random quantities. A(.) implies that all possible

orderings of the n data observations and the m future observations are equally likely,

where the n data observations are not distinguished among each other, and neither are

the m future observations. Let Sj = #{Xn+i ∈ Ij, i = 1, . . . ,m}, then assuming A(.) we

have [16]

P (
n+1⋂
j=1
{Sj = sj}) =

(
n+m

n

)−1

(1.16)

for any non-negative integers sj with
∑n+1
j=1 sj = m. Equation (1.16) implies that all

(
n+m
n

)
orderings of m future observations among the n observations are equally likely.

The probability distribution of a single order statistic of m future observations is

important in this thesis which will be used in Chapters 2 and 3. Let X(r), for r = 1, . . . ,m,

be the r-th ordered future observation, so X(r) = Xn+i for one i = 1, . . . ,m and X(1) <

X(2) < . . . < X(m). The following probabilities are derived by counting the relevant

orderings, and hold for j = 1, . . . , n+ 1 and r = 1, . . . ,m [16]

P (X(r) ∈ Ij) =
(
j + r − 2
j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1

(1.17)

For this event NPI provides a precise probability, as each of the
(
n+m
n

)
equally likely

orderings of n past and m future observations has the r-th ordered future observation
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in precisely one interval Ij [16]. Generally, consider the event X(r) ∈ B, where B ⊂ R.

NPI provides bounds for the probability for such an event, where the maximum lower

bound and minimum upper bound are the lower and upper probabilities, respectively

[5, 6, 68, 69]. Following Equations (1.14) and (1.15) in Section 1.3, we can derive the

lower and upper probabilities

P (Xr ∈ B) =
n+1∑
j=1

1{Ij ⊆ B}P (X(r) ∈ Ij) (1.18)

P (Xr ∈ B) =
n+1∑
j=1

1{Ij ∩B 6= ∅}P (X(r) ∈ Ij) (1.19)

The event that the number of future observations in an interval (xa, xb), with 1 ≤

a < b ≤ n+ 1 and denoted by Sma,b, is greater than or equal to a particular value v ∈ N,

has the following precise probability [2],

P (Sma,b ≥ v) =
m∑
i=v

(
n+m

n

)−1(
b− a− 1 + i

i

)(
n− b+ a+m− i

m− i

)
(1.20)

Equation 1.20 will be used in Chapter 3.

1.3.3 NPI for Bernoulli quantities

Coolen [13] presented NPI for Bernoulli quantities, which is based on the A(.) assumption,

for m future observations given n observed values, and a latent variable representation

of Bernoulli quantities represented as observations on the real line, with a threshold such

that observations to one side are successes and to the other side failures. Suppose that

there is a sequence of n+m exchangeable Bernoulli trials, each with ‘success’ and ‘failure’

as possible outcomes, and data consisting of s successes in n trials. Let Y n
1 denote the

random number of successes in trials 1 to n; then a sufficient representation of the data

for NPI is Y n
1 = s, due to assumed exchangeablility of all trials. Let Y n+m

n+1 denote the

random number of successes in trials n+ 1 to n+m. Coolen and Coolen-Schrijner [18]

presented the lower and upper probabilities for events Y n+m
n+1 ≥ y and Y n+m

n+1 < y. The

upper probabilities for these events are as follows. For y ∈ {0, 1, ...,m} and 0 < s < n,
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P (Y n+m
n+1 ≥ y|Y n

1 = s) =
(
n+m
n

)−1
[(

s+y
s

)(
n−s+m−y

n−s

)
+

m∑
l=y+1

(
s+l−1
s−1

)(
n−s+m−l

n−s

)]
(1.21)

and for y ∈ {1, ...,m+ 1} and 0 < s < n,

P (Y n+m
n+1 < y|Y n

1 = s) =
(
n+m
n

)−1
[(

n−s+m
n−s

)
+

y−1∑
l=1

(
s+l−1
s−1

)(
n−s+m−l

n−s

)]
(1.22)

The corresponding lower probabilities can be derived via the conjugacy property [13],

P (Y n+m
n+1 ≥ y|Y n

1 = s) = 1− P (Y n+m
n+1 < y|Y n

1 = s)

P (Y n+m
n+1 < y|Y n

1 = s) = 1− P (Y n+m
n+1 ≥ y|Y n

1 = s)

For m = 1, the two non-trivial values of these upper probabilities are P (Y n+1
n+1 ≥ 1|Y n

1 =

s) = (s+ 1)/(n+ 1) and P (Y n+1
n+1 < 1|Y n

1 = s) = (n− s+ 1)/(n+ 1).

If the observed data are all successes, so s = n, or all failures, so s = 0, then these

upper probabilities are, for all y ∈ {0, 1, ...,m},

P (Y n+m
n+1 ≥ y|Y n

1 = n) = 1,

P (Y n+m
n+1 ≥ y|Y n

1 = 0) = (n+m−y
n )

(n+m
n ) ,

and for all y ∈ {0, 1, ...,m+ 1},

P (Y n+m
n+1 < y|Y n

1 = n) = (n+y−1
n )

(n+m
n ) ,

P (Y n+m
n+1 < y|Y n

1 = 0) = 1.

The results in this section will be used in Chapter 4.

1.4 Outline of thesis

This thesis is organized as follows. In Chapter 2, we introduce NPI for selecting the

optimal diagnostic test threshold with two groups, healthy or diseased individuals, taking

into account a fixed number of future individuals per group. We also introduce NPI

method related to the two-group Youden index. Chapter 3 extends the NPI methods to

three ordered groups of test outcomes. We further present NPI method related to the
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three-group Youden index. We investigate the performance of the two- and three-group

NPI methods via simulation studies.

The results in Chapters 2 and 3 have been presented at the International Conference

of the Royal Statistical Society (RSS) at Manchester University in September 2016, and

at the 9th International Conference of the ERCIM WG on Computational and Method-

ological Statistics and 10th International Conference on Computational and Financial

Econometrics (CFE-CMStatistics) at University of Seville, Spain in December 2016. The

results of Chapters 2 and 3 are included in the paper “ Nonparametric predictive inference

for diagnostic test thresholds”, which is in submission.

Chapter 4 presents a comparison of two diagnostic tests applied on the same indi-

viduals from two groups, healthy and diseased individuals, based on NPI for future order

statistics and also based on NPI for Bernoulli quantities. Further, to reflect the relative

importance of the groups, weights are added. This chapter has been presented at the

Research Students’ Conference in Probability and Statistics in Durham in April 2017.

A journal paper representing the results in Chapter 4 is being prepared for submission.

Chapter 5, provides some concluding remarks.



Chapter 2

NPI for two-group diagnostic test

threshold

2.1 Introduction

The goal in a two-group classification study is to measure the ability of a diagnostic

test to differentiate individuals with the disease of interest (‘positive’ test results) from

those without the disease (‘negative’ test results). The critical point in measuring the

accuracy of a diagnostic test is to select an optimal threshold to identify the positive and

negative test results. There is a recognisable inverse relationship between the specificity

and sensitivity, meaning that shifting the threshold leads to increasing one of these while

decreasing the other. Selecting a classification threshold c usually leads to two different

kinds of misclassification, as healthy individuals maybe classified as diseased, and diseased

individuals maybe classified as healthy. Ideally, one would choose an optimal c, which

effectively reflects one’s belief of which group is more important to be correctly diagnosed.

Researchers in the literature use the utility concept, for example Hand [36] discussed

the choice of c if one believes that misclassifying a healthy person as diseased is a more

serious error than misclassifying a diseased person as healthy, or vice versa. In this

chapter, we introduce NPI for selecting the optimal diagnostic test threshold for two-

group classification settings, where the inference is based on multiple future individuals.
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We present a direct criterion for introducing the relative importance of the two groups.

It is important to discuss a general feature in the NPI approach, which is for small

number of future observations, there is relatively more variability in the values than for

large m. This is close in nature to the classical situation covered by the central limit

theorem, except in NPI where we do not assume an underling population, therefore we

also do not use characteristics of population such as mean value. We will refer to this

feature latter in this thesis as randomness effect.

Section 2.2 introduces NPI for selecting the optimal threshold for two-group diagnostic

tests. In Section 2.3, we also introduce a NPI method related to the two-group Youden

index. Section 2.4 discusses a property of searching for the optimal threshold. Section 2.5

presents some examples to illustrate and discuss the new approaches. We compare and

investigate the performance of the two-group NPI methods and some classical methods

via a simulation study in Section 2.6. Finally, some concluding remarks are made in

Section 2.7.

2.2 NPI for two-group diagnostic test threshold

Assume that we have real-valued data from a diagnostic test on individuals from two

groups, and there are nx observations from the healthy group X and ny observations

from the disease group Y . Throughout this thesis it is assumed that these two groups are

fully independent, in the sense that any information about the individuals in one group

does not contain any information about the individuals in the other group. The ordered

data of groups X and Y are denoted by x1 < x2 < . . . < xnx and y1 < y2 < . . . < yny ,

respectively. For ease of presentation, we define x0 = y0 = −∞ and xnx+1 = yny+1 =∞.

These nx observations partition the real-line into nx + 1 intervals IXi = (xi−1, xi), for

i = 1, 2, . . . , nx + 1, and the ny observations partition the real-line into ny + 1 intervals

IYj = (yj−1, yj), for j = 1, . . . , ny + 1. In this section, we consider mx future individuals

from groupX, with diagnostic test resultsXnx+r, r = 1, . . . ,mx, andmy future individuals

from group Y , with diagnostic test results Yny+s, s = 1, . . . ,my. Let the mx and my
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ordered future observations from groupsX and Y be denoted byX(1) < X(2) < . . . < X(mx)

and Y(1) < Y(2) < . . . < Y(my), respectively.

Small values of the diagnostic test results are assumed to be associated with absence

of the disease and large values of the test results with presence of the disease. To this end,

a threshold c ∈ R can be used to classify individuals to either being healthy (absence of

the disease) if their test result is below or equal to the threshold c, or having the disease

if their test result is greater than the threshold c. Then the main question is how to

find or select the optimal threshold c that maximizes the correct classification of patients

and healthy people. As the NPI-based inferences are in terms of future observations, we

will select the value c that gives the best classification based on the mx and my future

individuals. To this end, we will make use of NPI for future order statistics as summarized

in Section 1.3.2, but first we need to introduce further notation.

For a specific value of c, CX
c denotes the number of correctly classified future individu-

als from the healthy group X, that is those with test results Xnx+r ≤ c (for r = 1, . . . ,mx),

and CY
c denotes the number of correctly classified future individuals from the disease

group Y , that is those with test results Yny+s > c (for s = 1, . . . ,my). Let α and β be any

two values in (0, 1] that are selected to reflect the desired importance of one group over

another. We consider the aim that the number of correctly classified future individuals of

the healthy group X is at least αmx, and that the number of correctly classified future

individuals of the disease group Y is at least βmy. To gain intuitive insight, varying the

values of α and β will depend on one’s believes of which group is more important to be

correctly diagnosed, for example, if giving medication to diseased patients is crucial, yet

does not have serious adverse effects for healthy people, one can take the value of β higher

than the value of α. This would be expected to lead to a higher proportion of diseased

persons being correctly diagnosed than healthy persons. Of course one can choose α and

β to be equal if one prefers to give the same importance of correct classification of the

future individuals to both groups. This criterion in terms of the proportions of successful

diagnoses seems to be sensible from predictive perspective. Note that α and β are target

proportions per group, hence their is no constraint on their values except being in (0, 1].
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As the two groups are assumed to be independent, the joint NPI lower and up-

per probabilities can be derived as the products of the corresponding lower and upper

probabilities for the individual events that involve CX
c and CY

c , thus

P (CX
c ≥ αmx, C

Y
c ≥ βmy) = P (CX

c ≥ αmx)× P (CY
c ≥ βmy) (2.1)

P (CX
c ≥ αmx, C

Y
c ≥ βmy) = P (CX

c ≥ αmx)× P (CY
c ≥ βmy) (2.2)

We will refer to Equations (2.1) and (2.2) as 2-NPI-L and 2-NPI-U, respectively, and to

the method in general as 2-NPI.

Next we will use the NPI results for future order statistics in Section 1.3.2, in

particular Equation (1.17), to derive the NPI lower and upper probabilities in Equations

(2.1) and (2.2). We first present the results for group X in detail, followed by those for

group Y , for which deriving the results follows similar steps. We note that the event

CX
c ≥ αmx is equivalent to X(dαmxe) ≤ c, where dαmxe is the smallest integer greater

than αmx, and similarly that the event CY
c ≥ βmy is equivalent to Y(my−dβmye+1) > c,

where dβmye is the smallest integer greater than βmy.

For IXi = (xi−1, xi), i = 1, . . . , nx + 1, and c ∈ IXic = (xic−1, xic), ic = 2, 3, . . . , nx, the

NPI lower and upper probabilities for the event CX
c ≥ αmx are given by

P (CX
c ≥ αmx) = P (X(dαmxe) ≤ c) =

ic−1∑
i=1

P (X(dαmxe) ∈ IXi ) (2.3)

P (CX
c ≥ αmx) = P (X(dαmxe) ≤ c) =

ic∑
i=1

P (X(dαmxe) ∈ IXi ) (2.4)

where the precise probabilities on the right hand sides of Equations (2.3) and (2.4) can

be obtained from Equation (1.17). For ic = 1, Equations (2.3) and (2.4) become

P (CX
c ≥ αmx) = 0 and P (CX

c ≥ αmx) = P (X(dαmxe) ∈ IX1 )

and for ic = nx + 1,

P (CX
c ≥ αmx) = 1− P (X(dαmxe) ∈ IXnx+1) and P (CX

c ≥ αmx) = 1

If c is equal to one of the observations xi, say c = xic for the specific value ic ∈ {2, ..., nx},
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then this event has the following precise probability,

P (CX
c ≥ αmx) = P (X(dαmxe) ≤ c) =

ic∑
i=1

P (X(dαmxe) ∈ IXi ) (2.5)

Of course, this means that for such a value of c we have P (CX
c ≥ αmx) = P (CX

c ≥

αmx) = P (CX
c ≥ αmx).

The NPI lower and upper probabilities for the event CY
c ≥ βmy are derived similarly.

For IYj = (yj−1, yj), j = 1, . . . , ny + 1, and c ∈ IYjc = (yjc−1, yjc), jc = 2, 3, . . . , ny, the NPI

lower and upper probabilities for the event CY
c ≥ βmy are

P (CY
c ≥ βmy) = P (Y(my−dβmye+1) > c) =

ny+1∑
j=jc+1

P (Y(my−dβmye+1) ∈ IYj ) (2.6)

P (CY
c ≥ βmy) = P (Y(my−dβmye+1) > c) =

ny+1∑
j=jc

P (Y(my−dβmye+1) ∈ IYj ) (2.7)

For jc = 1, Equations (2.6) and (2.7) become

P (CY
c ≥ βmy) = 1− P (Y(my−dβmye+1) ∈ IY1 ) and P (CY

c ≥ βmy) = 1 (2.8)

and for jc = ny + 1,

P (CY
c ≥ βmy) = 0 and P (CY

c ≥ βmy) = P (Y(my−dβmye+1) ∈ IYny+1)

Furthermore, for c = yjc we have

P (CY
c ≥ βmy) = P (Y(my−dβmye+1) > c) =

ny+1∑
j=jc+1

P (Y(my−dβmye+1) ∈ IYj ) (2.9)

Of course, this means that for such a value of c we have P (Y(my−dβmye+1) > c) =

P (Y(my−dβmye+1) > c) = P (Y(my−dβmye+1) > c)).

The optimal diagnostic threshold is selected by maximisation of Equation (2.1) for

the lower probability or Equation (2.2) for the upper probability. It should be emphasised

that the 2-NPI-L and 2-NPI-U are different criterion, hence they may lead to different

optimal thresholds. This method will be illustrated in examples in Section 2.5.
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2.3 NPI method related to the two-group Youden

index

In this section we introduce the NPI method for the two groups classification problem

related to the Youden index procedure. We apply the 2-NPI method presented in Section

2.2, specifically Equations (2.1) and (2.2), to the Youden index method, in the sense that

the criterion of the Youden index maximises the sum of the probabilities of the correct

classification for the two groups. Let the NPI lower and upper probabilities related to the

Youden index be denoted by 2-NPI-Y-L and 2-NPI-Y-U, respectively, and the method in

general as 2-NPI-Y, and they are given by

2-NPI-Y-L = P (CY
c ≥ βmy) + P (CX

c ≥ αmx)− 1 (2.10)

2-NPI-Y-U = P (CY
c ≥ βmy) + P (CX

c ≥ αmx)− 1 (2.11)

These probabilities are calculated as explained in Section 2.2. The 2-NPI-Y-L and 2-NPI-

Y-U may lead to different optimal thresholds. This method will be illustrated in examples

in Section 2.5.

2.4 Searching for the optimal threshold

Following the setting introduced in Section 2.2, to find the optimal threshold c, there is

no need to go through each of the nx + ny + 1 intervals created by the data observations.

As for any sensible method, if c is moved such that one more data observation is correctly

classified for one group while not changing the number of correctly classified data obser-

vation for the other group, it is an improvement. In this reasoning, we call a method

‘sensible’ if such a move of the threshold leads to a greater value of the target function,

so typically our NPI lower and upper probabilities. Our methods are indeed sensible in

this way, which follows from the expressions of the NPI lower and upper probabilities

involved. Thus, the optimal threshold c for the two groups classification setting can only

be in intervals where the left end point of the interval is an observation from group X and
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the right end point is an observation from group Y , that is c ∈ (xi, yj). We should also

consider the first and the last interval for the optimal threshold c. In the simulation study

which will be presented in Section 2.6, we use this property to speed up the derivation of

the optimal threshold c.

2.5 Examples

In the following examples, we illustrate the 2-NPI and 2-NPI-Y methods as presented in

Sections 2.2 and 2.3, and we compare them with the empirical estimate of maximum area

(EMA) and Youden index (EYI) methods presented in Section 1.2. As it is irrelevant how

c is chosen within the respective intervals, the reported values of c in these examples are

set be a value in the interval that is between two consecutive observations of the X and

Y data combined. In the tables for all the examples, we represent the interval for the

optimal threshold c by its left end point.

Example 2.1. For a specific gene, the relative gene expression intensities for 23 non-

disease ovarian tissues, and 30 disease ovarian tumor tissues, are displayed in Table 2.1 [59].

This data set has three pairs of tied observations between the two groups (0.571, 0.628

and 0.641), we avoid the ties by adding 0.0001 to the three relevant observations from

the cancer tissues group [24], see Table 2.2.

Normal tissues 0.442 0.500 0.510 0.568 0.571 0.574 0.588 0.595 0.595 0.595 0.598 0.606 0.617

0.628 0.641 0.641 0.680 0.699 0.746 0.793 0.884 1.149 1.785

Cancer tissues 0.543 0.571 0.602 0.609 0.628 0.641 0.666 0.694 0.769 0.800 0.800 0.847 0.877

0.892 0.925 0.943 1.041 1.075 1.086 1.123 1.136 1.90 1.234 1.315 1.428 1.562

1.612 1.666 1.666 2.127

Table 2.1: The relative gene expression intensities
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0.442 0.500 0.510 0.543 0.568 0.571 0.572 0.574 0.588 0.595 0.5951

0.5952 0.598 0.602 0.606 0.609 0.617 0.628 0.629 0.641 0.6411 0.642

0.666 0.680 0.694 0.699 0.746 0.769 0.793 0.800 0.8001 0.847 0.877

0.884 0.892 0.925 0.943 1.041 1.075 1.086 1.123 1.136 1.149 1.190

1.234 1.315 1.428 1.562 1.612 1.666 1.6661 1.785 2.127

Table 2.2: The relative gene expression intensities, the healthy group
(black) and diseased group (red)

m

2-NPI method 2-NPI-Y method

Lower case Upper case Lower case Upper case

c 2-NPI-L c 2-NPI-U c 2-NPI-Y-L c 2-NPI-Y-U

α = β = 0.6

5 0.746 0.7651 0.746 0.8282 0.746 0.7514 0.746 0.8214

10 0.746 0.7783 0.746 0.8506 0.746 0.7671 0.746 0.8464

30 0.746 0.8243 0.746 0.8993 0.746 0.8184 0.746 0.8979

100 0.746 0.8635 0.746 0.9328 0.746 0.8605 0.746 0.9323

α = β = 0.8

5 0.746 0.3954 0.746 0.4893 0.793 0.2839 0.793 0.4183

10 0.746 0.2800 0.746 0.3886 0.793 0.1100 0.793 0.2828

30 0.746 0.1574 0.746 0.2743 0.510 - 0.0053 0.793 0.1267

100 0.746 0.0955 0.746 0.2077 0.510 - 0.0023 0.793 0.0407

α = β = 0.2

5 0.746 0.9948 0.746 0.9970 0.746 0.9948 0.746 0.9970

10 0.746 0.9992 0.746 0.9996 0.746 0.9992 0.746 0.9996

30 0.746 1.0000 0.746 1.0000 0.746 1.0000 0.746 1.0000

100 0.746 1.0000 0.746 1.0000 0.746 1.0000 0.746 1.0000

α = 0.4, β = 0.7

5 0.628 0.7064 0.628 0.7847 0.628 0.6826 0.628 0.7724

10 0.6411 0.8259 0.6411 0.8888 0.6411 0.8201 0.6411 0.8867

30 0.628 0.8715 0.628 0.9355 0.628 0.8671 0.628 0.9345

100 0.628 0.9127 0.628 0.9646 0.628 0.9107 0.628 0.9643

α = 0.1, β = 0.9

5 0.598 0.5813 0.598 0.6986 0.598 0.5574 0.598 0.6866

10 0.598 0.7389 0.571 0.8564 0.598 0.7371 0.598 0.8512

30 0.571 0.7277 0.571 0.8887 0.571 0.7072 0.571 0.8854

100 0.571 0.7422 0.571 0.9178 0.571 0.7256 0.571 0.9161

Table 2.3: Optimal threshold c and corresponding value of 2-NPI-L, 2-
NPI-U, 2-NPI-Y-L, 2-NPI-Y-U, using the 2-NPI and 2-NPI-Y
methods and mx = my = m

Table 2.3 provides the optimal threshold value c obtained from the two NPI-based

methods along with their corresponding lower and upper probabilities, for mx = my. We

have considered different scenarios of α and β. As we can see from the table, for α = β =
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0.6, both NPI-based methods give the same optimal threshold value, c ∈ (0.746, 0.769),

regardless of the value of m.

On increasing the values of α and β (α = β = 0.8), the 2-NPI method gives the same

optimal threshold value as α = β = 0.6 scenario, whereas for the 2-NPI-Y the optimal

threshold is c ∈ (0.793, 0.800), regardless of the value of m; except for the 2-NPI-Y-L,

the optimal threshold is c ∈ (0.510, 0.543) for m = 30, 100. In this scenario the values

of lower and upper probabilities for both the methods are very low as they struggle to

meet the required criterion. It is noticed that the 2-NPI-Y-L can be less than zero, this is

because the lower probability of the number of correctly classified future individuals from

groups X and Y in Equation (2.10) are very low. When the required criteria are easy to

achieve (α = β = 0.2), both the methods perform well as these corresponding lower and

upper probabilities are very high and both the 2-NPI and 2-NPI-Y methods provide the

same optimal threshold, which is c ∈ (0.746, 0.769), regardless of the value of m.

For α = 0.4, β = 0.7, as this scenario requests to put more emphasis on the number

of correctly classified future individuals from group Y than that of group X, it is clear

that the optimal threshold c for both methods decreases in order to achieve the desired

criteria in comparison to the α = β scenario. In addition, the optimal threshold changes

with different values of m, for example, for m = 10 the optimal threshold for both the

NPI-based lower and upper probabilities is c ∈ (0.6411, 0.642), whereas for m = 5, 30, 100,

the optimal threshold is c ∈ (0.628, 629). For the extreme case with α = 0.1, β = 0.9

where the desired criterion strongly emphasises the number of future observations from

group Y , the optimal threshold value c decreases to achieve the required criterion in

comparison to the α = β scenario, which is c ∈ (0.598, 0.602) for m = 5, 10 for both the

methods, except for m = 10, the optimal threshold for the 2-NPI-U is c ∈ (0.571, 0.572),

and for larger values of m, m = 30, 100, the optimal threshold for both the methods is

c ∈ (0.571, 0.572).
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mx my

2-NPI method 2-NPI-Y method

Lower case Upper case Lower case Upper case

c 2-NPI-L c 2-NPI-U c 2-NPI-Y-L c 2-NPI-Y-U

α = β = 0.6

10 6 0.746 0.6971 0.746 0.7723 0.746 0.6799 0.746 0.7651

30 40 0.746 0.8315 0.746 0.9070 0.746 0.8259 0.746 0.9057

60 100 0.746 0.8592 0.746 0.9306 0.746 0.8557 0.746 0.9299

α = β = 0.8

10 6 0.746 0.2955 0.746 0.3962 0.793 0.1457 0.793 0.3066

30 40 0.746 0.1404 0.746 0.2550 0.510 -0.0042 0.793 0.0964

60 100 0.746 0.0981 0.746 0.2087 0.510 -0.0023 0.793 0.0371

α = 0.4, β = 0.7

10 6 0.628 0.6656 0.628 0.7585 0.628 0.6387 0.628 0.7458

30 40 0.628 0.8774 0.628 0.9398 0.628 0.8734 0.628 0.9389

60 100 0.628 0.9056 0.628 0.9597 0.628 0.9033 0.628 0.9593

Table 2.4: Optimal threshold c and corresponding value of 2-NPI-L, 2-
NPI-U, 2-NPI-Y-L, 2-NPI-Y-U, using the 2-NPI and 2-NPI-Y
methods and mx 6= my

Table 2.4 provides the optimal threshold value c obtained from the two NPI-based

methods along with their corresponding lower and upper probabilities for mx 6= my.

Comparing this table with Table 2.4, with respect to the optimal threshold, the optimal

thresholds for α = β = 0.6 and α = β = 0.8 are found to be the same, whereas for

α = 0.4, β = 0.7, the optimal threshold is c ∈ (0.628, 0.629), regardless of the values of

mx and my. Again, in this table, the 2-NPI-Y-L can be less than zero since the lower

probability of the number of correctly classified future individuals from groups X and Y

in Equation (2.10) are very low.

Over all, it is clear from the results in this example that the optimal threshold can

change depending on the values of α and β and also on the value of m. The maximum

values of the empirical Youden index (EYI) and maximum area (EMA) are equal to 0.5696

and 0.6087, respectively, and the optimal threshold for both methods is c ∈ (0.793, 0.800)

As Example 2.1 involved a data set with the data from the two groups quite a bit

overlapping, we now consider a small example with more separate data for the two groups.

Example 2.2. Consider an artificial data set for groups X and Y with nx = ny = 10, con-

sisting of the ranks,X = {1, 2, 3, 4, 6, 7, 8, 9, 10, 12} and Y = {5, 11, 13, 14, 15, 16, 17, 18, 19,

20}.
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m

2-NPI method 2-NPI-Y method

Lower case Upper case Lower case Upper case

c 2-NPI-L c 2-NPI-U c 2-NPI-Y-L c 2-NPI-Y-U

α = β = 0.6

5 10 0.8521 10 0.9565 10 0.8462 10 0.9560

10 10 0.8641 10 0.9678 10 0.8591 10 0.9675

25 10 0.8843 10 0.9787 10 0.8807 10 0.9786

100 10 0.9019 10 0.9856 10 0.8993 10 0.9855

α = β = 0.8

5 10 0.5749 10 0.8186 10 0.5165 10 0.8095

10 10 0.5027 10 0.8006 10 0.4180 10 0.7895

25 10 0.4424 10 0.7937 10 0.3303 10 0.7818

100 10 0.4092 10 0.7949 10 0.2715 10 0.7831

Table 2.5: Optimal threshold c and corresponding value of 2-NPI-L, 2-
NPI-U, 2-NPI-Y-L, 2-NPI-Y-U, using the 2-NPI and 2-NPI-Y
methods and mx = my = m

Table 2.5 provides the optimal threshold values c obtained from the 2-NPI and 2-NPI-

Y methods along with their corresponding lower and upper probabilities, formx = my = m.

We have considered two different scenarios of α and β. For α = β = 0.6, both NPI-based

methods give the same optimal threshold, c ∈ (10, 11), regardless of the value of m, with

high values of the lower and upper probabilities since the data from each group are less

overlapping. The same results hold for α = β = 0.8, but with lower values of the lower

and upper probabilities. The maximum values of the empirical Youden index (EYI) and

maximum area (EMA) are equal to 0.8000 and 0.8100, respectively, and the optimal

threshold value for both the methods is c ∈ (10, 11). It is clear that both the methods

provide high values of the probability.

2.6 Simulation

In order to study the performance of the methods presented in this chapter, a simulation

study was conducted for the two-group scenarios. We have considered two main cases, in

which the data are simulated from the following normal distributions:
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Case A: X ∼ N(0, 22) and Y ∼ N(1, 22).

Case B: X ∼ N(0, 12) and Y ∼ N(1, 12).

Due to the larger variance in Case A, the groups in that case overlap more than in Case B,

with the means in case A being one standard deviation apart while they are 0.5 standard

deviation apart in case B. We simulate nx and ny from the two normal distributions. Then,

the nx and ny simulated data observations will be used to find the optimal thresholds c

according to these methods and for specific values of (α, β) when applicable, where the

threshold values are set to the midpoint in the partition of R used by the data. After that,

we simulatemx andmy future observations from the same underlying normal distributions

as the nx and ny simulated data observations to see how the methods perform.

The mx and my simulated future observations are compared with the optimal

thresholds to obtain the number of correctly classified observations per group. We have

studied the predictive performance of all methods in terms of the number of correctly

classified future observations that are achieved using the desired criterion, that is when

the number of correctly classified future observations from group X and Y exceed αmx

and βmy, respectively. Let us denote by ‘+’ when the desired criterion is achieved and

‘−’ otherwise. Throughout this simulation we assume that nx = ny and mx = my, and

jx, jy ∈ {0, 1, . . . ,m}.

We have run the simulation for n = 10 and m = 5, 30, and we have chosen different

values of α and β. Obviously the empirical Youden index and the maximum area methods

do not depend on the values of α and β in terms of selecting the optimal thresholds.

However for the comparison of predictive performance we have considered the same

desired criterion of the number of future observations that are correctly classified from

groups X and Y being at least αmx and βmy, respectively. The results in this section

are based on 10,000 simulations per case per method.

To search for the optimal threshold c, rather than searching for the value c that

maximises the probability within each of the nx + ny + 1 intervals created by the data

observations, which could be computationally demanding especially in the simulation,

we just consider the intervals as discussed in Section 2.2, that is we only consider the
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threshold c to be in intervals between an observation from group X to the left and an

observation from group Y to the right, and we also consider the first and the last intervals.

The predictive performance results for Case A are given in Tables 2.6 and 2.7 for

m = 5 andm = 30, respectively, and in Tables 2.8 and 2.9 for Case B. We have studied the

performance in two shapes for α = β with values 0.2, 0.6 and 0.8, and for α = 0.4, β = 0.7,

for the NPI-based methods (2-NPI and 2-NPI-Y) and the empirical estimates of the

Youden index and maximum area methods (2-EYI and 2-EMA).

Consider Table 2.7, for example, where ‘+ +’ indicates that the desired criteria are

achieved for both groups while ‘− −’ indicates that the desired criteria for both groups

are not achieved. For example, for 2-NPI-Y-U and α = β = 0.2, the desired criteria have

been achieved for both groups in 9886 out of 10,000 simulations, that is, at least 6 future

observations (αm = 0.2× 30 and βm = 0.2× 30) are correctly classified from each of the

disease and non-disease groups. On the other hand, in 62 out of 10,000 simulations, the

desired criterion is achieved (6 or more out of 30 are correctly classified) for group X, but

the desired criterion is not achieved for group Y .

From Tables 2.6-2.9, the 2-NPI method outperforms all the other methods and for

all the settings that have been considered for achieving the desired criterion for both

groups. While for small values of α and β, it appears that the 2-NPI and 2-NPI-Y

perform similarly, the 2-NPI-Y method performs poorly for larger values of α and β. One

possible explanation is that the 2-NPI-Y method is based on the sum of the probabilities

of correct classification rather than the product, which does not seem ideal if one tries to

achieve higher proportions of those who are correctly classified. Yet for small values of α

and β, as we have mentioned earlier, the 2-NPI-Y method performs equally well as the

2-NPI method.

Interestingly, the maximum area method (MA) is the closest in terms of performance

to the 2-NPI method over all settings, yet the NPI method can be better, considering

its predictive nature. It is not surprising that the maximum area method performs

better than the Youden index method, as we have already discussed that summing the

probabilities of correct classification may not be ideal when considering the prediction
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performance.

In addition, we can see from these tables that for α = β = 0.6 and α = β = 0.8, all

the methods perform better for small value of m than for larger m, while for α = β = 0.2,

all the methods perform better for large m than for small m; this is because of the

randomness effect as discussed in Section 2.1. In general, we notice that all the methods,

when they are not achieving the desired criterion on both groups X and Y , tend to reach

the desired criterion for either group X or group Y . However, for larger values of α

and β, the 2-NPI and 2-EMA methods mostly fail the desired criterion for each group.

This result becomes clearer for larger m; for example, in Table 2.7, for α = β = 0.8 the

2-NPI and 2-EMA methods mostly fail the desired criterion for each group, whereas, the

2-NPI-Y method prefers to reach the desired criterion for either group X or group Y . It

is obvious that if the values of α and β vary (α = 0.4, β = 0.7), the required criterion

becomes either harder or easier to achieve, which depends on these values and the value

of m. Clearly, all methods perform poorly with the increase of α and β as the criteria

become harder to achieve, especially for α = β = 0.8. Finally, and not surprisingly, all

methods perform much better in Case B than in Case A, as the groups in Case B are

more separated than in Case A.

We summarise the number of correctly classified future observations in all simulations

from groups X and Y using bar-plots as follows. Let the number of successfully classified

future observations from group X with regards to the event of interest, which include

α, be denoted by SXjx and the number of successfully classified future observations from

group Y with regards to the event of interest, which include β, be denoted by SYjy ,

where jx ∈ {0, 1, . . . ,mx} and jy ∈ {0, 1, . . . ,my}, respectively. Figures 2.1-2.4 show the

distributions of the numbers of future observations out of m in all 10,000 simulations,

that are correctly classified for each group. For Case A, we can see that for larger values

of α = β, all methods struggle to meet the required criterion. Obviously, the performance

for all methods becomes better for Case B since the groups have less overlap.

The results of this simulation show that the number of future observations considered

and the values of α and β have an impact with regard to achieving the required criterion



28 Chapter 2. NPI for two-group diagnostic test threshold

of the number of future observations that are correctly classified from groups X and Y .

X Y 2-NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EYI 2-EMA

α = β = 0.2

- - 0 0 0 0 0 0

- + 301 293 301 294 890 424

+ - 259 249 259 249 620 356

+ + 9440 9458 9440 9457 8490 9220

α = β = 0.6

- - 793 795 664 747 540 741

- + 2869 2854 3372 3040 3844 3039

+ - 2795 2787 2937 2882 3034 2911

+ + 3543 3564 3027 3331 2582 3309

α = β = 0.8

- - 3556 3575 1684 2447 2734 3455

- + 2885 2874 4686 3902 3749 2999

+ - 2797 2779 3325 3149 2962 2815

+ + 762 772 305 502 555 731

α = 0.4, β = 0.7

- - 863 864 727 816 575 607

- + 2523 2727 2458 2887 1828 1031

+ - 3072 2860 3833 2939 5121 5663

+ + 3542 3549 2982 3358 2476 2699

Table 2.6: Simulation results (10, 000 runs) for case A with n = 10 and
m = 5

X Y 2-NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EYI 2-EMA

α = β = 0.2

- - 0 0 0 0 0 0

- + 52 50 54 52 752 185

+ - 63 65 62 62 542 172

+ + 9885 9885 9884 9886 8706 9643

α = β = 0.6

- - 867 890 586 797 488 751

- + 3943 3922 4753 4162 4905 4203

+ - 3624 3595 3606 3617 3748 3696

+ + 1566 1593 1055 1424 859 1350

α = β = 0.8

- - 7043 7186 1461 2701 5003 6746

- + 1495 1447 3327 4450 2899 1753

+ - 1460 1365 5212 2848 2097 1499

+ + 2 2 0 1 1 2

α = 0.4, β = 0.7

- - 274 277 210 266 154 181

- + 3105 3148 2718 3249 2630 1437

+ - 3556 3450 4620 3539 5379 6236

+ + 3065 3125 2452 2946 1837 2146

Table 2.7: Simulation results (10, 000 runs) for case A with n = 10 and
m = 30
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X Y 2-NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EYI 2-EMA

α = β = 0.2

- - 0 0 0 0 0 0

- + 116 112 116 113 347 172

+ - 95 94 95 94 182 134

+ + 9789 9794 9789 9793 9471 9694

α = β = 0.6

- - 226 236 212 226 175 209

- + 2095 2084 2199 2119 2843 2208

+ - 1992 1970 2108 2019 2089 2086

+ + 5687 5710 5481 5636 4893 5497

α = β = 0.8

- - 1956 1975 1360 1696 1669 1904

- + 3090 3076 3899 3418 3766 3162

+ - 3052 3022 3374 3228 2931 3067

+ + 1902 1927 1367 1658 1634 1867

α = 0.4, β = 0.7

- - 287 297 261 284 208 193

- + 1842 1900 1775 1930 1111 677

+ - 2449 2369 2829 2413 4392 4778

+ + 5422 5434 5135 5373 4289 4352

Table 2.8: Simulation results (10, 000 runs) for case B with n = 10 and
m = 5

X Y 2-NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EYI 2-EMA

α = β = 0.2

- - 0 0 0 0 0 0

- + 9 9 10 9 163 41

+ - 11 11 11 10 88 26

+ + 9980 9980 9979 9981 9749 9933

α = β = 0.6

- - 31 33 26 34 20 21

- + 2571 2518 2905 2629 3723 2860

+ - 2377 2345 2546 2348 2570 2574

+ + 5021 5104 4523 4989 3687 4545

α = β = 0.8

- - 4513 4627 1580 2987 3470 4257

- + 2747 2726 3646 3747 3835 2998

+ - 2673 2579 4748 3220 2640 2684

+ + 67 68 26 46 55 61

α = 0.4, β = 0.7

- - 7 7 7 7 2 4

- + 1525 1432 1525 1452 1232 576

+ - 2035 2059 2447 2105 4189 4615

+ + 6433 6502 6021 6436 4577 4805

Table 2.9: Simulation results (10, 000 runs) for case B with n = 10 and
m = 30
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Figure 2.1: Simulation results (10, 000 runs), when α = β = 0.6 and
m = 5 (case A)
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Figure 2.2: Simulation results (10, 000 runs), when α = β = 0.8 and
m = 5 (case A)
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Figure 2.3: Simulation results (10, 000 runs), when α = β = 0.6 and
m = 5 (case B)
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Figure 2.4: Simulation results (10, 000 runs), when α = β = 0.8 and
m = 5 (case B)
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2.7 Concluding remarks

This chapter has presented methods for selecting the optimal diagnostic threshold with

two groups, explicitly as a predictive problem instead of the classical approach based on

estimation. We considered m future individuals in each group for who the threshold would

be applied, and criteria in terms of the proportions of successful diagnoses. Nonparametric

predictive inference was applied to derive the optimal thresholds, which were shown to

depend on the target success proportions and also on the value of m. We have shown

that the optimal threshold might change if the number of future individuals changes.

We have presented the use of the target proportions α and β in our method presented

in Section 2.2. We consider this an attractive approach for the predictive method. It

will be interesting to compare this approach to the use of utilities. We have restricted

attention to introducing the NPI method for the two groups classification problem related

to the Youden index procedure, and left further investigation of the use of other methods

within the NPI framework, such as the minimum P value method (min P) as mentioned

in Section 1.2. In the next chapter, we extend the two-group NPI approach for selecting

the optimal threshold to three-group classification problems.



Chapter 3

NPI for three-group diagnostic test

thresholds

3.1 Introduction

In this chapter, we extend the two groups NPI methods for selecting the optimal thresholds

presented in Chapter 2 to three groups classification problems. Traditionally, measuring

the diagnostic test accuracy dealt with binary outcomes where individuals can be in one of

two states: healthy or diseased. Often, however, medicine studies involve discriminating

between more than two stages. For example, in Alzheimer’s disease (AD), there exists

mild cognitive impairment (MCI) as an intermediate stage (transition stage) between

normal aging and complete loss of memory [28, 51, 70]. The intermediate stage in the

AD progress is crucial to detect as it is an indication of serious disease processing in the

future. For the late stages of the disease, no medical treatments are efficient, whereas the

intermediate stage can lead to early treatment with new drugs to slow the development

of memory loss. The treatment for those in the intermediate stage can provide a more

profound influence on the cognitive decline rate [70]. Therefore, it is important to improve

diagnostic test accuracy for distinguishing among the three disease stages. In this setting,

the ROC curve is generalized to the ROC surface by adding a third dimension [52, 53, 56]

and considering two decision thresholds, c1 < c2, to classify individuals into one of these
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groups. Selecting appropriate threshold values c1 and c2 is the main aspect of analysis of

a diagnostic test to distinguish between the three groups.

Section 3.2 provides a brief overview of existing methods for diagnostic test thresholds

in the three groups setting. In Section 3.3, we discuss a pairwise approach for selecting

the optimal thresholds in the three-group diagnostic test scenario. In Section 3.4, we

introduce NPI for selecting the optimal thresholds for three-group diagnostic tests. Section

3.5 introduces a NPI method related to the three-group Youden index. Section 3.6 presents

some examples to illustrate and discuss the new approaches. We compare and investigate

the performance of the three groups NPI methods and some classical methods via a

simulation study in Section 3.7. Finally, some concluding remarks are made in Section

3.8.

3.2 Thresholds selection in three-group

classification

The ROC surface is a useful tool to assess the accuracy of a diagnostic test when three

ordered groups are involved. To introduce the ROC surface let there be three separately

ordered groups, denoted by X, Y and Z. Assume that we have real-valued data from

diagnostic tests on individuals from the three groups; group X with nx observations, group

Y with ny observations and group Z with nz observations. Assume that a continuous

diagnostic test is used to distinguish the individuals from the three groups. Suppose that

the measurements from group X tend to be smaller than those from group Y , which

in turn tend to be smaller than those from group Z. Let the cumulative distribution

functions (CDFs) for the test outcomes of the three groups X, Y and Z be denoted by

Fx, Fy and Fz, respectively.

For a decision rule, two thresholds c1 < c2 are required to classify individuals, based

on their diagnostic test results, into one of the three groups, such that a test value which is

less than or equal to c1 is an indication that this individual belongs to groupX, a test value
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which is greater than c1 and less than or equal to c2 is an indication that this individual

belongs to group Y , and a test value which is greater than c2 is an indication that this

individual belongs to group Z. The probability of correct classification for the three groups

with thresholds c1 < c2 are as follows; p1 = P (X ≤ c1) = Fx(c1) is the probability of

correct classification for individuals from group X, p2 = P (c1 < Y ≤ c2) = Fy(c2)−Fy(c1)

for individuals from group Y and p3 = P (Z ≥ c2) = 1−Fz(c2) for individuals from group

Z. The three-class ROC surface is a plot of these probabilities of correct diagnosis for all

possible values c1 < c2 [52, 53, 56]. For three-group classification problems, the volume

under the ROC surface (VUS) has been extensively studied for assessment accuracy of a

diagnostic test to differentiate among the three groups [1, 52, 70, 71]. The VUS is equal

to the probability that three randomly selected measurements (one from each disease

group) are ordered correctly. It takes the value 1 if the three groups are perfectly ordered

and the value 1
6 if the diagnostic test results for the three groups are identical.

Once the accuracy of a diagnostic test is determined over all the possible thresholds,

the selection of optimal thresholds is required to discriminate between the three groups.

The common approach is the generalization of the Youden index as introduced by Nakas

et al. [54], which is an extension of the two-group Youden index, discussed in Section 1.2,

to the three-group setting. The three-group Youden index (3-YI) is defined as

3-YI = max
(c1<c2)

{Fx(c1) + Fy(c2)− Fy(c1) + 1− Fz(c2)} (3.1)

The optimal thresholds are the values of c1 and c2 which maximise the 3-YI, with the

constraint c1 < c2, where 3-YI is equal to 1 when the three groups are identical, and equal

to 3 where they are perfectly distinguished. In order to obtain the empirical estimator for

the 3-YI, replace the CDFs by the corresponding empirical CDFs. The empirical estimate

of the Youden index (3-EYI) is given by

3-EYI(c) = 1
nx

nx∑
i=1

1{xi ≤ c1}+ 1
ny

ny∑
j=1

1{c1 < yj ≤ c2}+ 1
nz

nz∑
l=1

1{zl > c2}. (3.2)

Other methods for three-group thresholds selection based on ROC analyses are the

closest to perfection method (3-MD) and the maximum volume method (3-MV), as
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introduced by Attwood et al. [4]. Both approaches are generalisations of corresponding

methods in two-group classification, namely the closest-to-(0,1) method [11, 65] and the

maximum area method, respectively.

The 3-MD approach selects the optimal thresholds which generate the point on the

ROC surface closest to the point of perfection (1,1,1) (i.e. the point closest to perfection

with p1(c1) = 1, p2(c1, c2) = 1 and p3(c2) = 1). The optimal thresholds are the values of

c1 and c2, which minimise the distance, and this method is given by

3-MD = min
(c1<c2)

{
√

(1− p1(c1))2 + (1− p2(c1, c2))2 + (1− p3(c2))2} (3.3)

The 3-MV method can be defined as the maximum product of the correct classification

probabilities for the three groups as follows

3-MV = max
(c1<c2)

{p1(c1)× p2(c1, c2)× p3(c2)} (3.4)

Attwood et al. [4] did not mention the empirical estimate of the maximum volume

(3-EMV) method in their paper, which is defined by

3-EMV(c) = 1
nx

nx∑
i=1

1{xi ≤ c1} ×
1
ny

ny∑
j=1

1{c1 < yj ≤ c2} ×
1
nz

nz∑
l=1

1{zl > c2}. (3.5)

Attwood et al. [4] also discussed a comparison of optimal thresholds selected by

their methods and the three-group Youden index method (3-YI). We review some results

obtained by [4]. Although the 3-YI approach maximises the total number of correct

classification rates for the three groups, it tends to have limitation in selecting the

thresholds c1 and c2. The maximisation problem in Equation (3.1) can be written as

the maximisation of two two-group problems, one between the healthy and intermediate

groups and the other between the intermediate and diseased groups, given that c1 < c2.

This can lead to imbalanced classification rates between the three groups, in favour of

identifying healthy and diseased groups but poor identification of the intermediate group.

This aspect is in line with the results of the simulation study, which will be presented it

in Section 3.7.

Nakas et al. [55] applied the Youden index method for pairwise analysis in Montreal
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Cognitive Assessment (MOCA) when screening cognitive impairment in Parkinson disease

(PD). The study sample of patients was classified into three groups as patients with de-

mentia (PD-D), patients with mild cognitive impairment (PD-MCI) and normal cognition

(PD-N). The PD levels are anticipated to be lowest among the PD-D group and highest

among the PD-N group, with the PD-MCI group being intermediate to the other two. The

optimal thresholds are derived by using the pairwise Youden index, selecting the optimal

threshold c1 from groups PD-D and PD-MCI and selecting the optimal threshold c2 from

groups PD-MCI and PD-N. In addition, Nakas et al. [55] discussed the comparison of the

optimal thresholds c1 and c2 selected by the pairwise Youden index and the three-group

Youden index. The results showed that the optimal thresholds c1 and c2 derived by both

approaches are the same because the maximisation problem in Equation (3.1) can be

seen as two two-group maximisation problems. Moreover, the value of the Youden index

for the three-group problem is equal tothe sum of the values of the Youden indexes for

the two two-group problems. This result generally holds given that (c1 < c2) for the two

two-group problems.

In this chapter, we will consider the 3-EYI and 3-EMV methods to compare them

with our proposed methods.

3.3 NPI pairwise analysis for three-group

diagnostic test thresholds

One possible way to find the optimal thresholds c1 and c2 for the three groups setting, is

by naively using the 2-NPI method, presented in Section 2.2, twice. Thus, in addition

to the notation introduced in Section 2.2 for groups X and Y , we need to introduce

further notation for group Z as follows. Suppose we have nz observations from group

Z, and the ordered data from this group are denoted by z1 < z2 < . . . < znz , and we

define z0 = −∞ and znz+1 =∞. These nz observations partition the real-line into nz + 1

intervals IZl = (zl−1, zl), for l = 1, 2, . . . , nz + 1. Let the diagnostic test results of mz

future individuals be denoted by Znz+t, t = 1, . . . ,mz, and let the corresponding ordered
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future observations be denoted by Z(1) < Z(2) < . . . < Z(mz). Similarly, we assume that

the three groups are fully independent as explained in Section 2.2. Assume that the three

groups are ordered in the sense that observations from group X tend to be smaller than

those from group Y , which in turn tend to be smaller than those from group Z.

From Equations (2.1) and (2.2) we find the optimal threshold c1 for groups X and

Y . Similarly, for groups Y and Z we find the optimal c2 by maximising either the lower

or upper probabilities for the events CY
c2 ≥ βmy and CZ

c2 ≥ γmz. These lower or upper

probabilities are derived as follows.

P (CY
c2 ≥ βmy, C

Z
c2 ≥ γmz) = P (CY

c2 ≥ βmy)× P (CZ
(c2 ≥ γmz) (3.6)

P (CY
c2 ≥ βmy, C

Z
c2 ≥ γmz) = P (CY

c2 ≥ βmy)× P (CZ
(c2 ≥ γmz) (3.7)

where

P (CY
c2 ≥ βmy) = P (Ydβmye ≤ c2) =

jc2−1∑
j=1

P (Ydβmye ∈ IYj ) (3.8)

P (CY
c2 ≥ βmy) = P (Ydβmye ≤ c2) =

jc2∑
j=1

P (Ydβmye ∈ IYj ) (3.9)

P (CZ
c2 ≥ γmz) = P (Z(mz−dγmze+1) > c2) =

nz+1∑
l=lc2 +1

P (Z(mz−dγmze+1) ∈ IZl ) (3.10)

P (CZ
c2 ≥ γmz) = P (Z(mz−dγmze+1) > c2) =

nz+1∑
l=lc2

P (Z(mz−dγmze+1) ∈ IZl ) (3.11)

The precise probabilities in Equations (3.8)-(3.11) can be calculated using Equation

(1.17) in Section 1.3.2.

We will refer to this pairwise method as NPI-PW and the corresponding approach

that utilises the lower (upper) probabilities in Equations (2.1) and (3.6) (in Equations

(2.2) and (3.7)) to obtain the optimal thresholds (c1, c2) as NPI-PW-L (NPI-PW-U). It

is important to emphasise that selecting the optimal thresholds based on this method

may not satisfy the condition that c1 < c2. It might be that the groups are ordered in

a different way, so one could investigate a change of the order of the three groups X, Y

and Z. Generally, this method is not suggested to be applicable. However we introduce
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it for comparison in the examples and simulation study that will be presented later in

this chapter. The problem consideration of the NPI-PW method motivates us to develop

a better method for the three groups classification setting in the next section.

3.4 NPI for three-group diagnostic test thresholds

In this section, we extend the two-group NPI method for selecting the optimal threshold

presented in Section 2.2, to a three-group setting. We follow the same notation as

presented in Section 3.3, but we need to add the following. Let us assume that the three

groups are ordered in the sense that observations from group X tend to be smaller than

those from group Y , which in turn tend to be smaller than those from group Z. For a

decision rule, two thresholds c1 < c2 are required to classify individuals, based on their

diagnostic test results, into one of the three groups, such that a test value which is less

than or equal to c1 is an indication that this individual belongs to group X, a test value

which is greater than c1 and less than or equal to c2 is an indication that this individual

belongs to group Y , and a test value which is greater than c2 is an indication that this

individual belongs to group Z.

For specific values of c1 and c2, with c1 < c2, CX
c1 denotes the number of correctly

classified future individuals from group X, that is those with test results Xnx+r ≤ c1 (for

r = 1, . . . ,mx), CY
(c1,c2) denotes the number of correctly classified future individuals from

group Y , that is those with test results c1 < Yny+s ≤ c2 (for s = 1, . . . ,my), and CZ
c2

denotes the number of correctly classified future individuals from group Z, that is those

with test results Znz+t > c2 (for t = 1, . . . ,mz).

Let α, β and γ be any values in (0, 1] that are selected to reflect the desired importance

of the groups. Following the same events of interest for the two groups as presented in

Section 2.2, the events of interest for the groups X, Y and Z that we focus on are

CX
c1 ≥ αmx, C

Y
(c1,c2) ≥ βmy and CZ

c2 ≥ γmz, respectively. Varying the values of α, β and γ

will depend on one’s beliefs of which group is more important to be correctly diagnosed.

Of course one can choose α, β and γ to be equal if one prefers to give the same importance
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of correct classification to all future individuals.

Under the independence assumption of the three groups, the joint NPI lower and

upper probabilities can be derived as the products of the corresponding lower and upper

probabilities for the individual events involving CX
c1 , C

Y
(c1,c2), and CZ

c2 , thus

P (CX
c1 ≥ αmx, C

Y
(c1,c2) ≥ βmy, C

Z
c2 ≥ γmz) =

P (CX
c1 ≥ αmx)× P (CY

(c1,c2) ≥ βmy)× P (CZ
c2 ≥ γmz) (3.12)

P (CX
c1 ≥ αmx, C

Y
(c1,c2) ≥ βmy, C

Z
c2 ≥ γmz) =

P (CX
c1 ≥ αmx)× P (CY

(c1,c2) ≥ βmy)× P (CZ
c2 ≥ γmz) (3.13)

We refer to the use of Equations (3.12) and (3.13) as 3-NPI-L and 3-NPI-U, respectively,

and the method in general as 3-NPI.

For IXi = (xi−1, xi) with i = 1, . . . , nx + 1 and c1 ∈ IXic1
= (xic1−1, xic1

), ic1 ∈

{2, 3, . . . , nx}, the NPI lower and upper probabilities for the event CX
c1 ≥ αmx are given

by

P (CX
c1 ≥ αmx) = P (Xdαmxe ≤ c1) =

ic1−1∑
i=1

P (Xdαmxe ∈ IXi ) (3.14)

P (CX
c1 ≥ αmx) = P (Xdαmxe ≤ c1) =

ic1∑
i=1

P (Xdαmxe ∈ IXi ) (3.15)

For ic1 = 1, Equations (3.14) and (3.15) become

P (CX
c1 ≥ αmx) = 0 and P (CX

c1 ≥ αmx) = P (X(dαmxe) ∈ IX1 )

and for ic1 = nx + 1,

P (CX
c1 ≥ αmx) = 1− P (X(dαmxe) ∈ IXnx+1) and P (CX

c1 ≥ αmx) = 1

If c1 is equal to one of the observations xi, say c1 = xic1
for the specific value ic1 ∈

{2, ..., nx}, then this event has the following precise probability,

P (CX
c1 ≥ αmx) = P (X(dαmxe) ≤ c1) =

ic1∑
i=1

P (X(dαmxe) ∈ IXi )

For IYj = (yj−1, yj) with j = 1, . . . , ny + 1 and c1 ∈ IYjc1
= (yjc1−1, yjc1

) and c2 ∈ IYjc2
=
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(yjc2−1, yjc2
), with jc1 ∈ {1, . . . , ny+1} and jc2 ∈ {1, . . . , ny+1}, with c2 ≥ c1, which implies

that jc2 ≥ jc1 , the NPI approach leads to the following lower and upper probabilities

P (CY
(c1,c2) ≥ βmy) and P (CY

(c1,c2) ≥ βmy),

P (CY
(c1,c2) ≥ βmy) = P (CY

(yjc1 ,yjc2 −1) ≥ βmy) (3.16)

P (CY
(c1,c2) ≥ βmy) = P (CY

(yjc1 −1,yjc2 ) ≥ βmy) (3.17)

For jc1 = 1 and jc2 = 2, Equations (3.16) and (3.17) become

P (CY
(c1,c2) ≥ βmy) = 0 and P (CY

(c1,c2) ≥ βmy) = P (CY
(−∞,yjc2 ) ≥ βmy)

For jc1 = 1 and jc2 = {3, ..., ny + 1},

P (CY
(c1,c2) ≥ βmy) = P (CY

(yjc1 ,yjc2 −1) ≥ βmy) and

P (CY
(c1,c2) ≥ βmy) = P (CY

(−∞,yjc2 ) ≥ βmy)

For jc1 = ny and jc2 = ny + 1,

P (CY
(c1,c2) ≥ βmy) = 0 and P (CY

(c1,c2) ≥ βmy) = P (CY
(yjc1 −1,∞) ≥ βmy)

.

Note that P (CY
(c1,c2) ≥ βmy) = 0 for all jc2 = jc1 + 1. Further a special case occurs

when c1 and c2 occur in the same interval, that is jc1 = jc2 . Then the lower probability

in Equation (3.16) is equal to zero.

The upper probability in Equation (3.17) can be calculated as follows. In order to

assign the probability masses within the interval (yjc1−1, yjc1
) to derive the NPI upper

probability in Equation (3.17), let the number of observations from groups X and Z

between yjc1−1 and yjc1
be denoted by n

jc1
x and n

jc1
z , respectively. These observations

create a partition of the interval (yjc1−1, yjc1
) into njc1

x + n
jc1
z + 1 sub-intervals. If c1 is

in sub-interval (yj−1, xi), then we put the probability mass to the right end point xi.

Simultaneously, if c2 is in sub-interval (zl, yj), then we put the probability mass to the

left end point zl, l = 1, ..., nz + 1. If the observations are only from group X, so njc1
z = 0,

then we put the probability mass to the right end point xi, and if they are only from
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group Z, njc1
x = 0, then we put the probability mass to the left end point zl. If there are

no observations from groups X and Z in the interval (yjc1−1, yjc1
), then we put all the

probability masses in between c1 and c2, as long as c1 is to the left of c2.

For IZl = (zl−1, zl) with l = 1, . . . , nz + 1 and c2 ∈ IZlc2
= (zlc2−1, zlc2

), lc2 =

1, 2, 3, . . . , nz, the NPI approach leads to the following lower and upper probabilities

P (CZ
c2 ≥ γmz) and P (CZ

c2 ≥ γmz),

P (CZ
c2 ≥ γmz) = P (Z(mz−dγmze+1) > c2) =

nz+1∑
l=lc2 +1

P (Z(mz−dγmze+1) ∈ IZl ) (3.18)

P (CZ
c2 ≥ γmz) = P (Z(mz−dγmze+1) > c2) =

nz+1∑
l=lc2

P (Z(mz−dγmze+1) ∈ IZl ) (3.19)

For lc2 = 1, Equations (3.18) and (3.19) become

P (CZ
c2 ≥ γmz) = 1− P (Z(mz−dγmze+1) ∈ IZ1 ) and P (CZ

c2 ≥ γmz) = 1

and for lc2 = nz + 1,

P (CZ
c2 ≥ γmz) = 0 and P (CZ

c2 ≥ γmz) = P (Z(mz−dγmze+1) ∈ IZnz+1)

Furthermore, for c = zlc2
we have

P (CZ
c2 ≥ γmz) = P (Z(mz−dγmze+1) > c2) =

nz+1∑
l=lc2 +1

P (Z(mz−dγmze+1) ∈ IZj )

The optimal thresholds c1 and c2 can be obtained by maximising Equations (3.12)

and (3.13). To search for the optimal thresholds c1 and c2, we follow a similar process

as presented in Section 2.4, with the addition of group Z. Thus, we need to search for

the values c1 and c2 that maximise the lower or the upper probability for Equations

(3.12) or (3.13), respectively, within each of the nx + ny + nz + 1 intervals created by the

data observations. However, the optimal threshold c1 can only be in intervals where the

left end point of the interval is an observation from group X and the right end point is

an observation from group Y , that is c1 ∈ (xi, yj). Any observations from group Z are

irrelevant here and must be ignored. On the other hand, the optimal threshold c2 can only

be in intervals where the left end point of the interval is an observation from group Y and
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the right end point is an observation from group Z, that is c2 ∈ (yj, zl). Any observations

from group X are irrelevant here and must be ignored. We should also consider the first

interval for the optimal threshold c1 and the last interval for the optimal threshold c2. In

the simulation study which will be presented in Section 3.7, we use this property to speed

up the derivation of the optimal thresholds c1 and c2.

3.5 NPI method related to the three-group Youden

index

Similarly as Section 2.3 introduced the NPI method for the two groups classification

problem related to the Youden index procedure, in this section, we introduce a NPI

method for the three-group classification problem related to the Youden index procedure.

We apply the 3-NPI method presented in Section 3.4, especially Equations (3.12) and

(3.13), to the three-group Youden index method, in the sense that the criterion of the

Youden index maximises the sum of the probabilities of the correct classification for the

three groups. Let the NPI-based lower and upper probabilities for the three-group Youden

index be denoted by 3-NPI-Y-L and 3-NPI-Y-U, respectively, and the method in general

by 3-NPI-Y and they are given by

3-NPI-Y-L = P (CX
c1 ≥ αmx) + P (CY

(c1,c2) ≥ βmy) + P (CZ
c2 ≥ γmz) (3.20)

3-NPI-Y-U = P (CX
c1 ≥ αmx) + P (CY

(c1,c2) ≥ βmy) + P (CZ
c2 ≥ γmz) (3.21)

These probabilities are calculated as explained in Section 3.4.

3.6 Examples

In the following examples, we illustrate the three NPI-based methods presented in Sections

3.3, 3.4 and 3.5, namely NPI-PW, 3-NPI and 3-NPI-Y, and compare them with the

three groups empirical Youden index (3-EYI) and maximum volume (3-EMV) methods

presented in Section 3.2. As it is irrelevant how c1 and c2 are chosen within the respective
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intervals, the reported values of c1 and c2 in these examples are set to be a value in the

interval that is between two consecutive observations of the X, Y and Z data combined.

In the tables for all the examples, we represent the interval for the optimal thresholds

c1and c2 by their left end point.

Example 3.1. The n-acetyl aspartate over creatine (NAA/Cr) is a neuronal metabolism

marker in the brain used to distinguish between different levels of human immunodeficiency

virus (HIV) in patients [47, 54]. Decreased levels of NAA/Cr have been observed in

patients with mild to severe AIDS dementia complex (ADC). The NAA/Cr levels were

available for 137 patients, of whom 61 were HIV-positive subjects with AIDS dementia

complex (ADC), 39 were HIV-positive non-symptomatic subjects (NAS), and 37 were HIV-

negative individuals (NEG). The NAA/Cr levels were anticipated to be lowest among the

ADC group and highest among the NEG group, with the NAS group being intermediate

to the other two. We refer to these groups as X, Y and Z, respectively. Nakas et al. [54]

used this data set to illustrate the generalized Youden index for thresholds selection in

three-group classification problems. The maximum empirical Youden index is 1.434 at

the threshold values c1 = 1.83 and c2 = 1.99. This data set has tie observations between

the three groups, we avoid the ties by adding 0.001 to group Y and 0.002 to group Z. We

also applied our method without this specific breaking of the ties, and observed that the

results were close.

Figure 3.1 shows the box-plots of the NAA/Cr levels for ADC, NAS and NEG, where

a noticeable overlap between the three groups can be observed, in particular between the

NAS and NEG groups. We may not be surprised if we find that the diagnostic test may

struggle to distinguish between the latter two groups.
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Figure 3.1: Box-plots of NAA/Cr levels for ADC, NAS and NEG

Method
Lower case Upper case Lower case Upper case

c1 c2 value c1 c2 value c1 c2 value c1 c2 value

m = 5 α = β = γ = 0.5 α = β = γ = 0.7

3-NPI 1.66 1.861 0.0919 1.66 1.861 0.1318 1.66 1.861 0.0049 1.66 1.861 0.0089

3-NPI-Y 1.76 2.05 1.556 1.76 2.05 1.6566 1.66 1.661 1.0097 1.66 1.661 1.0770

NPI-PW (X, Y ) 1.76 - 0.6188 1.76 - 0.6631 1.76 - 0.2267 1.76 - 0.2656

NPI-PW (Y, Z) - 1.861 0.3373 - 1.861 0.3912 - 1.861 0.0708 - 1.861 0.0931

m = 10 α = β = γ = 0.5 α = β = γ = 0.7

3-NPI 1.66 1.861 0.1629 1.66 1.861 0.2399 1.66 1.861 0.0038 1.66 1.861 0.0086

3-NPI-Y 1.76 2.05 1.7980 1.66 1.861 1.8705 1.83 1.83 1.1116 1.76 2.05 1.2473

NPI-PW (X, Y ) 1.76 - 0.823 1.76 - 0.8582 1.76 - 0.3237 1.76 - 0.3826

NPI-PW (Y, Z) - 1.861 0.4924 - 1.861 0.5646 - 1.861 0.0799 - 1.861 0.1126

m = 25 α = β = γ = 0.5 α = β = γ = 0.7

3-NPI 1.66 1.861 0.0683 1.66 1.861 0.1361 1.66 1.861 0.00003 1.66 1.861 0.0003

3-NPI-Y 1.76 2.05 1.822 1.76 2.05 1.8913 2.1 2.1 0.9999 1.66 1.661 1.0164

NPI-PW (X, Y ) 1.76 - 0.8532 1.76 - 0.8932 1.76 - 0.1687 1.76 - 0.2297

NPI-PW (Y, Z) - 1.861 0.3951 - 1.861 0.4922 - 1.861 0.0124 - 1.861 0.0240

Table 3.1: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to the
specific cases

Tables 3.1 and 3.3 provide the optimal threshold values (c1, c2) obtained from the

three NPI-based methods along with their corresponding lower and upper probabilities,

for mx = my = mz = m. We have considered four different scenarios of α, β and γ. As
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we can see from Table 3.1, for α = β = γ = 0.5, all the methods provide the same optimal

thresholds c1 and c2 regardless of the m value; except the 3-NPI-Y-U method, the optimal

thresholds are c1 ∈ (1.66, 1.661) and c2 ∈ (1.861, 1.862) for m = 10. It is noticed that the

lower and upper NPI-PW method based on groups Y and Z are lower than that based

on groups X and Y , which is due to the fact that groups Y and Z overlap more than

groups X and Y .

For α = β = γ = 0.7, the optimal thresholds (c1, c2) are the same as the α = β =

γ = 0.5 scenario for both the 3-NPI and NPI-PW methods. The optimal thresholds

for the 3-NPI-Y vary with m, for example for m = 10 both the optimal thresholds for

the NPI-Y-L are c1, c2 ∈ (1.83, 1.831), and for m = 25 both the optimal thresholds are

c1, c2 ∈ (2.1, 2.17). We notice that the corresponding lower and upper probabilities for

all the methods become lower than for scenario α = β = γ = 0.5 as the required criteria

become harder to achieve.

An interesting point is that the 3-NPI-Y method often tries to squeeze one of the

groups in order to maximise the corresponding lower and upper probabilities (as it is

based on summing up the individual probabilities rather than taking the product), while

the 3-NPI method actually tries to balance between the groups in order to find the

optimal thresholds c1 and c2. To illustrate this further, we have calculated the individual

probabilities for the groups X, Y and Z, the optimal thresholds and the corresponding

lower and upper probabilities of the 3-NPI and 3-NPI-Y methods, which are presented

in Table 3.2, where (cL1 , cL2 ) and (cU1 , cU2 ) are the corresponding thresholds of the lower

and upper probabilities, respectively. As we can see from this table, the 3-NPI-Y-L

method squeezes group Y in order to obtain the optimal thresholds that maximise the

lower probability in Equation (3.20) and focuses on maximising the number of correctly

classified future observations from group X. Whereas, the 3-NPI-Y-U method squeezes

group Z in order to obtain the optimal thresholds that maximise the upper probability

in Equation (3.21), and focuses on maximising the number of correctly classified future

observations from groups X and Y . On the other hand, the 3-NPI method tries to balance

between the three groups in order to obtain the optimal thresholds that maximise both



3.6. Examples 47

the lower and upper probabilities, but we also notice a slightly smaller value for the Y

group in the lower and upper probabilities.

cL1 cL2 P (CX
c1 ≥ αmx) P (CY

(c1,c2) ≥ βmy) P (CZ
c2 ≥ γmz) 3-NPI-L 3-NPI-Y-L

1.66 1.861 0.1902 0.0997 0.2005 0.0038 −

1.83 1.83 0.8149 0.0000 0.2967 − 1.1116

cU1 cU2 P (CX
c1 ≥ αmx) P (CY

(c1,c2) ≥ βmy) P (CZ
(c2) ≥ γmz) 3-NPI-U 3-NPI-Y-U

1.66 1.861 0.2177 0.1611 0.2460 0.0086 −

1.76 2.05 0.5457 0.7011 0.0005 − 1.2473

Table 3.2: Comparison of 3-NPI and 3-NPI-Y methods, for m = 10 and
α = β = γ = 0.7.

Method
Lower case Upper case Lower case Upper case

c1 c2 value c1 c2 value c1 c2 value c1 c2 value

m = 5 α = β = 0.7, γ = 0.4 α = β = γ = 0.2

3-NPI 1.76 1.941 0.0248 1.76 1.941 0.0423 1.66 1.861 0.8568 1.66 1.861 0.8929

3-NPI-Y 1.86 1.861 1.5442 1.86 1.861 1.6074 1.66 1.861 2.8498 1.66 1.861 2.8890

NPI-PW (X, Y ) 1.76 - 0.2267 1.76 - 0.2656 1.76 - 0.9886 1.76 - 0.9913

NPI-PW (Y, Z) - 1.861 0.2782 - 1.861 0.3248 - 1.861 0.9467 - 1.861 0.9587

m = 10 α = β = 0.7, γ = 0.4 α = β = γ = 0.2

3-NPI 1.76 1.941 0.0164 1.76 1.941 0.0341 1.66 1.861 0.9167 1.66 1.861 0.9477

3-NPI-Y 1.83 1.83 1.6889 1.83 1.83 1.7494 1.66 1.861 2.9147 1.66 1.861 2.9468

NPI-PW (X, Y ) 1.76 - 0.3237 1.76 - 0.3826 1.76 - 0.9981 1.76 - 0.9987

NPI-PW (Y, Z) - 1.861 0.3187 - 1.861 0.3841 - 1.861 0.9761 - 1.861 0.9836

m = 25 α = β = 0.7, γ = 0.4 α = β = γ = 0.2

3-NPI 1.76 1.941 0.0011 1.76 1.941 0.0044 1.66 1.861 0.9737 1.66 1.861 0.9889

3-NPI-Y 1.86 1.861 1.6940 1.86 1.861 1.7777 1.66 1.861 2.9735 1.66 1.861 2.9889

NPI-PW (X, Y ) 1.76 - 0.1687 1.76 - 0.2297 1.76 - 1.0000 1.76 - 1.0000

NPI-PW (Y, Z) - 1.861 0.1771 - 1.861 0.2438 - 1.84 0.9953 - 1.84 0.9975

Table 3.3: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to the
specific cases

From Table 3.3, for α = β = 0.7, γ = 0.4, as this scenario request to put more

emphasis on the number of correctly classified future observations from groups X and Y

than that from groups Z, it is noticed that the optimal thresholds (c1, c2) for the 3-NPI
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method increase in order to achieve the desired criteria in comparison to α = β = γ

scenario, as c1 ∈ (1.76, 1.761) and c2 ∈ (1.941, 951). Whereas, the NPI-Y method, also

at this scenario, tries to squeeze the group Y in order to find the optimal thresholds

(c1, c2), for example for m = 10, both the optimal thresholds for the NPI-Y-U are c1, c2 ∈

(1.83, 1.831), while for m = 5, 25 the optimal thresholds are c1 ∈ (1.86, 1.861) and c1 ∈

(1.861, 1.862) which they are next to each other. The optimal thresholds for the NPI-PW

method stay the same as in the α = β = γ scenario.

Finally, when the required criteria are easy to achieve (α = β = γ = 0.2), all the

methods perform well as the values of the lower and upper probabilities are very high,

and the 3-NPI and 3-NPI-Y methods provide the same optimal threshold values c1 and

c2 where c1 ∈ (1.66, 1.661) and c2 ∈ (1.861, 1.862). The optimal threshold values for the

NPI-PW method stay the same in all the scenarios except that the NPI-PW (Y, Z) for

m = 25 the optimal threshold c2 changes to c2 ∈ (1.84, 1.841).

The maximum value of the empirical maximum volume (3-EMV) is equal to 0.1205

and at the optimal thresholds c1 ∈ (1.66, 1.661) and c2 ∈ (1.861, 1.862). The point to be

highlighted is that the optimal threshold values (c1, c2) for the NPI method (with α = β =

γ) are the same as they are for the 3-EMV method since both criteria are based on the

product of the probabilities which tends to provide more balanced classification between

the three groups. However, the NPI-Y method based on the sum of the probabilities does

not seem to be ideal to obtain the optimal thresholds that maximise the probability for

every individual group.

m

2-NPI method 2-NPI-Y method

Lower case Upper case Lower case Upper case

c 2-NPI-L c 2-NPI-U c 2-NPI-Y-L c 2-NPI-Y-U

α = β = 0.5

5 1.76 0.6112 1.76 0.6446 1.76 1.5650 1.76 1.6067

10 1.76 0.8225 1.76 0.8504 1.76 1.8145 1.76 1.8448

25 1.76 0.8586 1.76 0.8910 1.76 1.8542 1.76 1.8542

Table 3.4: Selecting the optimal threshold c and corresponding value of
2-NPI-L, 2-NPI-U, 2-NPI-Y-L, 2-NPI-Y-U, using the 2-NPI
and 2-NPI-Y methods, when NAS and NEG are combined



3.6. Examples 49

Now, we use this example with some change in the data to illustrate some further

aspects of our approaches. Since this data set shows more overlapping between groups

Y and Z and group X is more separated than these two groups, we combine groups Y

and Z together and run the analysis again. Then the remaining NPI-based methods,

2-NPI and 2-NPI-Y as presented in Sections 2.2 and 2.3, are illustrated in Table 3.4.

As we can see from this table, all NPI-based methods give the same optimal threshold

c ∈ (1.76, 1.761) regardless of the value of m. The maximum value of the empirical

maximum area (2-EMA) is equal to 0.4573 at the same threshold value as the NPI-based

methods (c ∈ (1.76, 1.761)), while the maximum value of the empirical Youden index

(2-EYI) is equal to 0.3635, which gives a different threshold c ∈ (1.66, 1.661).

3.48 7.38 7.93 8.57 9.73 10.95 12.43 13.03 13.60 14.38 15.42

15.84 17.19 17.84 18.42 18.71 28.76 39.16 41.87 43.24 50.23 60.31

65.27 66.69 82.00 87.29 97.55 101.10 104.50 109.00 115.10 135.80 139.00

219.10 226.70 301.80 311.80 313.30 322.30 325.70 326.80 330.70 332.50 335.40

336.60 337.50 337.60 339.90 340.80 341.10 355.00

Table 3.5: IL-6 data set, where group X is black, group Y is blue and
group Z is red

Example 3.2. The interleukin-6 (IL-6) is a common diagnostic test for detection of late

onset sepsis (LOS) in neonates [57, 61, 67]. The cases in the study consisted of 52 neonates

assessed as suspicious for LOS. They were classified into three groups, 22 confirmed sepsis

(positive blood cultures for fungi and microbes), 9 possible sepsis (laboratory evidence

of sepsis however negative blood cultures) and 21 non-infected neonates (no laboratory

evidence of sepsis and negative blood cultures), one missing value is excluded from the

confirmed sepsis group. We refer to these groups as X, Y and Z, respectively. Table 3.5

show the IL-6 data set for groups X, Y and Z, where a noticeable overlap between the

three groups can be observed.

In this example the number of future individuals from groups X, Y and Z are

considered to be equal to the number of individuals from groups X, Y and Z, respectively,

so mx = 21,my = 9,mz = 21. Table 3.6 provides the optimal threshold values (c1, c2)
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obtained from the three NPI-based methods along with their corresponding lower and

upper probabilities for mx = 21,my = 9,mz = 21. We have considered three different

scenarios of α, β and γ.

Method
Lower case Upper case

c1 c2 value c1 c2 value

α = β = γ = 0.6

3-NPI 82 322.3 0.0817 82 322.3 0.2565

3-NPI-Y 65.27 65.27 1.8191 82 322.3 2.0517

NPI-PW (X, Y ) 82 - 0.6605 82 - 0.8391

NPI-PW (Y, Z) - 226.7 0.2500 - 226.7 0.4308

α = β = γ = 0.8

3-NPI 82 322.3 0.0011 82 322.3 0.0115

3-NPI-Y 115.1 139 1.2920 65.27 65.27 1.3037

NPI-PW (X, Y ) 82 - 0.1879 82 - 0.3975

NPI-PW (Y, Z) - 226.7 0.0133 - 226.7 0.0441

α = β = 0.5, γ = 0.7

3-NPI 82 322.3 0.0515 82 226.7 0.1855

3-NPI-Y 41.87 41.87 1.8309 82 322.3 1.9998

NPI-PW (X, Y ) 82 - 0.8241 82 - 0.9314

NPI-PW (Y, Z) - 139 0.1861 - 139 0.3407

Table 3.6: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to the
specific cases, for mx = 21,my = 9,mz = 21

The 3-NPI and NPI-PW methods are noticed to provide the same optimal threshold

(c1, c2) for both scenarios, α = β = γ = 0.6 and α = β = γ = 0.8. Whereas the 3-NPI-Y-L

for α = β = γ = 0.6 and the 3-NPI-Y-U for α = β = γ = 0.8 squeeze group Y as both the

optimal thresholds are c1, c2 ∈ (65.27, 66.69). For α = β = 0.5, γ = 0.7, as this scenario

requests to put more emphasis on the number of correctly classified future observations

from group Z than the number of correctly classified future observations from groups

X and Y , the optimal threshold c2 for the 2-NPI-U and NPI-PW methods decreases

in order to achieve the desired criteria in comparison to the α = β = γ scenario, as

c2 ∈ (226.7, 301.8) and c2 ∈ (139, 219.1), respectively. While, both the optimal thresholds

for the 3-NPI-Y-L are c1, c2 ∈ (41.87, 43.24), and for the 3-NPI-Y-U are c1 ∈ (82, 87.29)

and c2 ∈ (322.3, 325.7) . In addition, it is noticed in this table that the values of the lower

and upper probabilities for the NPI-PW (X, Y ) are higher than for the NPI-PW (Y, Z)
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since this data set has more overlapping between groups Y and Z, and group X is a bit

separated than these two groups.

Method
Lower case Upper case

c1 c2 value c1 c2 value

α = β = γ = 0.6

3-NPI 82 322.3 0.0742 82 322.3 0.2473

3-NPI-Y 65.27 65.27 1.8638 82 322.3 2.0876

NPI-PW (X, Y ) 82 - 0.7528 82 - 0.9041

NPI-PW (Y, Z) - 226.7 0.2698 - 226.7 0.4745

α = β = γ = 0.8

3-NPI 82 322.3 0.0003 82 226.7 0.0059

3-NPI-Y 115.1 341.1 1.067 82 341.1 1.4095

NPI-PW (X, Y ) 82 - 0.2394 82 - 0.4925

NPI-PW (Y, Z) - 226.7 0.0082 - 139 0.0336

α = β = 0.5, γ = 0.7

3-NPI 82 226.7 0.0268 82 226.7 0.1537

3-NPI-Y 41.87 41.87 1.8682 82 322.3 1.9611

NPI-PW (X, Y ) 82 - 0.8526 82 - 0.9505

NPI-PW (Y, Z) - 139 0.1539 - 139 0.3186

Table 3.7: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to the
specific cases, for mx = 33,my = 15,mz = 52

In Table 3.7, we increase the number of future individuals from groups X, Y and

Z, with mx = 33,my = 15,mz = 52. Now comparing this table with Table 3.6, with

respect of the optimal thresholds (c1, c2), the 3-NPI method provides the same optimal

threshold (c1, c2) when we increase the values of mx,my,mz, except for α = β = γ = 0.8

and α = β = 0.5, γ = 0.7 the optimal threshold c2 for the 3-NPI-U and 3-NPI-L change

to c2 ∈ (226.7, 301.8). Also, the 3-NPI-Y method provides the same optimal threshold

(c1, c2) when we increase the values of mx,my,mz, except that for α = β = γ = 0.8

the optimal threshold c2 for the 3-NPI-Y-L changes to c2 ∈ (341.1, 355) and for the

3-NPI-Y-U c1 ∈ (82, 87.29) and c2 ∈ (341.1, 355). The NPI-PW method also provides

the same optimal thresholds (c1, c2) when we increase the values of mx,my,mz, except

that for α = β = γ = 0.8 the optimal threshold c2 for the NPI-PW-L (Y, Z) change to

c2 ∈ (139, 219.1).
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It is clear from both the tables that the optimal thresholds (c1, c2) can change

with changing the number of future individuals. The maximum values of the empirical

maximum volume (3-EMV) are equal to 0.2993 at the thresholds c1 ∈ (82, 87.29) and

c2 ∈ (322.3, 325.7), while the empirical Youden index (3-EYI) is equal to 2.0794 at the

thresholds c1 ∈ (115.1, 135.8) and c2 ∈ (322.3, 325.7). Overall, in the criterion that

consider the product of the number of correct classification between the three groups,

i.e. 3-EMV and 3-NPI (with α = β = γ), the corresponding optimal thresholds c1 and

c2 seem to be widely apart, which yields more identification of the group Y than for the

criterion based on the sum.

Example 3.3. Consider an artificial data set for groups X, Y and Z, with nx = 5, ny = 7

and nz = 8, consisting of the ranks X = {5, 8, 11, 12, 15}, Y = {1, 2, 3, 4, 6, 10, 18} and

Z = {7, 9, 13, 14, 16, 17, 19, 20}. In this example, we show a special case where the optimal

c1 > c2 for the NPI-PW method for α = β = γ = 0.6, and we resolve this problem by

investigating a different ordering of the three groups.

Method
Lower case Upper case

c1 c2 value c1 c2 value

3-NPI 5 10, 12 0.0028 5 10, 12 0.0717

3-NPI-Y 12 12 1.4887 0 6 1.9318

NPI-PW (X, Y ) 15, 17 - 0.0417 8, 9 - 0.1553

NPI-PW (Y, Z) - 6 0.6653 - 6 0.8485

Table 3.8: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to the
specific cases, for m = 5

Table 3.8 shows that for m = 5 and α = β = γ = 0.6, the NPI-PW method c1 > c2,

where the corresponding lower and upper probabilities for NPI-PW (X, Y ) are very low,

and these lower and upper probabilities for the NPI-PW (Y, Z) are high. Moreover, the

corresponding lower and upper probabilities for the 3-NPI method are very low. While

both the optimal thresholds for the NPI-Y-L are c1, c2 ∈ (12, 13) (squeezing group Y ),

and the optimal threshold c1 for the NPI-Y-U occurs in the first interval (squeezing

group X). These results can be an indication for considering a different ordering of

these three groups. For example, let Y = {5, 8, 11, 12, 15}, X = {1, 2, 3, 4, 6, 10, 18} and
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Z = {7, 9, 13, 14, 16, 17, 19, 20}. Table 3.9 shows that these lower and upper probabilities

for the NPI-PW (X, Y ), 3-NPI and 3-NPI-Y increase, while the NPI-PW (Y, Z) decrease

a bit.

Method
Lower case Upper case

c1 c2 value c1 c2 value

3-NPI 4 12 0.1876 4 12 0.5568

3-NPI-Y 4 12 1.7506 4 12 2.4872

NPI-PW (X, Y ) 6, 7 - 0.5088 6, 7 - 0.7778

NPI-PW (Y, Z) - 12 0.5540 - 12 0.8077

Table 3.9: Optimal thresholds (c1, c2) using NPI-based methods , where
value represents the value of the ..NPI... corresponding to the
specific cases, for m = 5

Example 3.4. In this example, we show a special case where the optimal c1 occurs in the

first interval for the 3-NPI-U, 3-NPI-Y-U and NPI-PW-U methods. Consider an artificial

data set for groups X, Y and Z with nx = 3, ny = 7 and nz = 4, consisting of the ranks,

X = {4, 6, 8}, Y = {1, 2, 3, 5, 7, 9, 12} and Z = {10, 11, 13, 14}.

Method
Lower case Upper case

c1 c2 value c1 c2 value

3-NPI 4 12 0.0631 0 12 0.5952

3-NPI-Y 8, 9 8, 9 1.9742 0 12 2.5774

NPI-PW (X, Y ) 4 - 0.1547 0 - 0.6250

NPI-PW (Y, Z) - 12 0.7071 - 12 0.9524

Table 3.10: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to
the specific cases, for m = 5

Table 3.10 shows that, for m = 5 and α = γ = 0.2, β = 0.8, the optimal threshold

value c1 occurs in the first interval for the corresponding upper probabilities for all

methods. Whereas, the optimal threshold value c1 will never be at the first interval for

the corresponding lower probability for the 3-NPI and NPI-PW methods, as the value

of the lower probability for these methods in this case would be equal to zero because it

would imply P (CX
c1 ≤ αmx) = 0
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Example 3.5. In this example, we show a special case where the optimal threshold values

c1 and c2 occur in the same interval for the 3-NPI-U, 3-NPI-Y-L and 3-NPI-Y-U methods.

Consider an artificial data set for groups X, Y and Z, with nx = 9, ny = 2 and nz = 2,

consisting of the ranks X = {1, 2, 4, 6, 7, 8, 9, 10, 11}, Y = {3, 5} and Z = {12, 13}.

Method
Lower case Upper case

c1 c2 value c1 c2 value

3-NPI 2 5, 11 0.0156 11 11 0.7143

3-NPI-Y 11 11 1.8425 11 11 2.7143

NPI-PW (X, Y ) 4 - 0.045 11, 13 - 0.7143

NPI-PW (Y, Z) - 5, 11 0.9070 - 5, 11 1.0000

Table 3.11: Optimal thresholds (c1, c2) using NPI-based methods, where
value represents the value of the ..NPI... corresponding to
the specific cases, for m = 5

Table 3.11 shows that for m = 5, when α = γ = 0.2, β = 0.8, the optimal thresholds

c1 and c2 occur in the same interval for the 3-NPI-U method, whereas the optimal

thresholds c1 and c2 would never be in the same interval for the 3-NPI-L, as the value

of the lower probability for this method in this case would be equal to zero because

P (CY
c1,c2 ≤ βmy) = 0. In comparison, the optimal thresholds c1 and c2 occur in the same

interval for the corresponding lower and upper probability for the 3-NPI-Y.

3.7 Simulation

This section extends the simulation study for two groups presented in Section 2.6, to

the three-group scenario. Following the same simulation process for groups X and Y as

presented in Section 2.6, we group Z as follows. The two main cases in which the data

are simulated are:

Case A: X ∼ N(0, 22), Y ∼ N(1, 22), and Z ∼ N(3, 22).

Case B: X ∼ N(0, 12), Y ∼ N(1, 12), and Z ∼ N(3, 12).

Due to the larger variance in Case A, the groups in that case overlap more than in

Case B. We simulate nx, ny and nz from the two normal distributions. Then the nx, ny



3.7. Simulation 55

and nz simulated data observations will be used to find the optimal thresholds c1 and c2

according to these methods and for specific values of (α, β, γ) when applicable, where the

threshold values are set to the midpoint in the partition of R used by the data. After

that, we simulate mx, my and mz future observations from the same underlying normal

distributions as the nx, ny and nz simulated data observations to see how the methods

perform.

The mx, my and mz simulated future observations are compared with the optimal

thresholds to obtain the number of correctly classified observations per group. We have

studied the predictive performance of all methods in terms of the number of correctly

classified future observations that are achieved using the desired criteria, that is when

the number of correctly classified future observations from group X, Y , and Z exceed

αmx, βmy and γmz, respectively. Let us denote by ‘+’ when the desired criteria are

achieved and ‘−’ otherwise. Throughout this section we assume that nx = ny = nz = n

and mx = my = mz = m, and jx, jy, jz ∈ {0, 1, . . . ,m}.

We have run the simulation for n = 20 and m = 10, 30 and we have chosen different

values of α, β and γ. Obviously the empirical Youden index and the maximum volume

methods do not depend on the values of α, β and γ in terms of selecting the optimal

thresholds, however, for the comparison of predictive performance we have considered the

same desired criterion of the number of future observations that are correctly classified

from groups X, Y and Z being at least αmx, βmy and γmz, respectively. The results in

this section are based on 10,000 simulations per case per method.

To search for the optimal threshold c, rather than searching for the value c that

maximises the probability within each of the nx+ny +nz +1 intervals created by the data

observations, which could be computationally demanding especially in the simulation, we

just consider the intervals as discussed in Section 3.4. We excluded the possibility for

the optimal thresholds c1 and c2 to occur in the same interval. It should be mentioned

that for the NPI-PW method, it may occur that c1 > c2, due to the fact that the optimal

thresholds c1 and c2 are obtained separately. In this case we set the optimal threshold

c̃2 := c1, as threshold between the X and Y groups.
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The predictive performance results for Case A are given in Tables 3.12 and 3.13 for

m = 10 and m = 30, respectively, and in Tables 3.14 and 3.15 for Case B. We have

studied the performance in two shapes for α = β = γ with values 0.2, 0.6 and 0.8, and

for α = β = 0.5, γ = 0.7, for the NPI-based methods (3-NPI, 3-NPI-Y and NPI-PW) and

the empirical estimates of Youden index and maximum volume methods.

Consider Table 3.12, for example, where ‘+ + +’ indicates that the desired criteria

have been achieved for all groups while ‘− − −’ indicates that the desired criterion for

all groups have not been achieved. For example, for 3-NPI-L and α = β = γ = 0.2 the

desired criterion have been achieved for all groups is 9303 out of 10, 000 simulations, that

is at least 2 future observations (αm = 0.2× 10, βm = 0.2× 10 and γm = 0.2× 10) have

been correctly classified from each of the three groups. On the other hand, in 160 out

of 10, 000 simulations the desired criterion is achieved (2 or more out of 10 are correctly

classified) for groups X and Y but the desired criterion has not been achieved for group

Z.

From Tables 3.12-3.15, we observe a similar behaviour in the two-groups scenario.

Generally, the 2-NPI method performs better than the other methods, while for small

values of α and β all methods preform equally well. So for α = β = γ = 0.2, all

the methods perform similarly since the desired criteria are easily achieved, while for

α = β = γ = 0.6, the 3-NPI method can achieve the desired criteria better than the other

methods. The results in these tables suggest that in general the 3-EMV method is the

closest to the 3-NPI method with regards to the performance, yet the NPI method can

be better considering its predictive nature. Interestingly, the NPI-PW method has better

performance than the empirical Youden index (3-EYI) for α = β = γ = 0.6 for Case A.

We also notice that for α = β = γ = 0.6, in Tables 3.12 and 3.13 (Case A), the

3-NPI-Y tends to squeeze the middle group Y substantially, the reason is that the 3-NPI-Y

method is based on maximising the sum of the probabilities of correct classification rather

than the product, which does not seem ideal if one tries to achieve higher proportions of

those who are correctly classified, and that is clearly shows in the three groups setting

as the 3-NPI-Y method does not tend to achieve higher proportions of those who are
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correctly classified from the three groups simultaneously. While the empirical Youden

index tends to squeeze group Y in some occasions or squeeze groups X and Y and achieve

the desired criterion for just group Z in other occasions. The 3-NPI, NPI-PW and 3-EMV

methods tend to squeeze both groups X and Y and achieve the desired criterion for just

group Z in some occasions. Also, the 3-NPI and 3-EMV methods fail the desired criterion

for each group in other occasions.

For α = β = γ = 0.8, all methods struggle to meet the required criteria, especially

in Case A where the groups have more overlap. For example, the 3-NPI, NPI-PW and

3-EMV methods mostly fail the desired criterion for each group. The 3-NPI-U tends to

squeeze group Y substantially, while the 3-NPI-Y-L tend to squeeze both the groups X

and Y and achieve the desired criterion for just group Z in some occasions or squeeze

both the groups Y and Z and achieve the desired criterion for just group X in other

occasions. For α = β = 0.5 and γ = 0.7 in the tables, all methods achieve the desired

criteria more than for α = β = γ = 0.6 in both the cases, due to the fact that the group

Z is more separated in comparison to the other two groups and also the value of γ is

higher.

In addition, we observe similar behaviour as discussed in Section 2.6 for the two-group

scenario, that is for α = β = γ = 0.6 and α = β = γ = 0.8, all the methods perform

better for small value of m than for larger m while for α = β = γ = 0.2 all the methods

perform better for larger m than for smaller m. That is because of the randomness effect

as discussed in Section 2.1. Obviously, all methods perform much better in Case B than

in Case A, as the groups in Case B are more separated.

We summarise the number of correctly classified future observations in all simulations

from groups X, Y and Z using bar-plots as follows. Let the number of successfully

classified future observations from group X with regard to the event of interest, which

include α denoted by SXjx , the number of successfully classified future observations from

group Y with regard to the event of interest, which include β denoted by SYjy , and the

number of successfully classified future observations from group Z with regard to the event

of interest, which include γ denoted by SZjz , where jx ∈ {0, 1, . . . ,mx}, jy ∈ {0, 1, . . . ,my}
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and jz ∈ {0, 1, . . . ,mz}, respectively. Figures 3.2 - 3.5 show the distributions of the

number of future observations out of m in all 10,000 simulations, that are correctly

classified for each group.

For α = β = γ = 0.6, Figure 3.2 clearly shows the squeezing behaviour of the 3-NPI-Y

method for group Y , leading to correctly classifying more future observations from groups

X and Z. This can be an indication that for most of the simulation runs the optimal c1

and c2 are next to each other and it is more likely that there is no future observation of

group Y between them. This also supports the results explained above in Tables 3.12

and 3.13, that for maximisation of the sum of the probabilities of groups X, Y and Z

does not seem ideal to achieve higher proportions of those who are correctly classified

from the three groups, which can cause us to correctly classify more future individuals

from groups X and Z and leading to squeezing of the group Y . The figure shows that

the 3-NPI-Y squeezes group Y more than 6000 out of 10,000 times, whereas it correctly

classifies groups X and Z more than 4000 times out of 10, 000. Also, the figure shows the

squeezing behaviour for the 3-EYI and NPI-PW methods but not as much as for 3-NPI-Y.

The 3-NPI and 3-MV methods try to balance classification between the three groups.

For α = β = γ = 0.8, Figure 3.3 shows that the behaviour of the 3-NPI-Y method

in squeezing group Y and correctly classifying more future observations from groups X

and Z, becomes much clearer than for α = β = γ = 0.6. The 3-NPI and 3-MV methods,

similar to the α = β = γ = 0.6 scenario, try to balance classification between the three

groups. Figure 3.4 (Case B) shows that for α = β = γ = 0.6, the performance becomes

better than Case A for all methods, as the groups in this case are more separated. In

addition, the number of correctly classified future observations from group Z is much

larger than that from groups X and Y , as group Z is more separated from the other two

groups. For α = β = γ = 0.8, Figure 3.5 shows the performance becomes poor for all

methods, while again the 3-NPI-Y method shows the squeezing of group Y and correctly

classify more future individuals from the other two groups.
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Over all, the predictive performance for the NPI-based methods depend on the

number of future observations considered and the values of α, β and γ. More attention

should be paid to maximising the sum of the probabilities of the correct classification for

the three groups, which may lead to squeezing the intermediate group.

X Y Z 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U 3-EYI 3-EMV

α = β = γ = 0.2

- - - 0 0 0 0 0 0 0 0

- - + 0 1 0 1 6 7 43 15

- + - 1 0 1 0 0 0 2 0

- + + 251 183 257 187 51 51 645 337

+ - - 5 6 5 6 3 3 9 9

+ - + 280 382 281 380 2421 2419 3124 903

+ + - 160 128 158 126 6 6 58 110

+ + + 9303 9300 9298 9300 7513 7514 6119 8626

α = β = γ = 0.6

- - - 1323 1245 217 387 579 575 530 1012

- - + 2360 2440 1608 889 2981 2985 3061 2856

- + - 969 772 206 245 144 138 505 585

- + + 1154 1007 598 345 329 318 889 940

+ - - 1631 1754 984 492 1267 1241 1103 1765

+ - + 1574 1860 6251 7374 4380 4425 3569 2135

+ + - 556 485 67 136 107 99 171 361

+ + + 433 437 69 132 213 219 172 346

α = β = γ = 0.8

- - - 6375 6225 1380 12 4596 4602 3968 5835

- - + 1915 2021 3780 349 3104 3113 3252 2305

- + - 411 307 150 2 87 78 318 294

- + + 71 62 33 1 23 23 65 52

+ - - 1094 1214 3054 252 1496 1479 1290 1317

+ - + 124 157 1603 9384 692 703 1105 187

+ + - 10 13 0 0 2 2 2 10

+ + + 0 1 0 0 0 0 0 0

α = β = 0.5 γ = 0.7

- - - 775 741 356 417 313 321 442 656

- - + 1628 1758 1320 978 1594 1584 1512 1165

- + - 995 749 535 431 99 96 827 971

- + + 1228 1075 728 588 209 203 897 857

+ - - 1675 1738 1431 970 1665 1663 1815 2487

+ - + 1689 2114 4482 5598 5563 5573 3422 1728

+ + - 1229 1040 845 584 224 218 689 1485

+ + + 781 785 303 434 333 342 396 651

Table 3.12: Simulation results (10, 000 runs) for case A with m = 10 and
n = 20
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X Y Z 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U 3-EYI 3-EMV

α = β = γ = 0.2

- - - 0 0 0 0 0 0 0 0

- - + 0 0 0 0 0 0 14 7

- + - 0 0 0 0 0 0 1 0

- + + 73 44 75 44 4 4 583 178

+ - - 0 0 0 0 0 0 2 5

+ - + 64 120 64 121 2359 2358 3210 664

+ + - 35 27 35 27 1 1 26 29

+ + + 9828 9809 9826 9808 7636 7637 6164 9117

α = β = γ = 0.6

- - - 2284 2160 149 447 644 633 664 1462

- - + 3026 3158 1311 770 3790 3825 3856 3778

- + - 1078 815 142 148 68 67 487 549

- + + 619 481 524 118 87 85 506 434

+ - - 1809 1985 691 386 1197 1166 1206 2085

+ - + 951 1191 7168 8091 4191 4201 3232 1569

+ + - 193 173 14 32 14 14 41 100

+ + + 40 37 1 8 9 9 8 23

α = β = γ = 0.8

- - - 8618 8551 1386 8 6890 6959 5507 8041

- - + 935 992 4675 249 2154 2135 2808 1349

- + - 65 39 75 1 3 2 104 41

- + + 2 0 2 0 0 0 2 1

+ - - 378 414 3473 170 811 774 927 563

+ - + 2 4 389 9572 142 130 652 5

+ + - 0 0 0 0 0 0 0 0

+ + + 0 0 0 0 0 0 0 0

α = β = 0.5 γ = 0.7

- - - 1136 1124 216 516 253 277 454 864

- - + 2115 2299 1118 989 1665 1646 1833 1384

- + - 1306 909 440 423 63 59 1040 1209

- + + 822 684 520 323 53 46 619 537

+ - - 2235 2355 1338 1038 1853 1830 2344 3490

+ - + 1370 1748 5644 6308 6002 6031 3207 1340

+ + - 811 683 685 313 69 67 436 1038

+ + + 205 198 39 90 42 44 67 138

Table 3.13: Simulation results (10, 000 runs) for case A with m = 30 and
n = 20
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X Y Z 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U 3-EYI 3-EMV

α = β = γ = 0.2

- - - 0 0 0 0 0 0 0 0

- - + 0 0 0 0 0 0 0 0

- + - 0 0 0 0 0 0 0 0

- + + 26 17 26 17 13 12 135 54

+ - - 0 0 0 0 0 0 0 0

+ - + 26 46 28 46 208 208 539 158

+ + - 5 5 5 4 0 0 0 0

+ + + 9943 9932 9941 9933 9779 9780 9326 9788

α = β = γ = 0.6

- - - 54 55 37 47 25 23 18 34

- - + 651 657 629 684 913 925 1072 869

- + - 239 192 169 171 47 41 73 110

- + + 2006 1720 1803 1796 1195 1162 2024 1775

+ - - 287 297 210 282 125 118 130 246

+ - + 2510 2827 3663 3035 4569 4576 4173 3555

+ + - 551 534 373 453 120 118 151 297

+ + + 3702 3718 3116 3532 3006 3037 2359 3114

α = β = γ = 0.8

- - - 1799 1777 82 271 1097 1102 961 1456

- - + 3425 3405 1107 878 4165 4209 4271 3775

- + - 758 636 32 107 275 276 425 513

- + + 980 863 100 174 605 590 910 843

+ - - 1185 1273 783 338 925 920 816 1220

+ - + 1472 1673 7884 8176 2701 2668 2450 1903

+ + - 204 198 6 26 82 81 58 146

+ + + 177 175 6 30 150 154 109 144

α = β = 0.5 γ = 0.7

- - - 13 11 9 11 5 6 9 11

- - + 262 253 269 265 309 292 297 209

- + - 131 107 114 105 23 22 127 150

- + + 1377 1158 1369 1181 639 642 1453 1097

+ - - 193 189 194 188 125 134 223 362

+ - + 1857 2165 2213 2239 4468 4381 3260 2313

+ + - 842 773 759 749 216 225 576 1045

+ + + 5325 5344 5073 5262 4215 4298 4055 4813

Table 3.14: Simulation results (10, 000 runs) for case B with m = 10 and
n = 20
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X Y Z 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U 3-EYI 3-EMV

α = β = γ = 0.2

- - - 0 0 0 0 0 0 0 0

- - + 0 0 0 0 0 0 0 0

- + - 0 0 0 0 0 0 0 0

- + + 0 0 1 0 0 0 75 19

+ - - 0 0 0 0 0 0 0 0

+ - + 0 2 0 2 55 54 390 61

+ + - 0 0 0 0 0 0 0 0

+ + + 10000 9998 9999 9998 9945 9946 9535 9920

α = β = γ = 0.6

- - - 21 20 16 15 5 5 5 9

- - + 595 591 486 632 943 948 1202 929

- + - 211 158 119 125 13 12 57 66

- + + 2445 2008 2025 2047 1128 1092 2324 2040

+ - - 266 281 166 249 46 43 84 214

+ - + 2767 3282 4678 3597 5724 5740 4816 4303

+ + - 517 483 254 387 54 56 79 198

+ + + 3178 3177 2256 2948 2087 2104 1433 2241

α = β = γ = 0.8

- - - 3533 3496 32 238 1825 1851 1558 2602

- - + 4092 4090 984 517 5600 5657 5493 4770

- + - 497 386 27 37 135 123 321 309

- + + 290 231 66 66 124 122 301 225

+ - - 957 1074 629 163 659 639 640 1042

+ - + 616 706 8262 8979 1652 1604 1684 1041

+ + - 13 15 0 0 5 4 3 9

+ + + 2 2 0 0 0 0 0 2

α = β = 0.5 γ = 0.7

- - - 2 2 1 2 0 0 0 1

- - + 140 148 150 158 185 174 218 121

- + - 89 62 87 59 5 3 156 125

- + + 1386 1088 1384 1154 409 418 1590 1075

+ - - 131 137 113 132 54 57 215 378

+ - + 1745 2149 2345 2208 5569 5438 3685 2530

+ + - 817 731 702 704 127 134 475 1079

+ + + 5690 5683 5218 5583 3651 3776 3661 4691

Table 3.15: Simulation results (10, 000 runs) for case B with m = 30 and
n = 20
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Figure 3.2: Simulation results (10, 000 runs), when α = β = γ = 0.6 and
m = 10 (case A)
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Figure 3.3: Simulation results (10, 000 runs), when α = β = γ = 0.8 and
m = 10 (case A)
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Figure 3.4: Simulation results (10, 000 runs), when α = β = γ = 0.6 and
m = 10 (case B)
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Figure 3.5: Simulation results (10, 000 runs), when α = β = γ = 0.8 and
m = 10 (case B)
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3.8 Concluding remarks

This chapter extended the NPI methods for the selection of optimal threshold for two-

group classification problems, presented in Chapter 2, to the three groups scenario. We

have considered a specific number of future individuals in each group. We have shown

in the examples that the optimal thresholds c1 and c2 can change with changing the

number of future individuals. The performance for the three groups NPI methods was

evaluated through simulation studies. These revealed that, in the case of the three groups

scenario for which the 3-NPI-Y and classical Youden index approach have been used,

the intermediate group may have very poor predictive performance. The 3-NPI method

overcomes such problem since the optimal thresholds c1 and c2 yield more reasonable

identification of the intermediate group.

We have also discussed the NPI-PW method such that the optimal thresholds c1 and

c2 are selected independently, which may not satisfy the condition that c1 < c2. Whereas,

the 3-NPI method selects the optimal thresholds c1 and c2 jointly which tends to produce

a balanced classification of the three groups.

In the simulation study we only considered the normal distributions to investigate

the general performance of the proposed methods, it is also interesting to simulate from

other distributions. For example, for skewed distributions, it is interesting to study the

effect of the values of α, β and γ for setting the optimal threshold values (c1, c2).

This line of work provides many questions and opportunities for future research.

For example, setting meaningful target proportions for the predictive inferences should

be discussed. Further research might to be developed similar approaches for different

kind of data, e.g. ordinal data [32]. If one measures multiple markers per patient, their

optimal combination together with optimal selection of thresholds is of interest, while

also taking dependence of such multivariate data [23] into account provides interesting

challenges. A further challenge is to develop such methods for data containing right-

censored observations [19, 20]. Some of these topics require further development of NPI,

including methods for multivariate data and for multiple future observations based on



66 Chapter 3. NPI for three-group diagnostic test thresholds

right-censored data. Generally, considering such problems from a predictive perspective,

in particular how the number of future individuals considered might influence the optimal

thresholds, provides interesting new insights which may also have substantial practical

relevance.

For disease with k groups (k > 3), the 3-NPI method (Equations (3.12) and (3.13))

can be easily generalised by considering

P (CX
c1 ≥ αmx, C

Y
(c1,c2) ≥ βmy, C

Z
(c2,c3) ≥ γmz, C

V
(c3,c4) ≥ ζmv, . . . , C

W
ck
≥ ξmw).

P (CX
c1 ≥ αmx, C

Y
(c1,c2) ≥ βmy, C

Z
(c2,c3) ≥ γmz, C

V
(c3,c4) ≥ ζmv, . . . , C

W
ck
≥ ξmw).

Nakas et al. [55] also introduced the Youden index method for k > 3 groups by maxim-

iseing the total number of correct classification rates for the k groups. This method is

more likely to face the squeezing problem as it separates out into multiple optimisation

problems, whereas the generalisation of the NPI method might perform better in term of

reducing such squeezing.



Chapter 4

NPI for comparison of two

diagnostic tests

4.1 Introduction

Developing and improving diagnostic tests to detect a particular disease are important

in medical applications. Often, researchers are asked to confirm the superiority of a new

diagnostic test to the existing test. In practice, most diagnostic tests do not always provide

the correct classification. The tests can have two types of possible errors, false-negative

errors (FN) and false-positive errors (FP). This raises the question how one can compare

the qualities of two or more diagnostic tests. Various methods to compare two diagnostic

tests have been presented in the literature [59, 73]. The performance of diagnostic tests

can be evaluated by a single indicator such as sensitivity, specificity, positive and negative

likelihood ratio or positive and negative predictive values. Such comparisons of two tests

are rarely straightforward as one test may have higher specificity while the other test has

higher sensitivity.

Measures such as the Youden index, have been suggested as global measures of

diagnostic accuracy [73]. However, the Youden index can be misleading when comparing

two diagnostic tests. The Youden index is not taking into account the differences in

the specificity and sensitivity of the diagnostic test, and treats the FN and FP errors
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as equally undesirable. For example, assume that test A has a specificity of 0.9 and

sensitivity of 0.4 and test B has specificity of 0.6 and sensitivity of 0.7. The Youden index

of for each of these tests is 0.3. It is obvious that these tests have different discriminative

properties.

The area under the ROC curve (AUC) also provides a summary measure of the

diagnostic test ability [73]. Although the AUC has been used to compare different

diagnostic tests, it has some limitations. For example, the areas under the ROC curves of

two diagnostic tests can be equal, yet the shapes of the two ROC curves can be different

over a certain part of the ROC curves of clinical relevance. According to Dodd and Pepe

[31], the area under the ROC curve might summarize the performance of a diagnostic test

over regions of the curve of no clinical and practical interest. Alternatively, the partial

area under the ROC curve can provide more information for some diagnostic tests which

require false-positive rates to be within the medical interest range [31, 45]. In addition,

researchers use hypothesis testing to compare sensitivity, specificity or the area under the

curve of two diagnostic tests [73].

In this chapter, we present NPI for comparing two diagnostic tests. The predictive

nature of the NPI approach can be attractive for diagnostic tests as one tends to assess

the quality of the diagnostic tests for a given number of future individuals. In Section 4.2,

we introduce NPI of two diagnostic tests based on order statistics. NPI for comparison of

two diagnostic tests based on Bernoulli quantities is presented in Section 4.3. Section 4.4

introduces weights to reflect the relative importance of two groups. Section 4.5 presents

some examples to illustrate and discuss the new approaches. Finally, some concluding

remarks are made in Section 4.6.

4.2 NPI of two diagnostic tests based on order

statistics

In this chapter, we compare the accuracy of two diagnostic tests explicitly considering

multiple future individuals. We assume that both diagnostic tests are applied to the
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same people. Assume that we have real-valued data from two different diagnostic tests

on individuals from two independent groups in each test, and there are nx observations

from the healthy group X and ny observations from the disease group Y. We refer to the

two tests with superscript t; t = 1, 2, so we assume that we have data (x1
i , x

2
i ), i = 1, ...nx

and (y1
j , y

2
j ), j = 1, ...ny, where superscript 1 indicates test results of diagnostic test one

and 2 indicates test results of diagnostic test two. We assume that the outcomes of the

two tests are independent given the disease state of the individuals. The intention of this

section is to compare between two diagnostic tests for mx and my future individuals. The

natural question is whether one test is better than the other for the mx and my future

individuals from groups X and Y, respectively, and we investigate the possible influence

of the choice of m. We use the 2-NPI lower and upper method introduced in Section

2.2 for each diagnostic test. Of course other methods to determine the diagnostic test

threshold can be used instead. The same notations and definitions will be used as in

Section 2.2, with the superscript t to differentiate between the two tests. For a specific

value of threshold ct and for fixed α and β, the 2-NPI lower and upper probabilities for

the event CXt

ct ≥ αmx, C
Y t

ct ≥ βmy are given by

P (CXt

ct ≥ αmx, C
Y t

ct ≥ βmy) = P (CXt

ct ≥ αmx)× P (CY t

ct ≥ βmy) (4.1)

P (CXt

ct ≥ αmx, C
Y t

ct ≥ βmy) = P (CXt

ct ≥ αmx)× P (CY t

ct ≥ βmy) (4.2)

As we introduced the 2-NPI method in Section 2.2, we are going to use the NPI results
for future order statistics in Section 1.3.2, in particular Equation (1.17), to derive the

NPI lower and upper probabilities in Equations (4.1) and (4.2). The NPI lower and upper

probabilities for the event CXt

ct ≥ αmx are given by

P (CXt

ct ≥ αmx) = P (X(dαmxe) ≤ c) =
ic−1∑
i=1

P (X(dαmxe) ∈ IXi ) (4.3)

P (CXt

ct ≥ αmx) = P (X(dαmxe) ≤ c) =
ic∑
i=1

P (X(dαmxe) ∈ IXi ) (4.4)

where the precise probabilities on the right hand sides of Equations (4.3) and (4.4) can

be obtained from Equation (1.17). The NPI lower and upper probabilities for the event



70 Chapter 4. NPI for comparison of two diagnostic tests

CY t

ct ≥ βmy are derived similarly,

P (CY t

ct ≥ βmy) = P (Y(my−dβmye+1) > c) =
ny+1∑
j=jc+1

P (Y(my−dβmye+1) ∈ IYj ) (4.5)

P (CY t

ct ≥ βmy) = P (Y(my−dβmye+1) > c) =
ny+1∑
j=jc

P (Y(my−dβmye+1) ∈ IYj ) (4.6)

To define the NPI lower and upper probabilities for such predictive comparison, we

consider the following. If the corresponding lower probability in Equation (4.1) for Test 1

is greater than the corresponding upper probability Equation (4.2) for Test 2, that is

P (CX1

c1 ≥ αmx)× P (CY 1

c1 ≥ βmy) > P (CX2

c2 ≥ αmx)× P (CY 2

c2 ≥ βmy) (4.7)

we can regard this as a strong indication that Test 1 is better than Test 2. Whereas, if

the corresponding lower probability for Test 1 is greater than the corresponding lower

probability for Test 2, that is

P (CX1

c1 ≥ αmx)× P (CY 1

c1 ≥ βmy) > P (CX2

c2 ≥ αmx)× P (CY 2

c2 ≥ βmy) (4.8)

then we can regard this as a weak indication that Test 1 is better than Test 2. Of course,

the roles of Test 1 and Test 2 can be exchanged to get an indication of Test 2 being better

than Test 1. The method will be illustrated in the following examples.

Example 4.1. Consider an artificial data set from two different diagnostic tests applied

to the same individuals from two groups, X1 and Y 1 for Test 1, and X2 and Y 2 for Test 2,

with nx = ny = 10, consisting of the following ranks X1 = {1, 2, 3, 4, 5, 7, 9, 10, 11, 12} and

Y 1 = {6, 8, 13, 14, 15, 16, 17, 18, 19, 20} for Test 1, andX2 = {1, 2, 6, 7, 10, 11, 12, 13, 16, 18}

and Y 2 = {3, 4, 5, 8, 9, 14, 15, 17, 19, 20} for Test 2. Based on these data, Test 1 seems to

differentiate between groups X and Y more than Test 2.

The 2-NPI lower and upper probabilities as given in Equations (4.1) and (4.2) for

Test 1 and Test 2, for m = 1, . . . , 30 are displayed in Figure 4.1. We have considered

two different scenarios of α and β. It is obviously that every test has a different location

of the optimal threshold, thus has a different number of correctly classified individuals

from groups X and Y. To find the optimal thresholds for the two tests, we use the 2-
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NPI-L method, the optimal thresholds are c1 ∈ (12, 13) and c2 ∈ (13, 14) regardless of

the value of m. Then if we apply the optimal threshold c1 to the empirical data for

Test 1, the number of correctly classified individuals from group X is 10 out of 10 and

that from group Y is 8 out of 10. If we apply the optimal threshold c2 to the empirical

data for Test 2, then the number of correctly classified individuals from group X is 8

out of 10 and 5 out of 10 from group Y . Therefore, under the scenario α = β = 0.6,

the empirical data for Test 1 exceeds the proportions of correctly classified observations

from both groups, whereas the empirical data for Test 2 does not achieve the proportions

of correctly classified observations from group Y . Hence, it is likely that the number of

correctly classified future individuals from groups X and Y for every test reflect their

empirical data proportions. The results are shown in the first plot in Figure 4.1, there is

a strong indication that Test 1 is better than Test 2.
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Figure 4.1: Comparison of Test 1 (blue) and Test 2 (red)

We notice that the values of these lower and upper probabilities vary. With a

change in the value of m, the required number of correctly classified future individuals

in Equations (4.1) and (4.2) of course changes, and then, the values of the corresponding

lower and upper probabilities in these equations vary. For example, for m = 2, the
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required number of correctly classified future individuals from both groups is 2 out of

2, which means that both the future individuals must be correctly classified for each

group, and that is hard to achieve. Consequently, the values of these lower and upper

probabilities are small. For m = 3, the required number of correctly classified future

individuals from both groups is 2 out of 3, which is easier to achieve than 2 out of 2.

Thus, the values of these lower and upper probabilities are higher for m = 3 than for

m = 2. For m = 4, the required number of correctly classified future individuals from

both groups is 3 out of 4, which is harder to achieve than 2 out of 3. Therefore, the values

of these lower and upper probabilities are smaller for m = 4 than for m = 3.

When the desired criterion strongly emphasizes the number of correctly classified

future observations from group X, using the values α = 0.9, β = 0.1, the optimal threshold

for Test 1 stays the same as in the previous scenario, but for Test 2 the optimal threshold is

c2 ∈ (18, 19) for m = 4, . . . , 30 and c2 ∈ (13, 14) for m = 1, 2, 3. On applying the optimal

threshold c2 ∈ (18, 19) to the empirical data for Test 2, the number of correctly classified

individuals from group X is 10 out of 10 and from group Y is 2 out of 10. According

to the locations of these optimal thresholds from both groups, the required numbers of

correctly classified future individuals from both tests are easy to achieve. However, the

empirical data for Test 1 exceeds the proportion of correctly classified observations from

group Y more than Test 2. Thus, the corresponding lower probabilities in Equation (4.1)

for Test 1 are greater than for Test 2, and also the corresponding upper probabilities in

Equation (4.2) for Test 1 are greater than for Test 2, so we can say that there is a weak

indication that Test 1 is better than Test 2. However, there is not a strong indication,

as was the case in the previous scenario (α = β = 0.6), because the required numbers

of correctly classified future individuals from both tests are easier to achieve. However,

due to the randomness effect as discussed in Section 2.1, for small values of m there is a

strong indication that Test 1 is better than Test 2. The results are shown in the second

plot of Figure 4.1.

For both tests, the differences between the upper and lower probabilities, called the

imprecision, are observed to increase from m = 1 to m = 10. This occurs because all the
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future individuals must be correctly classified from group X, therefore the corresponding

lower and upper probabilities for the events CX1

c1 ≥ αmx and CX2

c2 ≥ αmx decrease

gradually with increasing the valuem. Whereas, the required number of correctly classified

future individuals from group Y is just one future individual, therefore the corresponding

lower and upper probabilities for the events CY 1

c1 ≥ βmy and CY 2

c2 ≥ βmy are close to one.

Thus, the imprecision entirely occurs by the effect of group X.

Figure 4.1 shows some step-like pattern, in particular for the lower probabilities for

both tests in the case α = 0.9, β = 0.1. This pattern is explained as follows. For example,

considering m = 9 and m = 10 the lower probability in Equation (4.1) for both tests is

greater for m = 10 than for m = 9 because for m = 9 the required numbers of correctly

classified future individuals from group Y is 1 out of 9 and from group X is 9 out of

9. Whereas for m = 10, the required numbers of correctly classified future individuals

from group Y is 1 out of 10 and from group X is 9 out 10. Thus, for m = 10, the

required numbers of correctly classified future individuals from both groups are easier

to achieve than the required numbers for m = 9. This increase does not occur for the

corresponding upper probabilities in Equation (4.2) for both tests since the values of the

upper probabilities for group X are equal to 1 for m = 4, 5, . . . 30 for Test 2, and equal to

1 for Test 1 for all the values of m, since the thresholds c1 and c2 are greater than all X

data observations. After that, for m = 11, . . . , 19, the lower probabilities for both tests

start to decrease gradually because the required numbers for such values of m are harder

to achieve than the required numbers for m = 10.

Generally, for large values of m, the imprecision is higher for scenario α = 0.9, β = 0.1

than that for the scenario α = β = 0.6. It is because the required numbers of correctly

classified future individuals are easier to achieve under this scenario, so the corresponding

upper probabilities in Equations (4.1) and (4.2) are high for both groups and tests,

especially for group X where the upper probabilities are equal to one as the thresholds

c1 and c2 are greater than all X data observations.

Example 4.2. Example 4.1 consisted of two tests that have different performance in

the sense that Test 1 seems to separate between groups X and Y more than Test 2.
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In this example, we consider two tests that have a similar level of overlap between

groups X and Y . Let nx = ny = 10 observations have the following ranks; X1 =

{1, 2, 5, 6, 8, 10, 11, 12, 13, 17} and Y 1 = {3, 4, 7, 9, 14, 15, 16, 18, 19, 20} for Test 1, and

X2 = {1, 2, 3, 7, 8, 9, 10, 15, 16, 18}, Y 2 = {4, 5, 6, 11, 12, 13, 14, 17, 19, 20} for Test 2.
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Figure 4.2: Comparison of Test 1 (blue) and Test 2 (red)

The 2-NPI lower and upper probabilities as given by Equations (4.1) and (4.2) for

Test 1 and Test 2, for m = 1, . . . , 30 are displayed in Figure 4.2. We have considered two

different scenarios of α and β. For α = β = 0.6, the optimal thresholds are c1 ∈ (13, 14)

and c2 ∈ (10, 11) for all the values of m. If we apply the optimal threshold c1 to the

empirical data for Test 1, the numbers of correctly classified individuals from group X

is 9 out of 10 and from group Y it is 6 out of 10. If we apply the optimal threshold c2

to the empirical data for Test 2, the numbers of correctly classified individuals from each

of the groups, X and Y , is 7 out of 10. Therefore, under the scenario α = β = 0.6, the

empirical data for both tests are quite similar regarding the number of correctly classified

individuals from both groups and the empirical data for both tests achieve the required

numbers of correctly classified individuals, but it is not clear which test is better. The

results are shown in the first plot in Figure 4.2, there is a weak indication that Test 1 is
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better than Test 2 for small values of m, whereas for larger values of m, these lower and

upper probabilities for Test 1 are nested within those for Test 2.

The optimal thresholds c1 and c2 for α = 0.7, β = 0.4 are the same as those for the

scenario α = β = 0.6. As the results are shown in the second plot in Figure 4.2, there is

a strong indication that Test 1 is better than Test 2 for almost all the values of m, since

the empirical data for Test 1 exceeds the proportion of correctly classified individuals

from both groups. However, for some small values of m, because of the randomness effect,

there is only a weak indication that Test 1 is better than Test 2.

Example 4.3. In this example, we use the data set from a study to develop screening

methods to detect carriers of a rare genetic disorder. The data were first discussed by Cox

et al. [27], and are available from Carnegie Mellon University Statlib Datasets Archive at

http://lib.stat.cmu.edu/datasets/. Four measurements M1, M2, M3 and M4 were made

on blood samples. For some patients, there are several samples of which the average is

considered, and five missing values are excluded from the analysis. The remaining sample,

which is used in this example, consists of 120 observations, 38 for carriers of the rare

genetic disorder and 82 for non-carriers. Coolen-Maturi [22] used this data set to combine

two or more of these diagnostic tests in order to improve the overall accuracy using the

area under the ROC curve, based on the NPI setting for one future individual. In this

example, we use this data set for pairwise comparisons of these four diagnostic tests, using

the NPI method presented in Section 4.2. To compare two of these four diagnostic tests,

for test Mt, for t = 1, 2, 3, 4, we define TMt = CXt

ct ≥ αmx × CY t

ct ≥ βmy. Comparison

any of two of these four tests is derived by Equations (4.1) and (4.2).

To compare two of these tests, the 2-NPI lower and upper probabilities as given in

Equations (4.1) and (4.2), for the four diagnostic tests, for m = 1, . . . , 30, are displayed

in Figures 4.3 and 4.4, for the scenarios α = β = 0.5 and α = 0.5, β = 0.7, respectively.

The heading in each plot states the two diagnostic tests, the first named test is presented

in blue and the second named test in red.



76 Chapter 4. NPI for comparison of two diagnostic tests

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM1&TM2

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM1&TM3

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM1&TM4

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM2&TM3

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM2&TM4

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00

lower and upper probabilities

m

TM3&TM4

Figure 4.3: Pairwise comparisons of TM1, TM2, TM3 and TM4, with α =
β = 0.5

First, we find the optimal threshold for each test, then we apply the optimal threshold

in their empirical data to find the numbers of correctly classified individuals from groups

X and Y . After doing so, we find the following. For α = β = 0.5, the numbers of

correctly classified individuals from groups X and Y for TM1 are 70 out of 82 and 32

out of 38, respectively, regardless of the value of m. The numbers of correctly classified

individuals from groups X and Y for TM2 are 56 out of 82 and 28 out of 38, respectively,

for m = 1, 2. and 58 out of 82 and 27 out of 38, respectively, for m = 3, . . . , 30. The

numbers of correctly classified individuals from groups X and Y for TM3 are 74 out of 82

and 24 out of 38, respectively, for m = 1, and 70 out of 82 and 25 out of 38, respectively,
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for m = 2, . . . , 11, and 57 out of 82 and 27 out of 38, respectively, for m = 12, . . . , 30.

The numbers of correctly classified individuals from groups X and Y for TM4 are 67 out

of 82 and 31 out of 38, respectively, regardless of the value m.
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Figure 4.4: Pairwise comparisons of TM1, TM2, TM3 and TM4, with α =
0.5, β = 0.7

Based on these numbers, the numbers of correctly classified individuals from both

groups for TM1 are the greatest, followed by the corresponding number for TM4. While,

the numbers of correctly classified individuals from both groups for TM3 are greater

than the corresponding number for TM2, for m = 1, . . . , 11, whereas for m = 12, . . . , 30

the number of correctly classified individuals from group X for TM2 is greater than the

corresponding number for TM3 and the corresponding number from group Y are equal
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for the two tests.

For scenario where α = β = 0.5 in Figure 4.3, in the first row we can say there is a

strong indication that TM1 is better than TM2 and TM3 for all values ofm. Whereas, there

is only a weak indication that TM1 is better than TM4 for large values of m, since both

have high values of the lower and upper probabilities, but for small values of m there is a

strong indication that TM1 is better than TM4, which is because of the randomness effect.

In the second row, there is a strong indication that TM3 is better than TM2 for small

values of m whereas for large values of m the corresponding lower and upper probabilities

in Equations (4.1) and (4.2) for TM2 are nested within those for TM3. TM4 is better than

TM2 and TM3 with a strong indication for all values of m.

For α = 0.5, β = 0.7, the numbers of correctly classified individuals from groups X

and Y for TM1 are 70 out of 82 and 32 out of 38, respectively, form = 1, 2, 4, 5, 7, 9, 11, and

56 out of 82 and 34 out of 38, respectively, form = 6, 8, 12, 13, 16, 18, 22, 23, 24, 26, 28, 29, 30,

and 60 out of 82 and 33 out of 38, respectively, for m = 3, 10, 14, 15, 17, 19, 20, 21, 25, 27.

The numbers of correctly classified individuals from groups X and Y for TM2 are 56 out

of 82 and 28 out of 38, respectively, for m = 1, 5, 7 and 36 out of 82 and 35 out of 38,

respectively, for m = 2, 3, 4, 6, 8, . . . , 30. The numbers of correctly classified individuals

from groups X and Y for TM3 are 74 out of 82 and 24 out of 38, respectively, for m = 1,

and 42 out of 82 and 35 out of 38, respectively, for m = 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, and 52

out of 82 and 30 out of 38, respectively, for m = 7, 10, 11, 15, 17, . . . , 30. The numbers

of correctly classified individuals from groups X and Y for TM4 are 67 out of 82 and 31

out of 38, respectively, for m = 1, and 55 out of 82 and 34 out of 38, respectively, for

m = 2, 6, and 61 out of 82 and 33 out of 38, respectively, for m = 3, 4, 5, 7, . . . , 30.

Thus, under the scenario α = 0.5, β = 0.7, the empirical data for TM1 exceed the

proportion of correctly classified individuals from both groups more than the empirical

data for TM2 and TM3 do. While the empirical data for both TM1 and TM4 are quite

similar regarding to the number of correctly classified individuals from groups. The

empirical data for TM3 exceed the proportion of correctly classified individuals from both

groups more than the empirical data for TM2 does, for most values of m.
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In Figure 4.4, for α = 0.5, β = 0.7, similar results hold as for scenario α = β = 0.5.

However, the values of the corresponding lower and upper probabilities for these tests are

lower, because the required numbers of correctly classified future individuals from group

Y is harder to achieve than with β = 0.5. However, the third and fourth plots show

different results than for scenario α = β = 0.5. The third plot shows that TM1 is better

than TM4 with only a weak indication for small values of m, but for large values of m,

the corresponding lower and upper probabilities in Equations (4.1) and (4.2) for TM1 are

nested within those for TM4. The fourth plot shows that TM3 is better than TM2 with a

strong indication for some values of m, while with a weak indication for others.

4.3 Comparison of two diagnostic tests using NPI

for Bernoulli quantities

The method presented in Section 4.2 can be also set up using NPI for Bernoulli quantities

as presented in Section 1.3.3. In this Section we compare the two tests by considering

the total number of correct diagnoses for mx future healthy individuals and my future

patients for one test with those for the other test, using NPI for Bernoulli quantities. The

same notations will be used as introduced in Section 4.2, and again the 2-NPI-L method

presented in Section 2.2 is used to select the optimal threshold ct. The number of successes

in nx and ny data observations are denoted by stx and sty, respectively, for test t. Let

CXt

mx
denote the random number of successful diagnoses for the healthy future individuals

out of mx for test t, and CY t

my
denote the random number of successful diagnoses for the

diseased future individuals out of my for test t. The total number of correct diagnoses

for mx future healthy individuals and my future patients in Test 1 is CX1
mx

+ CY 1
my

, and

the total number of correct diagnoses for mx and my in Test 2 is CX2
mx

+ CY 2
my

. We now

consider the event CX1
mx

+ CY 1
my

> CX2
mx

+ CY 2
my
. The NPI upper probability for this event,

for CX1
mx
, CX2

mx
∈ {0, ...,mx}, and CY 1

my
, CY 2

my
∈ {0, ...,my}, based on data (nx, s1

x), (ny, s1
y)

and (nx, s2
x), (ny, s2

y), is
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P (CX1

mx
+ CY 1

my
> CX2

mx
+ CY 2

my
)

=
mx+my∑
k=0

P (CX2

mx
+ CY 2

my
< k)× [P (CX1

mx
+ CY 1

my
≥ k)− P (CX1

mx
+ CY 1

my
≥ k + 1)] (4.9)

This equation follows from the fact that P (CX2
mx

+CY 2
my

< k) is increasing in k, thus, we put

the maximum possible probability mass for CX1
mx

+CY 1
my

at the event CX1
mx

+CY 1
my
≥ mx+my,

followed by assigning the maximum possible remaining probability mass for CX1
mx

+ CY 1
my

at the event CX1
mx

+ CY 1
my
≥ mx +my − 1, etc [18]. Then, we can write Equation (4.9) as

follows,
mx+my∑
k=0

P (CX2

mx
+ CY 2

my
< k)× [P (CX1

mx
+ CY 1

my
≥ k)− P (CX1

mx
+ CY 1

my
≥ k + 1)]

=
mx+my∑
k=0

[my∑
v=0

P (CX2

mx
< k − v)× [P (CY 2

my
≤ v)− P (CY 2

my
≤ v − 1)]

]

×
[my∑
v=0

P (CX1

mx
≥ k − v)× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

−
my∑
v=0

P (CX1

mx
≥ k + 1− v)× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

]

=
mx+my∑
k=0

[my∑
v=0

P (CX2

mx
< k − v)× [P (CY 2

my
≤ v)− P (CY 2

my
≤ v − 1)]

]

×
[my∑
v=0

[P (CX1

mx
≥ k − v)− P (CX1

mx
≥ k + 1− v)]× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

]
(4.10)

In equation (4.10), we are optimistic for Test 1 by putting the maximum possible

probability mass for this test at the larger value of CX1
mx

and CY 1
my

, and pessimistic for Test

2 by putting the maximum possible probability mass for this test at the smaller value

of CX2
mx

and CY 2
my

. We may also be interested in the event CX1
mx

+ CY 1
my
≥ CX2

mx
+ CY 2

my
, for

which the NPI upper probability follow similarly and is equal to

P (CX1

mx
+ CY 1

my
≥ CX2

mx
+ CY 2

my
)

=
mx+my∑
k=0

P (CX2

mx
+ CY 2

my
≤ k)× [P (CX1

mx
+ CY 1

my
≥ k)− P (CX1

mx
+ CY 1

my
≥ k + 1)]
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=
mx+my∑
k=0

[my∑
v=0

P (CX2

mx
≤ k − v)× [P (CY 2

my
≤ v)− P (CY 2

my
≤ v − 1)]

]

×
[my∑
v=0

[P (CX1

mx
≥ k − v)− P (CX1

mx
≥ k + 1− v)]× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

]
(4.11)

The corresponding lower probability can again be derived via the conjugacy property

P (A) = 1−P (Ac). This method will be illustrated in examples in Section 4.5, but before

that we show how to include weights in the next section.

4.4 Comparison of tests using weighted numbers of

successful diagnoses

In Section 4.3, we present a method for comparison of two diagnostic tests applied to the

same individuals from two groups, healthy and diseased individuals, where both groups

are treated equally in the event of interest. When unequal weights are requested to reflect

the relative importance of the two groups, weights can be added to the method presented

in Section 4.3. Let wx, wy ∈ N+ be the weights for group X and Y , respectively. We are

interested in the event wxCX1
mx

+ wyC
Y 1
my

> wxC
X2
mx

+ wyC
Y 2
my

, the NPI upper probability

for this event is

P (wxCX
1

mx
+ wyC

Y 1
my

> wxC
X2
mx

+ wyC
Y 2
my

)

=
wxmx+wymy∑

k=0
P (wxCX

2
mx

+ wyC
Y 2
my

< k)× [P (wxCX
1

mx
+ wyC

Y 1
my
≥ k)

− P (wxCX
1

mx
+ wyC

Y 1
my
≥ k + 1)]

=
wxmx+wymy∑

k=0

[my∑
v=0

P (CX2
mx

<
k − (wyv)

wx
)× [P (CY 2

my
≤ v)− P (CY 2

my
≤ v − 1)]

]

×
[my∑
v=0

P (CX1
mx
≥ k − (wyv)

wx
)× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

−
my∑
v=0

P (CX1
mx
≥ k + 1− (wyv)

wx
)× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

]
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=
wxmx+wymy∑

k=0

[my∑
v=0

P (CX2
mx

<
k − (wyv)

wx
)× [P (CY 2

my
≤ v)− P (CY 2

my
≤ v − 1)]

]

×
[my∑
v=0

[P (CX1
mx
≥ k − (wyv)

wx
)− P (CX1

mx
≥ k + 1− (wyv)

wx
)]× [P (CY 1

my
≥ v)− P (CY 1

my
≥ v + 1)]

]
(4.12)

The corresponding lower probability can again be derived via the conjugacy property

P (A) = 1− P (Ac).

We choose the weights wx and wy as positive integers because this simplifies notation

in the derivation of Equation 4.12, as this ensures that wxmx+wymy is integer. Of course,

the overall inference for the event wxCX1
mx

+ wyC
Y 1
my

> wxC
X2
mx

+ wyC
Y 2
my

is not affected by

multiplication of both wx and wy by the same positive constant, hence one could scale

them, e.g. to be in (0.1] or even to sum up to 1.

In the case ofmx = my = 1 in Equation (4.12), we notice that there are three possible

events depending on wx < wy, wx > wy and wx = wy. Therefore, for mx = my = 1,

Equation (4.12) can be expressed in a simple expression as follows.

For wx < wy

P (wxCX1

1 + wyC
Y 1

1 > wxC
X2

1 + wyC
Y 2

1 )

= {P (CY 2

1 = 0)[P (CX2

1 = 0)P (CX1

1 = 1)P (CY 1

1 = 0)

+ P (CY 1

1 = 1)(1− P (CX1

1 = 1)P (CX2

1 = 0))]}

+ P (CX1

1 = 1)P (CY 1

1 = 1)P (CX2

1 = 0) (4.13)

For wx > wy

P (wxCX1

1 + wyC
Y 1

1 > wxC
X2

1 + wyC
Y 2

1 )

= {P (CX2

1 = 0)[P (CY 2

1 = 0)P (CY 1

1 = 1)P (CX1

1 = 0)

+ P (CX1

1 = 1)(1− P (CY 1

1 = 1)P (CY 2

1 = 0))]}

+ P (CY 1

1 = 1)P (CX1

1 = 1)P (CY 2

1 = 0) (4.14)
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For wy = wx

P (wxCX1

1 + wyC
Y 1

1 > wxC
X2

1 + wyC
Y 2

1 )

= P (CX2

1 = 0)P (CY 2

1 = 0)[P (CX1

1 = 1) + P (CY 1

1 = 1)]

+ P (CX1

1 = 1)P (CY 1

1 = 1)[P (CY 2

1 = 0) + P (CX2

1 = 0)]

− 3P (CX2

1 = 0)P (CY 2

1 = 0)P (CX1

1 = 1)P (CY 1

1 = 1) (4.15)

The weights, wx and wy, are introduced to reflect the relative importance of one

group over the other. Varying the values of wx and wy will depend on which group is

more important to be successfully diagnosed. The proof for Equations 4.13-4.15 is given

in Appendix A. This method will be illustrated in Example 4.5 in the next section.

4.5 Examples

In this section, three examples are given to illustrate the NPI comparison of two diagnostic

tests, as presented in Section 4.3. The data for Examples 4.4 and 4.5 are small artificial

data sets. Example 4.6 uses data from the literature. Also, Example 4.5 illustrates the

comparison of tests using weighted numbers of successful diagnoses presented Section 4.4.

Example 4.4. Suppose that we are interested in comparing between two diagnostic tests

for a particular disease. Each test is applied to the same individuals from two groups X

and Y , with nx = ny = 10. Assume that the threshold values c1 and c2 are set before the

comparison, and they provide the following numbers of successful diagnoses from groups

X and Y , s1
x = s1

y = 8 for Test 1, and s2
x = s2

y = 6 for Test 2. In this example, T 1 refers

to CX1
mx

+ CY 1
my

and T 2 refers to CX2
mx

+ CY 2
my

.

Tables 4.1 and 4.2 present the NPI upper probabilities given by Equation (4.10)

and the corresponding NPI lower probabilities, for comparison of T 1 and T 2 for different

values of mx and my. In Table 4.1, equal number of future individuals for diseased and

healthy groups are considered, so mx = my = m. Table 4.2 some cases with mx 6= my

are presented. In this example, the total number of correct diagnoses for T 1 is greater
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than that for T 2. Hence, it is likely that the total number of correct diagnoses for mx

future healthy individuals and my future patients for T 1 is greater than that for T 2, if

m is not too small. Indeed, Table 4.1 shows that the values of the lower and upper

probabilities for T 1 > (≥) T 2 are greater than for T 2 > (≥) T 1. Moreover, these values

show that the differences between the two tests become clearer for larger values of m, as

equal outcomes become less likely. This is shown by the large differences of the lower and

upper probabilities for the events T 1 > T 2 and T 1 ≥ T 2 for small m.

m [P , P ](T 1 > T 2) [P , P ](T 1 ≥ T 2) [P , P ](T 2 > T 1) [P , P ](T 2 ≥ T 1)

1 [0.3672, 0.5317] [0.7748, 0.8853] [0.1147, 0.2252] [0.4683, 0.6328]

3 [0.5133, 0.7564] [0.7286, 0.8996] [0.1004, 0.2714] [0.2436, 0.4867]

5 [0.5702, 0.8342] [0.7232, 0.9179] [0.0821, 0.2768] [0.1658, 0.4298]

15 [0.6644, 0.9321] [0.7298, 0.9535] [0.0465, 0.2702] [0.0679, 0.3356]

30 [0.7019, 0.9578] [0.7374, 0.9664] [0.0336, 0.2626] [0.0422, 0.2981]

50 [0.7199, 0.9675] [0.7421, 0.9721] [0.0279, 0.2579] [0.0325, 0.2801]

100 [0.7350, 0.9743] [0.7464, 0.9764] [0.0236, 0.2536] [0.0257, 0.2650]

Table 4.1: NPI lower and upper probabilities for comparison of two tests
with mx = my = m

mx my [P , P ](T 1 > T 2) [P , P ](T 1 ≥ T 2) [P , P ](T 2 > T 1) [P , P ](T 2 ≥ T 1)

3 5 [0.5459, 0.8008] [0.7230, 0.9078] [0.0922, 0.2770] [0.1992, 0.4541]

5 3 [0.5459, 0.8008] [0.7230, 0.9078] [0.0922, 0.2770] [0.1992, 0.4541]

30 15 [0.6823, 0.9430] [0.7272, 0.9564] [0.0436, 0.2728] [0.0570, 0.3177]

50 70 [0.7225, 0.9683] [0.7410, 0.9720] [0.0280, 0.2590] [0.0317, 0.2775]

100 80 [0.7322, 0.9729] [0.7447, 0.9752] [0.0248, 0.2553] [0.0271, 0.2678]

Table 4.2: NPI lower and upper probabilities for comparison of two tests
with mx 6= my

Table 4.2 shows that when the number of future individuals from one group is

increased more than the other, T 1 stays better than T 2 as in the results for mx = my.

However the values of the lower and upper probabilities for T 1 > T 2 are higher than for

mx = my. For example, for mx = my = 15 the lower and upper probabilities for the event

T 1 > T 2 are equal to 0.6644 and 0.9321 respectively, while for mx = 30 and my = 15 these

values become 0.6823 and 0.9430 respectively. It is also noticed that in this table, when
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mx and my are interchanged, these lower and upper probabilities are the same since the

total number of correct diagnoses from X and Y are equal for both the tests (s1
x = s1

y = 8,

s2
x = s2

y = 6).

Example 4.5. Example 4.4 consisted of two tests that have different performance in

terms of the total number of successfully diagnosed individuals from groups X and Y .

In this example, we consider two tests that have more similar total numbers of correct

diagnoses from X and Y , with nx = ny = 10, the data are s1
x = 7 and s1

y = 9 for Test 1,

and s2
x = 9 and s2

y = 6 for Test 2.

m [P , P ](T 1 > T 2) [P , P ](T 1 ≥ T 2) [P , P ](T 2 > T 1) [P , P ](T 2 ≥ T 1)

1 [0.2331, 0.3920] [0.6970, 0.8371] [0.1629, 0.3030] [0.6080, 0.7669]

5 [0.3294, 0.6610] [0.5109, 0.8121] [0.1879, 0.4891] [0.3390, 0.6706]

6 [0.3344, 0.6851] [0.4948, 0.8153] [0.1847, 0.5052] [0.3149, 0.6656]

10 [0.3442, 0.7432] [0.4552, 0.8269] [0.1731, 0.5448] [0.2568, 0.6558]

50 [0.3534, 0.8420] [0.3819, 0.8595] [0.1405, 0.6181] [0.1580, 0.6466]

100 [0.3540, 0.8577] [0.3688, 0.8664] [0.1336, 0.6312] [0.1423, 0.6460]

Table 4.3: NPI lower and upper probabilities for comparison of two tests
with mx = my = m

mx my [P , P ](T 1 > T 2) [P , P ](T 1 ≥ T 2) [P , P ](T 2 > T 1) [P , P ](T 2 ≥ T 1)

15 30 [0.5510, 0.9101] [0.6069, 0.9315] [0.0685, 0.3931] [0.0899, 0.4490]

30 15 [0.1850, 0.6315] [0.2286, 0.6856] [0.3144, 0.7714] [0.3685, 0.8150]

50 70 [0.4670, 0.9034] [0.4918, 0.9137] [0.0863, 0.5082] [0.0966, 0.5330]

70 50 [0.2515, 0.7658] [0.2726, 0.7847] [0.2153, 0.7274] [0.2342, 0.7485]

Table 4.4: NPI lower and upper probabilities for comparison of two tests
for mx 6= my

Tables 4.3 and 4.4 present the NPI upper probabilities for comparison of T 1 and

T 2, for different values of mx and my. Table 4.3 presents results for mx = my = m,

while Table 4.4 presents some cases with mx 6= my. The values of the lower and upper

probabilities for the events T 1 > (≥) T 2 are a bit higher than for the events T 2 > (≥) T 1.

For all the values of m, these values for the event T 1 > T 2 are slightly increasing with m

as equal outcomes become less likely. This is shown by the fact that the lower and upper

probabilities for T 1 > T 2 become close to those for T 1 ≥ T 2 for larger m.
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There is a tendency for the imprecision to increase with m, which is intuitively

attractive when considering more future observations. However, this does not always

happen, for example if an event is quite unlikely to happen then its upper probability

will be close to zero, hence the imprecision will be quite small also for larger values of m.

The decision which test is the best can be supported by the use of relevant values of these

lower and upper probabilities. Therefore, one can prefer the better test for the values of

m that have the lower probability that exceed 0.5, so that can be a strong indication of

this test being better than the other. So, in this example, one can conclude that Test

1 is at least as good as Test 2 for the next 5 patients and 5 non-patients as the lower

probability for T 1 ≥ T 2 is equal to 0.5109 for m = 5. However for mx and my are equal

to 6 or more, we could conclude that neither test is really better than the other.

Table 4.4 shows different behavior than Table 4.3, since the numbers of future

individuals from diseased and healthy groups differ. From these tables, the decision of

which test is the best clearly depends on the values of the number of successful diagnoses

from diseased and healthy groups and also the number of future individuals from both

the groups. For example, for mx = 15 and my = 30, T 1 is better than T 2, whereas for

mx = 30 and my = 15, T 2 is better than T 1.

m
[P , P ](T 1 > T 2) [P , P ](T 1 ≥ T 2) [P , P ](T 2 > T 1) [P , P ](T 2 ≥ T 1)

wx = 4, wy = 2

1 [0.2398, 0.3986] ]0.5987, 0.7449] [0.2551, 0.4013] [0.6014, 0.7602]

5 [0.2418, 0.5521] [0.3490, 0.6666] [0.3334, 0.6510] [0.4479, 0.7582]

15 [0.2063, 0.6207] [0.2487, 0.6707] [0.3293, 0.7513] [0.3793, 0.7937]

50 [0.1785, 0.6629] [0.1919, 0.6803] [0.3197, 0.8081] [0.3371, 0.8215]

100 [0.1702, 0.6747] [0.1770, 0.6837] [0.3163, 0.8230] [0.3253, 0.8298]

wx = 2, wy = 4

1 [0.3315, 0.4843] [0.6903, 0.8305] [0.1695, 0.3097] [0.5157, 0.6685]

5 [0.4954, 0.7880] [0.6097, 0.8650] [0.1350, 0.3903] [0.2120, 0.5046]

15 [0.5464, 0.8896] [0.5974, 0.9128] [0.0872, 0.4026] [0.1104, 0.4536]

50 [0.5764, 0.9346] [0.5944, 0.9404] [0.0596, 0.4056] [0.0654, 0.4236]

100 [0.5847, 0.9446] [0.5941, 0.9473] [0.0527, 0.4059] [0.0554, 0.4153]

Table 4.5: NPI lower and upper probabilities for comparison of two tests
for mx = my = m, using different weights
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Table 4.5 presents the NPI upper probabilities given by Equation (4.12) and the

corresponding NPI lower probabilities, for comparison of the two tests using different

weights. For wx = 4, wy = 2, T 2 is better than T 1 for all the different values of m since

the number of successful diagnoses in the data from group X for T 2 is greater than the

corresponding number for T 1. For wx = 2, wy = 4, T 1 is better than T 2 for all the different

values of m since the number of successful diagnoses in the data from group Y for T 1 is

greater than the corresponding number for T 2.

Example 4.6. In this example, the data set presented in Example 4.3 involving four

tests: M1, M2, M3 and M4, is used. We define the number of successful diagnoses for all

four tests by identifying the optimal thresholds ct using the 2-NPI-L method, for different

values of m and α = β = 0.5, and then we count the number of successfully diagnosed

individuals in the data for both the groups. To compare the two of these four diagnostic

tests, for test Mt, for t = 1, 2, 3, 4, we define TMt = CXt

mx
+ CY t

my
, and sMt

x , sMt
y are the

numbers of successful diagnoses from healthy and diseased groups for Mt. Comparison

any of two of these four tests is derived by the upper probability in Equation (4.10) and

the corresponding lower probability.

m : 1 5 10 30 100

sM1
x , sM1

y 70, 32 70, 32 70, 32 70, 32 70, 32

sM2
x , sM2

y 56, 28 58, 27 58, 27 58, 27 58, 27

sM3
x , sM3

y 74, 24 70, 25 70, 25 57, 27 57, 27

sM4
x , sM4

y 67, 31 67, 31 67, 31 67, 31 67, 31

Table 4.6: The number of successful diagnoses in the data from groups
X and Y for TM1, TM2, TM3 and TM4

Table 4.6 shows the number of successful diagnoses in the data from healthy and

diseased groups for every test, for different values of m. Based on these numbers, the

total number of successfully diagnosed individuals in the data for TM1 is the greatest one,

followed by the corresponding number for TM4. While the total number of successfully

diagnosed individuals in the data for TM3 is greater than the corresponding number for
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TM2, for m = 1, 5, 10, whereas for m = 30, 100 the number of successfully diagnosed from

group X for TM2 is greater than the corresponding number for TM3 and the corresponding

number from group Y are equal for the two tests.

m [P , P ](TM1 > TM2) [P , P ](TM1 ≥ TM2) [P , P ](TM2 > TM1) [P , P ](TM2 ≥ TM1)

1 [0.3611, 0.3955] [0.8312, 0.8568] [0.1432, 0.1688] [0.6035, 0.6389]

5 [0.6392, 0.7119] [0.8115, 0.8621] [0.1379, 0.1885] [0.2881, 0.3608]

10 [0.7448, 0.8245] [0.8445, 0.9014] [0.0986, 0.1555] [0.1755, 0.2552]

30 [0.8783, 0.9428] [0.9104, 0.9605] [0.0395, 0.0896] [0.0572, 0.1217]

100 [0.9500, 0.9860] [0.9569, 0.9883] [0.0117, 0.0431] [0.0140, 0.0500]

[P , P ](TM1 > TM3) [P , P ](TM1 ≥ TM3) [P , P ](TM3 > TM1) [P , P ](TM3 ≥ TM1)

1 [0.3008, 0.3373] [0.8107, 0.8394] [0.1606, 0.1893] [0.6627, 0.6992]

5 [0.5473, 0.6290] [0.7490, 0.8120] [0.3710, 0.4527] [0.3710, 0.4527]

10 [0.6345, 0.7350] [0.7625, 0.8415] [0.2650, 0.3655] [0.2650, 0.3655]

30 [0.8900, 0.9492] [0.9197, 0.9652] [0.0348, 0.0803] [0.0508, 0.1100]

100 [0.9580, 0.9886] [0.9639, 0.9905] [0.0095, 0.0361] [0.0114, 0.0420]

[P , P ](TM1 > TM4) [P , P ](TM1 ≥ TM4) [P , P ](TM4 > TM1) [P , P ](TM4 ≥ TM1)

1 [0.2359, 0.2694] [0.7847, 0.8157] [0.1843, 0.2153] [0.7306, 0.7641]

5 [0.4114, 0.4975] [0.6418, 0.7199] [0.2801, 0.3582] [0.5025, 0.5886]

10 [0.4592, 0.5760] [0.6142, 0.7209] [0.2791, 0.3858] [0.4240, 0.5408]

30 [0.5173, 0.6865] [0.5946, 0.7525] [0.2475, 0.4054] [0.3135, 0.4827]

100 [0.5598, 0.7719] [0.5907, 0.7950] [0.2050, 0.4093] [0.2281, 0.4402]

[P , P ](TM2 > TM3) [P , P ](TM2 ≥ TM3) [P , P ](TM3 > TM2) [P , P ](TM3 ≥ TM2)

1 [0.2185, 0.2475] [0.6659, 0.6986] [0.3014, 0.3341] [0.7525, 0.7815]

5 [0.2846, 0.3515] [0.4700, 0.5448] [0.4552, 0.5300] [0.6485, 0.7154]

10 [0.2733, 0.3633] [0.3939, 0.4935] [0.5065, 0.6061] [0.6367, 0.7267]

30 [0.4188, 0.5638] [0.4825, 0.6262] [0.3738, 0.5175] [0.4362, 0.5812]

100 [0.4246, 0.6192] [0.4503, 0.4638] [0.3562, 0.5497] [0.3808, 0.5754]

[P , P ](TM2 > TM4) [P , P ](TM2 ≥ TM4) [P , P ](TM4 > TM2) [P , P ](TM4 ≥ TM2)

1 [0.1725, 0.1992] [0.6263, 0.6604] [0.3396, 0.3737] [0.8008, 0.8275]

5 [0.1848, 0.2420] [0.3505, 0.4251] [0.5749, 0.6495] [0.7580, 0.8152]

10 [0.1499, 0.2201] [0.2448, 0.3347] [0.6653, 0.7552] [0.7799, 0.8501]

30 [0.0831, 0.1618] [0.1129, 0.2077] [0.7923, 0.8871] [0.8382, 0.9169]

100 [0.0381, 0.1075] [0.0443, 0.1210] [0.8790, 0.9557] [0.8925, 0.9619]

[P , P ](TM3 > TM4) [P , P ](TM3 ≥ TM4) [P , P ](TM4 > TM3) [P , P ](TM4 ≥ TM3)

1 [0.1931, 0.2228] [0.6843, 0.7190] [0.2810, 0.3157] [0.7772, 0.8069]

5 [0.2451, 0.3137] [0.4389, 0.5196] [0.4804, 0.5611] [0.6863, 0.7549]

10 [0.2279, 0.3188] [0.3500, 0.4556] [0.5444, 0.6500] [0.6812, 0.7721]

30 [0.0746, 0.1477] [0.1020, 0.1910] [0.8090, 0.8980] [0.8523, 0.9254]

100 [0.0318, 0.0927] [0.0371, 0.1048] [0.8952, 0.9629] [0.9073, 0.9682]

Table 4.7: NPI lower and upper probabilities for pairwise comparison for
TM1, TM2, TM3 and TM4
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To compare two of these tests, the NPI upper probabilities as given in Equation

(4.10) and the corresponding NPI lower probabilities are presented in Table 4.7, for

mx = my = m. It is noticed that TM1 is better than both TM2 and TM3, and the

differences between the two tests become greater for large values of m as equal outcomes

become less likely. When we look at the total number of successfully diagnosed in the

data in Table 4.6, the total number of successfully diagnosed for TM1 is greater than the

corresponding number for both TM2 and TM3. It is also noticed that the imprecision

is very low since the lower and upper probabilities are both close to 1 in the cases of

TM1 > TM2 and TM1 > TM3. TM1 is also better than TM4 but the values of these lower

and upper probabilities for the events TM1 > (≥) TM4 are not very high, although they

increase for large values of m. Further, the imprecision tends to increase for large values

of m. The total number of successfully diagnosed in the data for TM1 is greater than the

corresponding numbers for TM4, but still the differences between these numbers for both

groups are small.

To compare TM2 and TM3, we notice that TM3 is better than TM2 for m = 1, 5, 10,

while TM2 is better than TM3 for m = 30, 100. That is because the total number of

successful diagnoses in the data for TM3 is greater than the corresponding number for

TM2 for m = 1, 5, 10, whereas for m = 30, 100 the number of successful diagnoses from

group X for TM2 is greater than the corresponding number for TM3 and the corresponding

number from group Y are equal for the two tests. Finally, the last two tables from Table

4.7 show that TM4 is better than both TM2 and TM3 where the differences between the

two tests become greater for large values of m. It is clear because the total number of

successful diagnoses in the data for TM4 is greater than the corresponding number for

TM2 and TM3.

Table 4.8 presents the NPI lower and upper probabilities for comparison of TM2 and

TM3. Here, we use the same value of c for all m, in order to consider the impression

for different m. Actually, we use c resulting from the 2-NPI-L method with m = 30

and α = β = 0.5. So, the numbers of successful diagnoses from groups X and Y are

s2
x = 58, s2

y = 27 for TM2 and s3
x = 57, s3

y = 27 for TM3. This table shows that the
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values of the lower and upper probabilities for TM2 > (≥) TM3 are a bit higher than for

TM3 > (≥) TM2, but the values between the two tests are close. The imprecision tends to

increase with m. The decision which test is the best can be supported using the relevant

values of these lower and upper probabilities. Therefore, one can prefer the better test

for the values of m that have the lower probability that exceed 0.5, so that can be a

strong indication of this test being better than the other. Thus, in this example, one can

conclude that TM2 is at least as good as TM3 for the next 19 patients and 19 non-patients

as the lower probability for TM2(≥) TM3 is equal to 0.5009 for m = 19. However when

mx and my equal to 20 or more, we could conclude that neither test is really better than

the other.

m [P , P ](TM2 > TM3) [P , P ](TM2 ≥ TM3) [P , P ](TM3 > TM2) [P , P ](TM3 ≥ TM2)

1 [0.2771, 0.3070] [0.7027, 0.7323] [0.2677, 0.2973] [0.6930, 0.7229]

5 [0.3829, 0.4532] [0.5695, 0.6389] [0.3611, 0.4305] [0.5468, 0.6171]

10 [0.4040, 0.5001] [0.5309, 0.6258] [0.3742, 0.4691] [0.4999, 0.5960]

19 [0.4148, 0.5389] [0.5009, 0.6236] [0.3764, 0.4991] [0.4611, 0.5852]

20 [0.4154, 0.5418] [0.4987, 0.6238] [0.3762, 0.5013] [0.4582, 0.5846]

50 [0.4207, 0.5884] [0.4649, 0.6314] [0.3686, 0.5351] [0.4116, 0.5793]

100 [0.4208, 0.6148] [0.4464, 0.6394] [0.3606, 0.5536] [0.3852, 0.5792]

Table 4.8: NPI lower and upper probabilities for comparison of TM2 and
TM3

As mentioned in section 4.1, the area under the ROC curve (AUC) has been used

in the literature for comparison of two diagnostic tests. We compare the results in this

example with the empirical AUCs, which are equal to ÂUCM1 = 0.9034, ÂUCM2 = 0.7526,

ÂUCM3 = 0.8232 and ÂUCM4 = 0.8798. These results are in line with our results,

however TM2 can be better than TM3 for large values of m, which does not show in the

comparison of the ÂUC where m does not play a role.

4.6 Concluding remarks

This chapter introduced comparison of two diagnostic tests, assuming the tests are applied

on the same individuals from two groups, healthy and diseased individuals, explicitly as
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a predictive problem where the inference is based on future individuals. We considered

comparison of the total number of correct diagnoses for mx future healthy individuals and

my future patients in one test with those in the other test. We discussed the influence of

the choice of the number of future individuals considered via examples.

If the tests perform similarly, it is possible that there is no strong, or even week,

indication of one test being better than the other, due to the imprecision in our method.

It may happen that there is a strong indication of one test being better than another. In

such cases, one would recommend the better test only for such small numbers of future

patients and ideally reconsider the decision once more information is available. Real world

implementation of such recommendations will required further research. Similar reasoning

is used in [12] to determine maximum group size for simultaneous testing in high potential

risk scenarios. We also introduced weights to reflect the relative importance of the two

groups.

The NPI approach can be attractive for inference to promote decisions on medical

diagnoses for a predetermined number of future patients. We have restricted attention

to comparison between two diagnostic tests on individuals from two groups. This can be

generalized to such comparison on individuals from more than two groups. We leave that

for future research. Comparison of more than two diagnostic tests is also an interesting

topic for further research.

In some medical applications, the false-positive rates should be restricted within the

medical interest. For example, to accept cancer screening tests, the false-positive rates

have to be very small [46]. Many researchers have suggested the use of the partial area

under the ROC carve for such problems, for example, Baker and Pinsky [8] designed a

study using this in order to compare the performance of the digital and analog mammo-

graphy for breast cancer screening over false-positive rates not exceeding 0.01. We have

not linked our methods to such a setting, but this provides an interesting topic for future

research.
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Concluding Remarks

In this thesis, we have presented new NPI methods to determine optimal diagnostic

thresholds by considering specific numbers of future individuals in each of the groups. We

have seen that the optimal thresholds might change if the numbers of future individuals

change. This raises the question how to choose those numbers in practical applications,

where it should be noted that we would not actually know the group to which a future

individual, to whom the test is applied, belongs. Guidance on the choice of those numbers

in practical situations is left as a topic for future research. One would expect that it is

good to choose those numbers reflecting expected numbers of patients and healthy people

over a specific period of time.

We have presented NPI methods for selecting optimal thresholds for two- and three-

group classification problems. We have considered m future individuals in each group for

whom the threshold would be applied, and criteria in terms of the proportions of successful

diagnoses. These methods were shown to depend on the target success proportions (α, β

and γ) and also on the value of m. How α, β and γ can be chosen in real applications

would require further research in future. We have restricted attention to compare our

method with the empirical Youden index and the maximum area (volume) methods, as

these methods also take only few model assumptions, it is of interest to compare our NPI

approach with other methods presented in Section 1.2.

In addition, we have presented the NPI for comparison of two diagnostic tests for a
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particular number of future individuals from two groups. If the tests preform similarly, it

is possible that there is no strong, or even weak, indication that one test is better than the

other, due to the imprecision in our method. It may be that there is a strong indication

that one test is better than another. Then, the better test is recommended only for

such small numbers of future patients and ideally we should reconsider the decision once

more information is available. Weights have also been introduced to reflect the relative

importance of the two groups.

Further research will be needed to consider aspects of practical implementation of

our methods. One issue is that, if we wish to choose one test for implementation, based

on the results presented in Chapter 4, then we may e.g. have a strong indication that

Test 1 is better than Test 2 for a range of values of mx and my. But in practice we

may only be able to decide on the use of a test for the next total number of people, not

knowing whether they are patients or healthy. One careful way to resolve this is to only

recommend a Test 1 for the next mmin people, who can be either patients or healthy, with

mmin the largest value such that Test 1 is strongly indicated to be better than Test 2 for

mmin = min{mx,my}.

NPI is a statistics method with strong frequentist properties, in line with the notion

of exact calibration as introduced by Lawless and Fredette [44]. Contrary to most classical

frequentist statistics methods, NPI does not consider data as resulting from an assumed

sampling method related to an assumed population. Instead, by focusing on future

observations, the variation is in the possible orderings of the data observations and future

observations, so the randomness is explicitly in the prediction. In absence of knowledge

about the an underling population distribution, this is an alternative approach. If one

had such additional knowledge, then one could attempt to combine NPI with aspects of

sample variation; this is an interesting topic for future research.
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Appendix A

Proof for the case mx = my = 1
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For mx = my = 1, the equation (A.1) becomes
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We consider all the events in the Equation (A.2).
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
P (CX2

1 < 1) = P (CX2
1 = 0) if k = 1, . . . , wx
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These simple form of the upper probabilities lead to the following results.
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For wx > wy, the expression is effectively the same, but with X and Y interchanged.

For wy = wx
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