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Abstract

Nonparametric predictive inference (NPI) is a statistical approach with strong fre-

quentist properties, with inferences explicitly in terms of one or more future ob-

servations. NPI is based on relatively few modelling assumptions, enabled by the

use of lower and upper probabilities to quantify uncertainty. While NPI has been

developed for a range of data types, and for a variety of applications, thus far it

has not been developed for multivariate data. This thesis presents the first study in

this direction. Restricting attention to bivariate data, a novel approach is presented

which combines NPI for the marginals with copulas for representing the dependence

between the two variables. It turns out that, by using a discretization of the copula,

this combined method leads to relatively easy computations. The new method is

introduced with use of an assumed parametric copula. The main idea is that NPI

on the marginals provides a level of robustness which, for small to medium-sized

data sets, allows some level of misspecification of the copula.

As parametric copulas have restrictions with regard to the kind of dependency

they can model, we also consider the use of nonparametric copulas in combination

with NPI for the marginals. As an example application of our new method, we

consider accuracy of diagnostic tests with bivariate outcomes, where the weighted

combination of both variables can lead to better diagnostic results than the use

of either of the variables alone. The results of simulation studies are presented to

provide initial insights into the performance of the new methods presented in this

thesis, and examples using data from the literature are used to illustrate applications
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of the methods. As this is the first research into developing NPI-based methods for

multivariate data, there are many related research opportunities and challenges,

which we briefly discuss.
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Chapter 1

Introduction

1.1 Overview

Identifying and modelling dependencies between two or more related random quanti-

ties is a main challenge in statistics and is important in many application areas. Tak-

ing dependence into account is important to model, estimate and predict weather,

risk and aspects of other applications more efficiently. Analyses of dependencies are

of considerable importance in many sectors as an aid to better understanding the

interaction of variables in a certain field of study and also as an input in every aspect

of our life including engineering, health, finance, insurance and agriculture.

Statistical dependence is a relationship between any two or more characteristics

of units under study or review. These units may, for example, be individuals, ob-

jects, or various aspects of environment. The dependence structure is important in

order to know whether a particular model or inference might be suitable for a given

application or data set. Several types of dependence can occur, for example positive

and negative dependence, exchangeable or flexible dependence and dependence de-

creasing with lag (for data with a time index) [55]. A popular method for modelling

dependencies is the use of a copula [14, 80]. Generally, a copula is a multivariate

probability distribution for which the marginal probability distribution of each vari-

able is uniform [55, 73]. Many researchers have addressed and studied dependence

using copulas including Genest et al. [42], Embrechts et al. [36], Scaillet and Fer-

manian [82] and Tsukahara [94]. Often, in their studies they estimate dependence

1
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parameter(s). The dependence is also important in prediction where it plays a key

role in decision making processes, classifying and other aspects that involve the de-

pendence. For example, in risk of failure trajectory (e.g. effect of random external

actions like wind, or unexpected reactions of the drivers), the dependence structure

between vehicle criteria and safety acceptance of the models is considered to reduce

road accidents rate [60].

This thesis presents a new method for predictive inference taking into account

the dependence structure. It uses Nonparametric Predictive Inference (NPI) for

the marginals combined with a copula. We restricted attention to bivariate data.

The important general idea in this thesis is to look at the prediction of the two

random quantities. We consider the dependence structure between these two ran-

dom quantities using copula, as copula gives an interesting tool for describing the

dependence structures. The idea that we considering the dependence structure be-

tween the two random quantities using parametric copula for small data sets and

nonparametric copula specifically kernel-based method for large data sets. The NPI

on the marginals with the estimated copulas, presenting in this thesis is somewhat

different to the usual statistical approaches based on imprecise probabilities [2]. Our

method uses a discretized version of the copula which fits perfectly with the NPI

method for the marginals and leads to relatively straight forward computations be-

cause there is no need to estimate the marginals and the copula simultaneously. By

using the NPI for the marginals, the information shortage is most likely to be about

the dependence structure.

NPI has been developed over the last two decades, with many applications in

statistics, reliability, risk and operations research (see www.npi-statistics.com). It

has excellent frequentist properties, but relies on the natural ordering of the observed

data or of a reasonable underlying latent variable representation with a natural

ordering (e.g. used for Bernoulli and categorical observations [19]). So far, NPI has

only been introduced for one-dimensional (univariate) data, this is the first thesis

introducing a method which attempts to generalize NPI to bivariate data.

In Section 1.2 we present the main idea of NPI and a detailed outline of this

thesis is given in Section 1.3, with details of related publications.



1.2. Nonparametric predictive inference 3

1.2 Nonparametric predictive inference

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework for

inference on a future observation based on past data observations [19]. NPI uses

lower and upper probabilities, also known as imprecise probability [2], to quantify

uncertainty and is based on only few assumptions.

NPI is based on the assumption A(n), proposed by Hill [50], which gives direct

conditional probabilities for a future real-valued random quantity, conditional on

observed values of n related random quantities [1, 18]. Effectively, it assumes that

the rank of the future observation among the observed values is equally likely to have

each possible value 1, . . . , n+1. Hence, this assumption is that the next observation

has probability 1/(n + 1) to be in each interval of the partition of the real line as

created by the n observations. Suppose that X1, X2, ..., Xn, Xn+1 are continuous

and exchangeable real-valued random quantities. Let the ordered observed values of

X1, X2, ..., Xn be denoted by x(1) < x(2) < ... < x(n), let x(0) = −∞ and x(n+1) =∞.

For a future observation Xn+1, the assumption A(n) is

P (Xn+1 ∈ (x(i−1), x(i))) =
1

n+ 1

for all i = 1, 2, ..., n+ 1. We assume here, for ease of presentation, that there are

no tied observations. These can be dealt with by assuming that such observations

differ by a very small amount, a common method to break ties in statistics [51].

Inferences based on A(n) are predictive and nonparametric, and can be considered

suitable if there is hardly any knowledge about the random quantity of interest, other

than the n observations, or if one does not want to use any such further information

in order to derive inferences that are strongly based on the data. The assumption

A(n) is not sufficient to derive precise probabilities for many events of interest, but

it provides bounds for probabilities via the ‘fundamental theorem of probability’

[30], which are lower and upper probabilities in imprecise probability theory [1, 2].

The lower and upper probabilities for event A are denoted by P (A) and P (A),

respectively, and can be interpreted in several ways [18]. For example, P (A) (P (A))

can be interpreted as the supremum buying (infimum selling) price for the gamble on

event A, which pays 1 if A occur and 0 if not. Alternatively, P (A) (P (A)) can just be
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regarded as the maximum lower (minimum upper) bound for a precise probability

for A that follows from the assumptions made, we use this interpretation in this

thesis. Generally, in imprecise probability theory [2], 0 ≤ P (A) ≤ P (A) ≤ 1 and

P (A) = 1 − P (Ac) where Ac is the complement any event to A. These properties

hold for all methods in this thesis.

NPI typically leads to lower and upper probabilities for events of interest, which

are based on Hill’s assumption A(n) and have strong properties from frequentist

statistics perspective. As events of interest are explicitly about a future observa-

tion, or a function of such an observation, NPI is indeed explicitly about prediction.

The NPI lower and upper probabilities have a frequentist interpretation that could

be regarded as ‘confidence statements’ related to repeated application of the same

procedure. From this perspective, corresponding lower and upper probabilities can

be interpreted as bounds for the confidence level for the event of interest. However,

this method does provide neither predictions nor prediction intervals in the classical

sense, as e.g. appear in frequentist regression methods. Prediction intervals tend

to relate to confidence intervals for model parameter estimates combined with vari-

ability included in the model, in NPI no variability is explicitly included in a model

and there are clearly no parameters to be estimated.

Augustin and Coolen [1] proved that NPI has attractive inferential properties,

it is also exactly calibrated from frequentist statistics perspective [62], which allows

interpretation of the NPI lower and upper probabilities as bounds on the long-term

ratio with which the event of interest occurs upon repeated application of statis-

tical procedure. One attractive aspect of the NPI approach is that the amount

of information available in the data is directly related to the differences between

corresponding upper and lower probability, providing a new dimension to uncer-

tainty quantification when compared to statistical methods which use only precise

probabilities, such as standard Bayesian and frequentist methods including most

commonly used nonparametric methods [23].

As mentioned in Section 1.1, NPI has been developed for a wide range of appli-

cations as NPI methods are available for Bernoulli data [17], real-valued data [1],

data including right-censored observations [24], ordinal data [34] and multinomial
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data [3, 20, 21].

1.3 Outline of the thesis

In Chapter 2 we introduce the main contribution of this thesis, novelty a new method

for predictive inference which combines NPI for the marginals with an estimated

parametric copula. We investigate the performance of this method via simulations,

with particular attention to robustness with regard to the assumed copula in case of

small data sets. A paper based on Chapter 2 has been accepted for publication in

Journal of Statistical Theory and Practice [25]. In Chapter 3 we combine NPI with

nonparametric copulas specifically using a kernel-based method, and we investigate

the performance of this method via simulations. This chapter has been presented

at the 23rd National Symposium on Mathematical Sciences (Simposium Kebangsaan

Sains Matematik Ke-23) at Malaysia and a short paper based on it was published

in the conference proceedings [72]. We present and illustrate the application of the

method proposed in Chapter 2 to a real world scenario in Chapter 4, concerning

accuracy of diagnostic tests using Receiver Operating Characteristic (ROC) curves.

In this chapter, we introduce a weighted average of bivariate diagnostic test results

and we consider the dependence structure in order to maximise the accuracy of the

tests involved on combined measurements. We study the performance of the method

by simulations. This method raises interesting questions for future research, some

brief comments and general conclusions are included in Chapter 5. In Chapters 2

- 4, illustrative examples are presented using data from the literature. In addition

to the presentation of results for Chapter 3 mentioned above, this chapter have

been regularly presented at several seminars and conferences, including at Northern

Postgraduate Mini-Conference in Statistics (NPMCS) 2014, Newcastle University

(Oral presentation), Royal Statistical Society (RSS) 2014 International Conference

at Sheffield (Poster presentation), Durham Risk Day conference 2014 at Durham

(Poster presentation), 4th Annual Survival Analysis for Junior Researchers Confer-

ence 2015 at Keele University (Poster presentation), NPMCS 2015 at Durham Uni-

versity (Oral presentation) and European Meeting of Statisticians (EMS) 2015 at



1.3. Outline of the thesis 6

Vrije University, Amsterdam (Poster presentation). For Chapter 4, the results have

been presented at Statistics seminar (Oral presentation) and recently at Stat4Grads

seminar (Oral presentation) in Durham University.



Chapter 2

NPI with parametric copula

2.1 Introduction

In this chapter, we present main contribution of this thesis, a new novel method

for predictive inference which combines NPI for the marginals with an estimated

parametric copula. We propose a new semi-parametric method for predictive infer-

ence for a future bivariate observation. The proposed method combines NPI in the

marginals with an estimated copula to take dependence into account. The proposed

method can be used with any parametric copula. Of course, if one has specific

knowledge in favour of a particular family of copulas for the application considered,

then using this family is most sensible and should lead to best results, if indeed this

knowledge is correct. Any of the available methods to estimate the copula parame-

ter can be used, where advantages and disadvantages of specific estimation methods

are carried over. In our numerical studies, to investigate the performance of the

proposed method and to illustrate its use, we will mention the specific estimation

method applied.

Semi-parametric methods using copulas for statistical inference have been pre-

sented before, see e.g. [13, 56, 94]. The main approach presented herein involves

combining the empirical estimators for the marginals with a parametric copula, in

nature this is close to the method presented in this chapter. Even more, Chen et al.

[13] use a rescaled empirical estimator which, effectively, deals with the marginals

in the same manner as the method used in this chapter. However, these presented

7
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methods in the literature all consider estimation, while our approach in this thesis

is explicitly developed for predictive inference.

In Section 2.2 we briefly give an introduction on copulas and specifically para-

metric copulas. In Section 2.3 we introduce how NPI can be combined with an

estimated parametric copula to provide a semi-parametric predictive method. Sec-

tion 2.4 demonstrates how the proposed semi-parametric predictive method can be

used for inference about different events of interest. In Section 2.5 we investigate the

performance of this method via simulations, with particular attention to robustness

with regard to the assumed copula in case of small data sets. Two examples are

presented in Section 2.6 to illustrate application of the method to real world sce-

narios, these examples use data from the literature. This method raises interesting

questions for future research, some brief comments on this are included in Section

2.7.

2.2 Copula

Copula is a statistical concept for modelling dependence of random variables. The

copula was invented and first used [73] by Sklar in 1959 [89]. Nelsen [73] presents

a detailed introduction and overview. The word copula has been derived from the

Latin word “copulare” which means to link, or to connect [36, 73], which is ap-

propriate as the copula models the way in which random quantities are linked or

connected.

By the well-known theorem by Sklar [89], every joint cumulative distribution

function F of continuous random quantities (X, Y ) can be written as F (x, y) =

C(FX(x), FY (y)), for all (x, y) ∈ R2, where FX and FY are the continuous marginal

distributions and C : [0, 1]× [0, 1]→ [0, 1] is a unique copula corresponding to this

joint distribution. So, a copula is a joint cumulative distribution function whose

marginals are uniformly distributed on [0, 1] [14, 73].

Copulas have become popular tools for modelling dependence between random

quantities in many application areas, including finance [14, 80], actuarial science

[39, 79], risk management [36], hydrology [41] and reliability analysis [92]. Copulas
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are attractive due to their ability to model dependence between random quantities

separately from their marginal distributions [14, 73]. Throughout this thesis, atten-

tion is restricted to bivariate data, the proposed methods can straightforwardly be

generalized to more dimensional data but its performance would need to be stud-

ied in detail, this is left as a topic for future research. In this thesis we use some

parametric copula models and some nonparametric copula methods. Parametric

copulas are used in this chapter and introduced below. Nonparametric copulas are

introduced in Section 3.2.

Many parametric families of copulas have been presented in the literature, see

e.g. [14, 55, 73]. In this research, we use four common bivariate one-parameter

copulas, namely the Normal (or Gaussian), Clayton [15], Frank [38] and Gumbel

[45] copulas, these are briefly reviewed below.

The Normal copula, with parameter θn, has cumulative distribution function

(cdf)

Cn(u, v|θn) = ΦB(Φ−1(u),Φ−1(v)|θn)

where Φ is the cdf of the standard normal distribution, and ΦB is the cdf of the

standard bivariate normal distribution with correlation parameter θn ∈ (−1, 1). The

Normal copula is easy to compute and to extend to more dimensions [66]. Moreover,

the Normal copula is uniquely defined by the correlation of marginal distributions,

thus it is easy to calibrate as this only requires calculating the pairwise correlation.

However, Normal copula does not allow tail dependence to see modelled and it is

symmetric, therefore it cannot capture interdependence among extreme events and

does not allow asymmetric dependence among variables [66].

The Clayton copula [15] has cdf

Cc(u, v|θc) = max[(u−θc + v−θc − 1)−1/θc , 0]

with dependence parameter θc ∈ [−1, 0) ∪ (0,+∞). It is an asymmetric copula,

exhibiting greater dependence in the negative tail than in the positive.

The Frank copula [38] has cdf

Cf (u, v|θf ) = −θ−1
f ln

{
1 +

(e−θfu − 1)(e−θfv − 1)

e−θf − 1

}
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with dependence parameter θf ∈ (−∞, 0) ∪ (0,+∞). It is a symmetric copula.

The Gumbel copula [45] has cdf

Cg(u, v|θg) = exp(−[(− lnu)θg + (− ln v)θg ]1/θg)

with dependence parameter θg ∈ [1,+∞). The Gumbel copula (also known as

Gumbel-Hougaard copula [73]) is an asymmetric copula. The Gumbel copula models

strong right-tail dependence and relatively weak left-tail dependence [93].

These four commonly used copulas all have their own characteristics as men-

tioned above. There is a one-to-one relationship between the dependence parame-

ters of these four copulas and the concordance measure Kendall’s tau, τ , as given

in Table 2.1 [14], note that the Gumbel copula cannot be used to model negative

dependence, so it can only correspond to τ ≥ 0, and Frank copula does not allow

τ = 0.

Family Parameter range τ

Normal θn ∈ (−1, 1) 2
π arcsin θn

Clayton θc ∈ [−1, 0) ∪ (0,+∞) θc/(θc + 2)

Frank θf ∈ (−∞, 0) ∪ (0,+∞) 1− 4/θf [1−D1(θf )]

Gumbel θg ∈ [1,+∞) 1− 1/θg

Note: D1(θ) =
∫ θ
0 (x/θ)/(ex − 1)dx is the first Debye function [14].

Table 2.1: Relationship between dependence parameters and Kendall’s tau, τ

Many methods to estimate the parameter of a copula have been presented in the

literature, see e.g. in [14, 80, 93]. There are several well known methods for estimat-

ing the parameter of a parametric copula, such as maximum likelihood estimator

(MLE), inference functions of margins (IFM) [55], pseudo maximum likelihood es-

timation or canonical maximum likelihood [14] and method-of-moment [61]. The

IFM estimation method is a two-stage estimation method which is based on MLE

and is also known as multi-stage maximum likelihood (MSML) estimation [55]. This

method allows us to estimate the parameters separately for the marginals and the

copula. The method-of-moment approaches are based on the inversion of a consistent

estimator of a moment of the copula, such as Spearmans rho, these are discussed
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in detail in [61]. In the presentation of our method, we will denote a parameter

estimate by θ̂ without the need to specify a particular estimation method.

There are advantages and disadvantages of the estimation methods, for example,

MLE can be computationally intensive in the case of high dimensional distributions,

because the number of parameters to be estimated simultaneously can be large. The

problem might also occur when we have a very large sample size. The estimation

of the estimator covariance matrices of the IFM is difficult both analytically and

numerically due to the need to compute many derivatives in higher dimension [55],

which should be considered when to generalize the method proposed to more than

two dimensions. In addition, these two parametric methods are not robust against

misspecification of the marginal distributions [58]. This problem has been argued

by many researchers who advocate that the estimation of θ should not be affected

by the choice of marginal distribution functions. The pseudo maximum likelihood

estimation method solves this problem, it is discussed in details in Genest et al. [42]

and in Shih and Louis [87].

2.3 Combining NPI with a parametric copula

In this section we present NPI with a parametric copula to provide a semi-parametric

predictive method. The proposed semi-parametric predictive method consists of

two steps. The first step is to use NPI for the marginals, the second step is to

use a bivariate parametric copula and estimate the parameter value, to take the

dependence structure in the data into account.

The first step is to use NPI for the marginals. Suppose that we have n bivariate

real-valued observations (xi, yi), i = 1, . . . , n, which are the observed values of n

exchangeable bivariate random quantities. Henceforth, to simplify notation, we will

actually use xi and yj to denote the ordered observations when considering the

marginals, so x1 < . . . < xi < . . . < xn and y1 < . . . < yj < . . . < yn. So it is

important that, with the plain indices now related to the separately ordered data

related to the marginals, the values xi and yi do not form an observed pair. It should

be emphasized that the information about the actual observation pairs is only used
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in the second step, where the parameter value of the assumed copula is estimated,

the first step considers the marginals and hence only uses the information consisting

of either the n observations xi or the n observations yj.

We are interested in prediction of one future bivariate observation, denoted by

(Xn+1, Yn+1). Using the assumption A(n) we derive a partially specified predictive

probability distribution for Xn+1, given the observations x1, . . . , xn, and similarly a

partially specified predictive probability distribution for Yn+1, given the observations

y1, . . . , yn. These are as follows:

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1

for i, j = 1, 2, . . . , n + 1, where x0 = −∞, xn+1 = ∞, y0 = −∞ and yn+1 = ∞ are

introduced for simplicity of notation.

To link this first step to the second step, where the dependence structure in the

observed data is taken into account in order to provide a partially specified predictive

distribution for the bivariate (Xn+1, Yn+1), we introduce a natural transformation of

these two random quantities individually. Let X̃n+1 and Ỹn+1 denote transformed

versions of the random quantities Xn+1 and Yn+1, respectively, following from the

natural transformations related to the marginal A(n) assumptions,

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj))⇐⇒(
X̃n+1 ∈

(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

))
for i, j = 1, 2, . . . , n+ 1. This is a transformation from the real plane R2 into [0, 1]2

where, based on n bivariate data, [0, 1]2 is divided into (n+ 1)2 equal-sized squares.

The A(n) assumptions for the marginals lead to

P (X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
) = P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1

P (Ỹn+1 ∈
(
j − 1

n+ 1
,

j

n+ 1

)
) = P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1

for i, j = 1, 2, . . . , n+1. Note that, following these transformations of the marginals,

we have discretized uniform marginal distributions on [0, 1], which therefore fully

correspond to copulas, as any copula will provide exactly the same discretized uni-

form marginal distributions. Hence, this basic transformation shows that the NPI
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approach for the marginals can be easily combined with any copula model to reflect

the dependence structure, leading naturally to the second step of our method.

The second step is to assume a bivariate parametric copula and estimate the

parameter value. In this second step, the proposed method deals with the informa-

tion, in the observed data, with regard to dependence of the two random quantities

Xn+1 and Yn+1. A bivariate parametric copula is assumed, with parameter θ. Using

the data, the parameter can be estimated by any statistical method, e.g. maximum

likelihood estimation or a convenient (for computation) variation to it, resulting in

a point estimate θ̂. In order to correspond to the transformation method for the

marginals, and to avoid having to consider the marginals whilst estimating the cop-

ula parameter, at this stage we use also transformed data, where each observed pair

(xi, yi), i = 1, . . . , n, is replaced by (rxi /(n+ 1), ryi /(n+ 1)), with rxi the rank of the

observation xi among the n x-observations (where the smallest value has rank 1),

and similarly ryi the rank of yi among the n y-observations. It should be noticed

that, as this estimation process does not involve any estimation of the marginals, it

can be performed in a computationally efficient manner, as it is often the simulta-

neous estimation of the copula and related marginals that may cause computational

difficulties in other statistical methods using copulas.

NPI on the marginals can now be combined with the estimated copula by defining

the following probability for the event that the transformed pair (X̃n+1, Ỹn+1) belongs

to a specific square from the (n + 1)2 squares into which the space [0, 1]2 has been

partitioned,

hij(θ̂) = PC(X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

)
|θ̂) (2.1)

for i, j = 1, 2, . . . , n + 1, with PC(·|θ̂) representing the copula-based probability

with estimated parameter value θ̂, and the corresponding cumulative distribution

function,

Hij(θ̂) = PC(X̃n+1 ≤
i

n+ 1
, Ỹn+1 ≤

j

n+ 1
|θ̂) =

i∑
k=1

j∑
l=1

hkl(θ̂) (2.2)

Equations (2.1) and (2.2) can be represented by Figure 2.1. These (n + 1)2 values

hij(θ̂), which sum up to 1, provide the complete discretized probability distribution
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Figure 2.1: Presentation of probabilities hij and Hij with an estimated copula

for the transformed future observations, which can be used for statistical inference

on the actual future observation (Xn+1, Yn+1) or an event of interest involving this

bivariate random quantity, as explained in the next section. The probabilities hij

must satisfy the following conditions;

1.
n∑
i=1

n∑
j=1

hij = 1

2.
n∑
j=1

hij =
1

n+ 1
, ∀i ∈ (1, ..., n+ 1), and

n∑
i=1

hij =
1

n+ 1
,∀j ∈ (1, ..., n+ 1)

3. hij ≥ 0,∀i, j = 1, ..., n+ 1.

These conditions will hold by the choice of a proper parametric copula. Note that,

although a completely specified copula is used initially, for our inferences we only

use the discretized version on the (n + 1)2 equal-sized squares with probabilities

hij(θ̂). In this discretized setting, hij(θ̂) = 1
(n+1)2

for all i, j = 1, . . . , n + 1 would

indicate complete independence of X̃n+1 and Ỹn+1, and hence of Xn+1 and Yn+1.
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Furthermore, hij(θ̂) = 1
(n+1)

for all i = j = 1, . . . , n + 1 would correspond to corre-

lation 1 between these random quantities (both for the transformed and the actual

future observations), while correlation −1 would correspond to hij(θ̂) = 1
(n+1)

for all

j = (n + 2) − i with i = 1, . . . , n + 1. For example, consider n = 4 and the corre-

sponding hij for −1.00 correlation, 1.00 correlation and no correlation are given in

Tables 2.2, 2.3 and 2.4.

j = 5 0.2000 0.0000 0.0000 0.0000 0.0000

j = 4 0.0000 0.2000 0.0000 0.0000 0.0000

j = 3 0.0000 0.0000 0.2000 0.0000 0.0000

j = 2 0.0000 0.0000 0.0000 0.2000 0.0000

j = 1 0.0000 0.0000 0.0000 0.0000 0.2000

hij i = 1 i = 2 i = 3 i = 4 i = 5

Table 2.2: The probability of hij

j = 5 0.0000 0.0000 0.0000 0.0000 0.2000

j = 4 0.0000 0.0000 0.0000 0.2000 0.0000

j = 3 0.0000 0.0000 0.2000 0.0000 0.0000

j = 2 0.0000 0.2000 0.0000 0.0000 0.0000

j = 1 0.2000 0.0000 0.0000 0.0000 0.0000

hij i = 1 i = 2 i = 3 i = 4 i = 5

Table 2.3: The probability of hij

j = 5 0.0400 0.0400 0.0400 0.0400 0.0400

j = 4 0.0400 0.0400 0.0400 0.0400 0.0400

j = 3 0.0400 0.0400 0.0400 0.0400 0.0400

j = 2 0.0400 0.0400 0.0400 0.0400 0.0400

j = 1 0.0400 0.0400 0.0400 0.0400 0.0400

hij i = 1 i = 2 i = 3 i = 4 i = 5

Table 2.4: The probability of hij



2.4. Semi-parametric predictive inference 16

2.4 Semi-parametric predictive inference

In this section, the semi-parametric predictive method presented in Section 2.3 is

used for inference about an event which involves the next bivariate observation

(Xn+1, Yn+1). Let E(Xn+1, Yn+1) denote the event of interest. Let P (E(Xn+1, Yn+1))

and P (E(Xn+1, Yn+1)) be the lower and upper probabilities, based on our semi-

parametric method, for this event to be true. As explained in the previous sec-

tion, the observed data (xi, yi), i = 1, . . . , n, divide R2 into (n + 1)2 blocks Bij =

(xi−1, xi) � (yj−1, yj), for i, j = 1, . . . , n + 1 (with, as before, x0 = −∞, xn+1 =

∞, y0 = −∞, yn+1 = ∞ defined for ease of notation). Figure 2.2 shows the area of

blocks Bij = (xi−1, xi)� (yj−1, yj), for i, j = 1, . . . , n+ 1.

Figure 2.2: Presentation of area of blocks Bij = (xi−1, xi)� (yj−1, yj)

We further define

E(x, y) =

 1 if E(Xn+1, Yn+1) is true for Xn+1 = x and Yn+1 = y

0 else.
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The fact that we work with a discretized probability distribution leads to imprecise

probabilities as follows [2]. We define Eij = max
(x,y)∈Bij

E(x, y), so Eij = 1 if there is at

least one (x, y) ∈ Bij for which E(x, y) = 1, else Eij = 0. Furthermore, we define

Eij = min
(x,y)∈Bij

E(x, y), so Eij = 1 if E(x, y) = 1 for all (x, y) ∈ Bij, else Eij = 0.

The semi-parametric method presented in the previous section leads to the following

lower and upper probabilities for the event E(Xn+1, Yn+1),

P (E(Xn+1, Yn+1)) =
∑
i,j

Eij hij(θ̂) (2.3)

P (E(Xn+1, Yn+1)) =
∑
i,j

Eij hij(θ̂) (2.4)

Many events of interest can be considered with the summations over all i, j =

1, ..., n + 1. Suppose, for example, that we are interested in the sum of the next

observations Xn+1 and Yn+1, say Tn+1 = Xn+1 + Yn+1. Then the lower probability

for the event that the sum of the next observations will exceed a particular value t

is

P (Tn+1 > t) =
∑

(i,j)∈Lt

hij(θ̂) (2.5)

with Lt = {(i, j) : xi−1 + yj−1 > t, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1}, and the

corresponding upper probability is

P (Tn+1 > t) =
∑

(i,j)∈Ut

hij(θ̂) (2.6)

with Ut = {(i, j) : xi + yj > t, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1}. Equations (2.5) and

(2.6) represent the lower and upper survival functions for the future observation

Tn+1, based on our newly presented semi-parametric method, we denote these by

S(t) = P (Tn+1 > t) and S(t) = P (Tn+1 > t) and will use them in our analysis of

the predictive performance of our method in Section 2.5.

Before analysing the performance of this new semi-parametric method, it is useful

to explain the idea behind it. As mentioned in Section 1.2, NPI has been developed

over the last two decades for many applications and it has excellent frequentist prop-

erties, but it relies on the natural ordering of the observed data (or on an assumed

underlying latent variable representation with a natural ordering [19]). Moving to

multivariate observations, however, causes problems due to the absence of a natural



2.5. Predictive performance 18

ordering. At the same time, copulas have proved to be powerful tools to model de-

pendence, and, as shown in Section 2.3, they can be linked in an attractive manner

to NPI on the marginals, via discretization after a straightforward transformation.

The resulting semi-parametric method is, however, a heuristic approach, in that it

lacks the theoretical properties which make NPI for real-valued (one-dimensional)

observations an attractive frequentist statistics method.

In Section 2.5 we show how the predictive performance of this method can be

analysed, focussing on a case where interest is in the sum of Xn+1 and Yn+1. This

will also illustrate aspects of the imprecision in relation to the number of data

observations and the dependence structure in the data.

2.5 Predictive performance

To investigate the predictive performance of the semi-parametric method presented

in Sections 2.3 and 2.4, we conduct a simulation study. In each run of the simulation

N = 10, 000 bivariate samples are generated, each of size n+ 1, where we have used

n = 10, 50, 100. For each simulated sample, the first n pairs are used as the data for

the proposed semi-parametric predictive model, with the additional simulated pair

used to test the predictive performance of this method.

In this analysis, we focus on the sum of of the next observations, so Tn+1 =

Xn+1 + Yn+1, as presented in Section 2.4. Let (xji , y
j
i ) be the jth simulated sample,

consisting of n pairs, so with subscript i = 1, 2, . . . , n indicating the pair within one

sample, and superscript j = 1, 2, . . . , N indicating the specific simulated sample.

Let (xjf , y
j
f ) be the additional simulated (’future’) pair for sample j, and let the

corresponding sum be denoted by tjf = xjf + yjf , for j = 1, 2, . . . , N . For q ∈ (0, 1),

the inverse values of the lower and upper survival functions of Tn+1 in equations

(2.5) and (2.6), can be defined as

tq = S−1(q) = inf
t∈R
{S(t) 6 q} (2.7)

tq = S
−1

(q) = inf
t∈R
{S(t) 6 q} (2.8)

where tq ≤ tq obviously holds. It is reasonable to claim that the proposed semi-
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parametric predictive method performs well if the two following inequalities hold,

p1 =
1

N

N∑
j=1

1(tjf > t
j
q) ≤ q (2.9)

p2 =
1

N

N∑
j=1

1(tjf > tjq) ≥ q (2.10)

We will investigate the performance in this manner for q = 0.25, 0.50, 0.75. One

could of course investigate different quantiles but these values will provide a good

picture of the performance of the method, together with some particular aspects

which are important to illustrate. To perform the simulation, we consider differ-

ent values of Kendall’s τ in order to study the method under different levels of

dependence. For each, we simulate from an assumed parametric copula with the

parameter set at the value which corresponds to τ as presented in Table 2.1.

We consider two main scenarios. First, we actually assume in our semi-parametric

method a copula from the same parametric family as used for simulation. Secondly,

we use an assumed parametric copula in our method which differs from the copula

used for the simulation. For the first case, we expect the method to perform well.

Of course, this scenario is highly unlikely in practice, but it is important to study

the performance of the method in this case, and the simulations will also enable

study of the level of imprecision in the predictive inferences. The second scenario

is more important, as it represents a more likely practical situation, namely where

a parametric copula is assumed but this is actually not fully in line with the data

generating mechanism. This can be considered as misspecification, and it is in such

scenarios that we hope that our method will provide sufficient robustness to still

provide relatively good quality predictive inference.

Given the simulated data in a single run, we estimate the parameter of the

assumed parametric copula using the pseudo maximum likelihood method, which

was briefly reviewed in Section 2.2 and is included in the R package VineCopula [83].

We used this estimation method because we need to have a fast algorithm in order

to use the copula parameter estimation as part of the method proposed in Sections

2.3 and 2.4. In addition, this method was considered the best estimation method
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by [42]. However, any alternative estimation methods can be used; of course these

may lead to slightly different results, but the overall performance of the method is

unlikely to be affected much by minor differences in the estimation method. With

the estimate θ̂ for the copula parameter, we obtain the probabilities hij(θ̂) as given

in equation (2.1), and these form the basis for all possible inferences of interest.

We have run N = 10, 000 simulations with sample sizes n = 10, 50, 100, and

with q = 0.25, 0.50, 0.75 and τ = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75. We restricted

attention to the four parametric copulas discussed in Section 2.2, noting that the

Frank copula does not allow τ = 0 and the Gumbel copula cannot be used to model

negative dependence.

First, we applied our semi-parametric method with the assumed copula actually

belonging to the same parametric family used for the data generation. Tables 2.5,

2.6, 2.7 and 2.8 present the results for the Clayton, Frank, Normal and Gumbel

copula, respectively. These tables report the values p1 and p2 for the different values

of τ and n, as described in equations (2.9) and (2.10), for q = 0.25, 0.50, 0.75. For

good performance of our method, we require p1 ≤ q ≤ p2. Furthermore, these

tables also present a value θ̂, this is the average of the 10,000 estimates of the

parameter, so for these tables this value is expected to be close to the value for θ

which corresponds directly to the τ used, and which is given in the second column

of each table. However, we will not focus on these estimated values as it is really the

predictive performance that is important to consider, due to the predictive nature

of our approach. It is clear though that the parameter estimates tend to be closer to

the real value for larger values of n, which is of course fully as expected. It may be

of interest to implement other estimation methods for the copula parameter, which

may provide a slightly better performance, detailed study of this is left as a topic

for future research.

Most cases in Tables 2.5, 2.6, 2.7 and 2.8 have q ∈ [p1, p2], which shows an

overall good performance of our semi-parametric predictive method, which is fully

in line with expectations due to the use of the same parametric copula family in our

method as the one that was actually used to simulate the data.

These tables illustrate two important aspects of the imprecision in our method.
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First, for corresponding cases with increasing n, the imprecision, reflected through

the difference p2 − p1, decreases. This is logical from the perspective that more

data allow more precise inferences, which is common in statistical methods using

imprecise probabilities [2]. Indeed, if one increases the value of n further, imprecision

will decrease to 0 in the limit, where, informally, limit arguments are based on NPI

for the marginals converging to the empirical marginal distributions, which in turn

will converge to the underlying distributions, and with the assumed copula actually

belonging to the same family as the one used to generate the data, this also will

ensure an increasingly good performance of the method for increasing n.

A perhaps somewhat less expected feature of our method is seen by comparing

corresponding cases with the same absolute value of τ , but negative τ compared to

positive τ . For such cases, the imprecision p2−p1 is always greater with the negative

correlation than with the positive correlation, and this effect is stronger the larger

the absolute value of the correlation. This feature occurs due to the fact that we

are considering events Tn+1 = Xn+1 +Yn+1 > t, and can be explained by considering

the probabilities hij(θ̂) which are the key ingredients of our method for inference. In

case of positive correlation, the hij(θ̂) tend to be largest for values of i and j close to

each other, while for negative correlation this is the case for values of i and j with

sum near to n + 2, and this effect is stronger the larger the absolute value of the

correlation. Calculating the lower and upper probabilities, equations (2.5) and (2.6)

tends to include several more hij(θ̂) values in the latter than in the former, and for

events Tn+1 > t these extra hij(θ̂) included in the upper probability tend to have the

sum of their subscripts i and j about constant. Hence, for positive correlation these

extra hij(θ̂) tend to include a few larger values for most values of t. For negative

correlation the effect is quite different, as then these extra hij(θ̂) tend to include

relatively small values for small and for large values of t, in relation to the observed

data, but when t is closer to the center of the empirical distribution of the values

xi + yi, corresponding to the n data pairs (xi, yi), then many of the extra hij(θ̂) are

quite large, resulting in large imprecision. This effect can also be seen from plots of

the lower and upper survival functions for Tn+1 shown in Figure 2.3 and Figure 2.4

for the Clayton and Frank copulas, respectively. The plots of the lower and upper
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n = 10 n = 50 n = 100

τ θ q θ̂ p1 p2 θ̂ p1 p2 θ̂ p1 p2

-0.75 -6.0000 0.25 -9.7782 0.0806 0.5130 -5.8932 0.1859 0.2904 -5.8691 0.2233 0.2741

0.5 0.2171 0.7735 0.3963 0.5992 0.4428 0.5653

0.75 0.4770 0.9193 0.7009 0.7992 0.7376 0.7841

-0.5 -2.0000 0.25 -3.1214 0.1581 0.4114 -2.1369 0.2234 0.2732 -2.0693 0.2383 0.2653

0.5 0.3350 0.6711 0.4526 0.5545 0.4712 0.5286

0.75 0.5935 0.8427 0.7207 0.7710 0.7377 0.7640

-0.25 -0.6667 0.25 -1.3182 0.1995 0.3742 -0.7863 0.2436 0.2820 -0.7358 0.2405 0.2584

0.5 0.3919 0.6188 0.4743 0.5312 0.4840 0.5186

0.75 0.6381 0.8095 0.7235 0.7579 0.7354 0.7528

0.25 0.6667 0.25 1.3232 0.1737 0.2939 0.7934 0.2342 0.2587 0.7349 0.2380 0.2518

0.5 0.4289 0.5627 0.4784 0.5081 0.4876 0.5018

0.75 0.7143 0.8119 0.7451 0.7658 0.7457 0.7561

0.5 2.0000 0.25 3.0532 0.1836 0.2953 2.1431 0.2455 0.2711 2.0681 0.2380 0.2516

0.5 0.4487 0.5522 0.4962 0.5200 0.4916 0.5028

0.75 0.7091 0.7931 0.7460 0.7651 0.7479 0.7563

0.75 6.0000 0.25 10.1198 0.1970 0.2979 5.8992 0.2342 0.2596 5.8700 0.2458 0.2569

0.5 0.4587 0.5526 0.4922 0.5098 0.4933 0.5028

0.75 0.7132 0.8039 0.7337 0.7535 0.7427 0.7529

Table 2.5: Predictive performance, Clayton copula

survival functions for Tn+1 for the Normal and Gumbel copulas was very similar. For

all these copulas, positive correlation leads to imprecision for the events considered

here being fairly similar over the whole range, while for negative correlation there is

little imprecision in the tails but much imprecision near the center of the empirical

distribution of the Tn+1.
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n = 10 n = 50 n = 100

τ θf q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

-0.75 -14.1385 0.25 -15.5793 0.0675 0.4846 -13.9428 0.1927 0.2960 -14.0058 0.2084 0.2677

0.50 0.2364 0.7453 0.4232 0.5663 0.4467 0.5270

0.75 0.4924 0.9249 0.6934 0.8006 0.7204 0.7784

-0.50 -5.7363 0.25 -6.9835 0.1578 0.4040 -5.8859 0.2263 0.2817 -5.7992 0.2320 0.2624

0.50 0.3494 0.6661 0.4635 0.5480 0.4725 0.5144

0.75 0.6092 0.8569 0.7282 0.7838 0.7259 0.7552

-0.25 -2.3719 0.25 -3.0634 0.1769 0.3533 -2.4751 0.2340 0.2727 -2.4138 0.2377 0.2572

0.50 0.3941 0.6099 0.4797 0.5323 0.4787 0.5088

0.75 0.6482 0.8207 0.7349 0.7688 0.7375 0.7580

0.25 2.3719 0.25 3.0129 0.2045 0.3026 2.4784 0.2364 0.2604 2.4088 0.2452 0.2549

0.50 0.4376 0.5583 0.4854 0.5135 0.4889 0.5048

0.75 0.6980 0.8052 0.7345 0.7583 0.7447 0.7580

0.50 5.7363 0.25 6.9335 0.1962 0.2989 5.8935 0.2382 0.2578 5.7972 0.2401 0.2526

0.50 0.4498 0.5517 0.4843 0.5075 0.4922 0.5025

0.75 0.7065 0.8052 0.7370 0.7568 0.7432 0.7554

0.75 14.1385 0.25 15.6739 0.1960 0.2898 13.8912 0.2429 0.2643 14.0050 0.2443 0.2551

0.50 0.4541 0.5487 0.4927 0.5127 0.4943 0.5053

0.75 0.7135 0.7998 0.7398 0.7607 0.7481 0.7557

Table 2.6: Predictive performance, Frank copula

n = 10 n = 50 n = 100

τ θn q θ̂n p1 p2 θ̂n p1 p2 θ̂n p1 p2

-0.75 -0.9239 0.25 -0.9181 0.0854 0.5099 -0.9212 0.2002 0.3015 -0.9228 0.2202 0.2761

0.50 0.2477 0.7533 0.4187 0.5871 0.4566 0.5544

0.75 0.4911 0.9153 0.7045 0.8026 0.7311 0.7810

-0.50 -0.7071 0.25 -0.7462 0.1534 0.4002 -0.7235 0.2355 0.2919 -0.7169 0.2465 0.2691

0.50 0.3342 0.6466 0.4641 0.5529 0.4848 0.5292

0.75 0.5798 0.8355 0.7252 0.7797 0.7344 0.7604

-0.25 -0.3827 0.25 -0.4473 0.1942 0.3672 -0.4128 0.2406 0.2767 -0.3997 0.2408 0.2597

0.50 0.3943 0.6121 0.4728 0.5296 0.4894 0.5156

0.75 0.6386 0.8084 0.7303 0.7639 0.7412 0.7570

0.00 0 0.25 -0.0010 0.1877 0.3139 -0.0008 0.2362 0.2635 0.0000 0.2431 0.2566

0.50 0.4102 0.5723 0.4711 0.5105 0.4933 0.5141

0.75 0.6665 0.7971 0.7323 0.7626 0.7466 0.7598

0.25 0.3827 0.25 0.4478 0.1847 0.2956 0.4113 0.2279 0.2505 0.4004 0.2454 0.2556

0.50 0.4286 0.5538 0.4766 0.5074 0.4908 0.5026

0.75 0.6968 0.8057 0.7369 0.7580 0.7437 0.7540

0.50 0.7071 0.25 0.7469 0.2011 0.2931 0.7224 0.2394 0.2595 0.7164 0.2440 0.2525

0.50 0.4500 0.5554 0.4788 0.5033 0.4898 0.5026

0.75 0.7021 0.7978 0.7326 0.7537 0.7489 0.7602

0.75 0.9239 0.25 0.9174 0.2009 0.2865 0.9211 0.2430 0.2629 0.9224 0.2417 0.2524

0.50 0.4465 0.5441 0.4980 0.5168 0.4933 0.5039

0.75 0.6986 0.7961 0.7411 0.7607 0.7430 0.7527

Table 2.7: Predictive performance, Normal copula
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n = 10 n = 30 n = 50 n = 100

τ θg q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

0 1.0000 0.25 1.2216 0.1735 0.2955 1.0699 0.2195 0.2642 1.0467 0.2311 0.2568 1.0266 0.2367 0.2515

0.5 0.4251 0.5871 0.4722 0.5331 0.4837 0.5199 0.4931 0.5113

0.75 0.7063 0.8231 0.7372 0.7827 0.7469 0.7753 0.7491 0.7636

0.25 1.3333 0.25 1.6911 0.1865 0.2861 1.4397 0.2237 0.2573 1.3973 0.2330 0.2548 1.3680 0.2451 0.2546

0.5 0.4288 0.5623 0.4695 0.5212 0.4776 0.5053 0.5008 0.5156

0.75 0.7032 0.8151 0.7355 0.7757 0.7396 0.7642 0.7551 0.7693

0.5 2.0000 0.25 2.6425 0.1961 0.2912 2.1723 0.2342 0.2684 2.1015 0.2371 0.2584 2.0514 0.2479 0.2582

0.5 0.4387 0.5488 0.4865 0.5257 0.4877 0.5128 0.5013 0.5134

0.75 0.7011 0.8072 0.7346 0.7710 0.7452 0.7673 0.7556 0.7679

0.75 4.0000 0.25 5.9120 0.2005 0.2870 4.1538 0.2335 0.2639 4.0598 0.2384 0.2575 4.0221 0.2502 0.2601

0.5 0.4557 0.5481 0.4835 0.5152 0.4881 0.5058 0.4997 0.5099

0.75 0.7012 0.7994 0.7287 0.7608 0.7384 0.7609 0.7445 0.7562

Table 2.8: Predictive performance, Gumbel copula
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(a) τ = 0.75; n = 10 (b) τ = −0.75; n = 10

(c) τ = 0.75; n = 50 (d) τ = −0.75; n = 50

(e) τ = 0.75; n = 100 (f) τ = −0.75; n = 100

Figure 2.3: Lower and upper NPI probabilities for Tn+1, Clayton copula
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(a) τ = 0.75; n = 10 (b) τ = −0.75; n = 10

(c) τ = 0.75; n = 50 (d) τ = −0.75; n = 50

(e) τ = 0.75; n = 100 (f) τ = −0.75; n = 100

Figure 2.4: Lower and upper NPI probabilities for Tn+1, Frank copula
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As mentioned before, the main idea of the new method presented in this chapter

is to provide a quite straightforward method for prediction of a bivariate random

quantity, where imprecision in the marginals provides robustness with regard to the

assumed copula. This is attractive in practice, because one often has less knowledge

about the dependence structure than about the marginals, in particular if one has a

relatively small data set available. The practical usefulness of the method is therefore

dependent on its ability to provide reasonable quality predictive inference in case

one does not assume to know the parametric family of copulas, which generated the

data, exactly. To study the performance of our semi-parametric predictive inference

method, we perform simulations as before, but now we generate the data from one of

the four mentioned copula families, while we assume a different parametric copula for

the second step of our method. The simulations are further performed in the same

manner as those above, with attention again on prediction of Tn+1 = Xn+1 + Yn+1.

We report again first simulation results for just a few scenarios, the other com-

binations of real and assumed copulas, out of the four parametric copula families

discussed before, provided very similar results, as did repeated simulations of the

same scenarios. Table 2.9 presents the results with data generated from the Frank

copula whilst assuming the Normal copula in our method. While we mostly focus

on the predictive performance, it is important to briefly consider the parameter es-

timate θ̂n, where we have added subscript n to indicate this is the parameter of the

Normal copula. Of course, this is not an estimate of the parameter θf as used in the

Frank copula for generating the data, the values θn corresponding to the respective

values for τ is shown in the same table. These estimated values for θn are now a

bit further from the values given, which results from the fact that the data are not

generated from the Normal copula but from the Frank copula.

It is more important to consider the predictive performance of our method. The

values of p1 and p2 in Table 2.9 are mostly pretty similar to those in Table 2.6

and Table 2.7, although there are now a few cases for which q is not contained in

the interval [p1, p2]. These are highlighted by bold font numbers in the table. For

n = 10 there are no such cases, indeed the imprecision in the method provides

sufficient robustness to still have q ∈ [p1, p2]. For n = 50 this is also mostly the
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case, although there is one case here, for τ = 0.5 and q = 0.75, where p2 < q, albeit

only just. For n = 100 there are substantially more cases where the interval [p1, p2]

does not contain the corresponding q, although in these cases q tends to be only

just outside the interval. This is in line with expectation, because for larger n the

method has only small imprecision and assuming the wrong parametric copula starts

to have a stronger effect. Table 2.10 presents the results of a similar simulation with

the data generated from the Normal copula and the Frank copula assumed in our

method. The results for this case are very similar to those just described.

n = 10 n = 50 n = 100

τ θf θn q θ̂n p1 p2 θ̂n p1 p2 θ̂n p1 p2

-0.75 -14.1385 -0.9239 0.25 -0.9137 0.0737 0.4991 -0.9020 0.1757 0.2774 -0.8967 0.1967 0.2506

0.50 0.2391 0.7566 0.4242 0.5738 0.4639 0.5449

0.75 0.4932 0.9228 0.7203 0.8272 0.7514 0.8018

-0.50 -5.7363 -0.7071 0.25 -0.7424 0.1580 0.4120 -0.6964 0.2203 0.2726 -0.6840 0.2237 0.2525

0.50 0.3447 0.6599 0.4603 0.5429 0.4794 0.5221

0.75 0.5899 0.8458 0.7326 0.7851 0.7517 0.7803

-0.25 -2.3719 -0.3827 0.25 -0.4323 0.1847 0.3525 -0.3900 0.2383 0.2756 -0.3756 0.2272 0.2450

0.50 0.3845 0.6100 0.4798 0.5365 0.4853 0.5145

0.75 0.6380 0.8085 0.7424 0.7800 0.7394 0.7574

0.25 2.3719 0.3827 0.25 0.4307 0.1906 0.3024 0.3901 0.2403 0.2644 0.3762 0.2508 0.2633

0.50 0.4340 0.5569 0.4886 0.5158 0.4918 0.5066

0.75 0.6939 0.8047 0.7355 0.7594 0.7367 0.7489

0.50 5.7363 0.7071 0.25 0.7432 0.2035 0.2987 0.6966 0.2416 0.2643 0.6837 0.2585 0.2703

0.50 0.4452 0.5407 0.4815 0.5010 0.4950 0.5052

0.75 0.6949 0.7965 0.7269 0.7490 0.7346 0.7442

0.75 14.1385 0.9239 0.25 0.9142 0.2048 0.2974 0.9019 0.2478 0.2668 0.8969 0.2602 0.2725

0.50 0.4511 0.5450 0.4938 0.5141 0.5034 0.5119

0.75 0.7016 0.7936 0.7320 0.7501 0.7368 0.7458

Table 2.9: Simulations from Frank copula; Normal copula assumed for inference



2.5. Predictive performance 29

n = 10 n = 50 n = 100

τ θn θf q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

-0.75 -0.9239 -14.1385 0.25 -15.7767 0.0739 0.4897 -13.6590 0.1907 0.2933 -13.6472 0.2201 0.2690

0.50 0.2331 0.7605 0.4177 0.5873 0.4552 0.5457

0.75 0.5088 0.9203 0.7176 0.8110 0.7330 0.7856

-0.50 -0.7071 -5.7363 0.25 -6.9087 0.1566 0.3969 -5.8457 0.2382 0.2894 -5.7489 0.2332 0.2599

0.50 0.3451 0.6580 0.4607 0.5449 0.4673 0.5162

0.75 0.6087 0.8464 0.7200 0.7732 0.7270 0.7534

-0.25 -0.3827 -2.3719 0.25 -3.0572 0.1902 0.3622 -2.4593 0.2393 0.2746 -2.4218 0.2530 0.2715

0.50 0.3971 0.6135 0.4677 0.5198 0.4951 0.5256

0.75 0.6523 0.8201 0.7235 0.7620 0.7484 0.7662

0 0 - 0.25 -0.0383 0.1924 0.3195 -0.0032 0.2399 0.2662 -0.0031 0.2456 0.2595

0.50 0.4199 0.5844 0.4803 0.5200 0.4933 0.5136

0.75 0.6773 0.8054 0.7422 0.7704 0.7476 0.7607

0.25 0.3827 2.3719 0.25 2.9621 0.2011 0.3089 2.4619 0.2297 0.2516 2.4183 0.2404 0.2523

0.50 0.4490 0.5743 0.4848 0.5113 0.4967 0.5109

0.75 0.7050 0.8118 0.7404 0.7640 0.7504 0.7612

0.50 0.7071 5.7363 0.25 7.0106 0.1993 0.2933 5.8423 0.2298 0.2522 5.7466 0.2299 0.2396

0.50 0.4478 0.5535 0.4922 0.5132 0.4868 0.4990

0.75 0.7080 0.8095 0.7514 0.7716 0.7490 0.7596

0.75 0.9239 14.1385 0.25 15.7494 0.1991 0.2951 13.6822 0.2430 0.2615 13.6889 0.2357 0.2460

0.50 0.4640 0.5504 0.4898 0.5101 0.4951 0.5070

0.75 0.7150 0.8034 0.7493 0.7689 0.7538 0.7634

Table 2.10: Simulations from Normal copula; Frank copula assumed for inference

Tables 2.11 and 2.12 present the results of similar simulation studies with data

generated from the Clayton and Gumbel copulas, respectively. For both these cases

the Frank copula was assumed for our method; in further simulations, with the

Normal copula assumed instead, the results were very similar. For n = 10 the ro-

bustness is again sufficient to always get q ∈ [p1, p2], indeed we have not encountered

any simulation, for any combination of these four copulas, where this was not the

case. For n = 50 and n = 100 the results are now slightly worse than before, but

where q is outside the interval [p1, p2] it is always close to it. This reflects that the

Clayton and Gumbel copulas differ more from the Frank copula than the Normal

copula does. We also included the case n = 30 here, for which the results were all

fine.
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n = 10 n = 30 n = 50 n = 100

τ θg θf q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

0 1 - 0.25 0.0116 0.1937 0.3130 -0.0031 0.2283 0.2730 -0.0019 0.2369 0.2659 0.0079 0.2370 0.2501

0.50 0.4143 0.5813 0.4652 0.5247 0.4824 0.5195 0.4885 0.5076

0.75 0.6793 0.8088 0.7253 0.7699 0.7367 0.7656 0.7349 0.7484

0.25 1.3333 2.3719 0.25 3.0423 0.1974 0.2958 2.5644 0.2165 0.2507 2.5089 0.2225 0.2419 2.4531 0.2372 0.2478

0.50 0.4270 0.5586 0.4610 0.5092 0.4703 0.4993 0.4817 0.4957

0.75 0.7030 0.8074 0.7336 0.7770 0.7441 0.7698 0.7516 0.7645

0.50 2.0000 5.7363 0.25 7.0647 0.1976 0.2858 6.0249 0.2274 0.2572 5.8939 0.2245 0.2444 5.8077 0.2308 0.2410

0.50 0.4275 0.5379 0.4733 0.5141 0.4734 0.4941 0.4689 0.4814

0.75 0.7085 0.8177 0.7477 0.7835 0.7446 0.7686 0.7525 0.7626

0.75 4.0000 14.1385 0.25 16.2068 0.2035 0.2946 13.8853 0.2286 0.2580 13.8537 0.2290 0.2460 13.7948 0.2502 0.2594

0.50 0.4480 0.5417 0.4732 0.5070 0.4860 0.5062 0.5023 0.5118

0.75 0.7119 0.8092 0.7348 0.7688 0.7460 0.7678 0.7630 0.7738

Table 2.12: Simulations from Gumbel copula; Frank copula assumed for inference

n = 10 n = 30 n = 50 n = 100

τ θc θf q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

-0.75 -6.0000 -14.1385 0.25 -14.8626 0.1122 0.4171 -14.0165 0.1556 0.3041 -13.7984 0.1828 0.2741 -13.7111 0.2004 0.2503

0.5 0.2834 0.7234 0.3554 0.6472 0.4025 0.5960 0.4497 0.5648

0.75 0.5907 0.8923 0.6947 0.8444 0.7244 0.8177 0.7561 0.7996

-0.50 -2.0000 -5.7363 0.25 -3.1599 0.1509 0.4119 -6.0220 0.2033 0.2879 -5.8851 0.2157 0.2650 -5.7672 0.2295 0.2541

0.50 0.3325 0.6651 0.4278 0.5773 0.4453 0.5445 0.4709 0.5268

0.75 0.5896 0.8395 0.7132 0.7952 0.7262 0.7793 0.7446 0.7669

-0.25 -0.6667 -2.3719 0.25 -3.0626 0.1870 0.3534 -2.5641 0.2264 0.2805 -2.5090 0.2353 0.2711 -2.4492 0.2422 0.2630

0.50 0.3929 0.6195 0.4522 0.5491 0.4726 0.5278 0.4841 0.5132

0.75 0.6596 0.8248 0.7165 0.7746 0.7277 0.7612 0.7364 0.7546

0.25 0.6667 2.3719 0.25 3.0639 0.1809 0.2959 2.5553 0.2214 0.2637 2.5017 0.2313 0.2567 2.4415 0.2375 0.2493

0.50 0.4424 0.5745 0.4970 0.5457 0.5058 0.5338 0.5181 0.5329

0.75 0.7001 0.7985 0.7401 0.7762 0.7498 0.7733 0.7545 0.7645

0.50 2.0000 5.7363 0.25 7.1205 0.1866 0.2968 6.0366 0.2177 0.2572 5.8780 0.2254 0.2505 5.7896 0.2284 0.2416

0.50 0.4630 0.5732 0.4958 0.5354 0.5081 0.5321 0.5144 0.5259

0.75 0.7095 0.7975 0.7305 0.7612 0.7433 0.7618 0.7534 0.7636

0.75 6.0000 14.1385 0.25 16.3807 0.1904 0.2908 13.9919 0.2298 0.2642 13.8441 0.2355 0.2580 13.7415 0.2458 0.2575

0.50 0.4670 0.5626 0.4915 0.5248 0.4962 0.5149 0.5031 0.5134

0.75 0.7107 0.7953 0.7387 0.7686 0.7412 0.7583 0.7531 0.7619

Table 2.11: Simulations from Clayton copula; Frank copula assumed for inference

This simulation study has illustrated our new semi-parametric method and re-

vealed some interesting aspects, as discussed above. The main conclusion we draw

from it, is that for small values of n the imprecision provides sufficient robustness for

the predictive inferences to have good frequentist properties. This depends on the

copulas used, the random quantity considered, and also the percentiles considered.

Differences would show more strongly if one considers quite extreme percentiles. If
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data were generated with a very different dependence structure than can be modelled

through the assumed parametric copula, then the method would also perform worse.

However, we would hope that in such cases, either there is background knowledge

about the dependence structure, which can be used to select a more suitable copula,

or that the data already show a certain pattern to make us aware of the unlikely

success of the proposed method with a basic copula.

The main idea of the larger research project to which this chapter presents the

first step is as follows. To take dependence into account, and ideally based only on

the observed data, would require a substantial amount of data in the bivariate setting

(and this is of course far worse in higher dimensional scenarios). If one has much data

available, it may be possible to use nonparametric copula methods in combination

with NPI for the marginals, in order to arrive at good predictive inference. For

smaller data sets, however, it is unlikely that the data reveal much information

about the dependence between the random quantities Xn+1 and Yn+1. The method

proposed in this chapter aims at being robust in light of such absence of detailed

information, by using the imprecision in NPI on the marginals, together with the

discretization of the estimated copula, with the hope that for many scenarios of

interest the resulting heuristic method will have a good performance. Of course, if

even small or medium sized data sets already reveal a particular (likely) dependence

structure, then this should be taken into account in the selection of the copula in our

method. But if the data do not strongly indicate a specific dependence structure,

then we propose to use a family of parametric copulas which is quite flexible and

convenient for computation. In addition, the method used for estimation of the

parameter will normally not be that relevant due to the robustness that is implicit

in our approach, although of course there are situations where care will be needed

(e.g. if the likelihood function has multiple modes one may wish to find an alternative

to maximum likelihood estimation; these are well-known general considerations that

do not require detailed attention in this chapter but which provide interesting topics

for future research).

Interestingly, one could consider the way in which imprecision is used in this

chapter as being somewhat different to the usual statistical approaches based on
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imprecise probabilities [2]. Typically, it is advocated to add imprecision to parts of

a problem where one has less information, indeed to reflect the absence of detailed

information. Yet in our presented method, the imprecision is mainly a result from

using NPI for the marginals, while the information shortage is most likely to be

about the dependence structure. Of course, the discretization of the copula also

provides some imprecision, but the main idea is that the imprecise predictive method

used for the marginals, which is straightforward, provides robustness with regard to

taking the dependence structure into account, which is normally the harder part of

such inferences. Furthermore, it turns out that, with NPI used for the marginals,

the resulting second step involving the copula estimation can be kept conveniently

simple. This is an important advantage of this method, in particular if one would

consider implementing it in (more or less) automated inference situations which

require fast computation.

The performance of the proposed method is measured by verifying whether the

future observation falls in between the quantiles chosen earlier or not. This predictive

performance does not evaluate or measure every aspect of the performance (in this

sense, it is not an ideal performance measure). The method used in this section

is useful to investigate the frequentist performance of our method with regard to

the quantiles considered, using the imprecision in our method. However, for large

n there is very little imprecision, so it will happen more often that the value q

is not in the interval defined by p1 and p2. For such cases, the method used in

this section does not give a good indication of how far the q is from the p1 and p2

interval. For further investigation, we can measure further the performance for the

misspecification scenario by calculating the minimum distance of q to the interval

[p1, p2], dN and the maximum distance to any point within this interval, dF . These

distances are calculates or measures of how much the misspecification scenario has

been missed or far away from the bound of p1 and p2. This measurement can be

taken an average of N = 10000 times. If the q is in the interval of p1 and p2, of

course we do not have any nearest distance but we can have the furthest distance

which indicates how far is the q from p1 and p2. This shows us how wide is the

interval. If q < p1 or q > p2, we can see how close is the q to p1 and p2 using the



2.6. Examples 33

nearest distance. While, the furthest distance can show us how far is the q from p1

and p2. Hence, we measure how well is the proposed method even if the q is not in

the interval of p1 and p2.

2.6 Examples

In this section, two examples are presented using a data set from the literature to

illustrate the method proposed in Sections 2.3 and 2.4.

2.6.1 Insurance example

Consider the data set in Table 2.13 on casuality insurance [59, p. 403], which records

both the loss and the expenses that are directly related to the payment of the loss

(the ‘allocated loss adjustment expenses’, ALAE) for an insurance company on

twenty claims. The loss and the ALAE are usually positively correlated [59], there

is some suggestion that this is also the case in these data as can be seen from Figure

2.5. The original data consist of 24 bivariate data observations, to illustrate our

approach we have removed four ‘outliers’ and we have adjusted the data to avoid

tied observations (namely 2501, 7001, 51 are used instead of 2500, 7000, 50). There

are many ways to deal with outliers as discussed in [6, 48]. In this research, the

outliers are not our main concern but it does affect the linear dependence structure

between these two variables. There is no strong need to exclude outlying data from

the analysis when our method is used, but the effect of data which strongly influence

the copula estimation requires further study, for example into the use of copulas with

multiple parameters that can separate different dependence relations over the ranges

of the data considered. This is left as an important topic for future research, in

particular to compare when it is better to use more complicated parametric copulas

and when it is better to use nonparametric copulas. In addition, it should also

emphasize that our method does not only deal with the linear dependence. For this

data set, if we include the outliers, the Pearson correlation is reduced from 0.2080

to 0.0838, it still shows a positive correlation between Loss and ALAE but reduces

the strength of the dependency.
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Loss ALAE Loss ALAE

1,500 301 10,000 1,174

2,000 3,043 11,750 2,530

2,500 415 12,500 165

2,501 4,940 14,000 175

4,500 395 15,000 2,072

5,000 25 17,500 6,328

7,000 50 19,833 212

7,001 10,593 30,000 2,172

7,500 51 33,033 7,845

9,000 406 44,887 2,178

Table 2.13: Losses and corresponding ALAE values, Example 2.6.1

Figure 2.5: Losses and corresponding ALAE values, Example 2.6.1

In line with the earlier presentation in this chapter, Loss will be the X variable

and ALEA the Y variable. Suppose that we are interested in the event that the sum

of the next Loss and ALAE will exceed t, that is Tn+1 = Xn+1 + Yn+1 > t, based

on the available data (xi, yi), i = 1, 2, . . . , 20. We apply the new semi-parametric

method presented in Section 2.4, where we assume the Normal copula, Clayton

copula, Gumbel copula and Frank copula, and we use pseudo maximum likelihood

method to estimate the copula parameter, the method is available in the R package

VineCopula [83], which also used in Section 2.5.

The lower and upper probabilities for the event Tn+1 > t are presented in Figure

2.6 only for the Normal copula, and Table 2.14 shows the NPI lower and upper

probabilities for the event Tn+1 > t for different parametric copulas, for selected
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values of t. These results can be used in a variety of ways, depending on the actual

question of interest. From this table, we can see that the value of NPI lower and

upper probabilities are different at each t among the parametric copulas. Figure

2.6 shows that the imprecision, which is the difference between corresponding upper

and lower probabilities, is pretty similar through the main range of empirical values

for xi + yi. This is due to the effect discussed for the simulations in Section 2.5,

namely the positive correlation between Loss and ALEA combined with interest in

the sum of these quantities. If the data would have indicated a negative correlation,

then imprecision would vary more substantially for the sum of the two quantities.

In Figure 2.7, we show the imprecision for different parametric copulas considered.

From this figure, we can see that imprecision is quite similar for these parametric

copulas.

Figure 2.6: Lower and upper probabilities for Tn+1 > t, Example 2.6.1
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t in 1000s
Normal Clayton Gumbel Frank

P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.8695 0.9080 0.8779 0.9122 0.8770 0.9159 0.8767 0.9160

10 0.7242 0.7725 0.7432 0.7887 0.7283 0.7783 0.7309 0.7793

15 0.6073 0.6633 0.6291 0.6843 0.6063 0.6646 0.6139 0.6697

20 0.5302 0.5889 0.5493 0.6089 0.5265 0.5872 0.5369 0.5955

25 0.4654 0.5284 0.4821 0.5476 0.4598 0.5244 0.4717 0.5349

30 0.4120 0.4788 0.4277 0.4978 0.4050 0.4732 0.4190 0.4858

35 0.3347 0.4033 0.3424 0.4171 0.3259 0.3953 0.3392 0.4092

40 0.2845 0.3532 0.2902 0.3654 0.2768 0.3451 0.2891 0.3596

45 0.2568 0.3266 0.2618 0.3387 0.2492 0.3187 0.2606 0.3331

50 0.2345 0.3065 0.2328 0.3135 0.2283 0.2984 0.2344 0.3104

55 0.2066 0.2656 0.2036 0.2651 0.2014 0.2590 0.2062 0.2660

60 0.1880 0.2474 0.1843 0.2462 0.1841 0.2413 0.1876 0.2479

66 0.1647 0.2251 0.1602 0.2225 0.1608 0.2192 0.1633 0.2247

70 0.1487 0.2085 0.1437 0.2058 0.1463 0.2034 0.1471 0.2082

75 0.1352 0.1889 0.1295 0.1845 0.1344 0.1863 0.1337 0.1883

80 0.1169 0.1693 0.1114 0.1655 0.1165 0.1681 0.1147 0.1682

85 0.1006 0.1517 0.0938 0.1463 0.1001 0.1502 0.0978 0.1501

90 0.0904 0.1411 0.0822 0.1347 0.0913 0.1404 0.0874 0.1396

96 0.0733 0.1248 0.0666 0.1193 0.0755 0.1245 0.0706 0.1233

106 0.0635 0.1157 0.0586 0.1114 0.0654 0.1158 0.0613 0.1144

110 0.0520 0.1038 0.0452 0.0980 0.0532 0.1030 0.0480 0.1012

116 0.0386 0.0859 0.0291 0.0792 0.0411 0.0868 0.0334 0.0834

121 0.0291 0.0761 0.0191 0.0692 0.0344 0.0782 0.0235 0.0735

125 0.0185 0.0644 0.0110 0.0539 0.0244 0.0659 0.0140 0.0591

130 0.0150 0.0491 0.0083 0.0373 0.0216 0.0530 0.0108 0.0432

135 0.0150 0.0397 0.0083 0.0272 0.0216 0.0464 0.0108 0.0333

140 0.0064 0.0269 0.0028 0.0166 0.0125 0.0346 0.0038 0.0210

150 0.0064 0.0234 0.0028 0.0138 0.0125 0.0317 0.0038 0.0178

156 0.0000 0.0110 0.0000 0.0056 0.0000 0.0179 0.0000 0.0074

Table 2.14: Lower and upper probabilities for Tn+1 > t, Example 2.6.1

Figure 2.7: Imprecision for different parametric copulas, Example 2.6.1
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Figure 2.8 shows the 3D-plots of the probabilities hij(θ̂) for these data for dif-

ferent parametric copulas. The plots of probabilities hij(θ̂) in this section are given

with x, y and z are equal to 0 at the left-front corner, and at the right-back corner

x, y and z are equal to 1. We can see that the Normal and Frank copulas give

a symmetric shape for the probabilities hij(θ̂), but different values of probabilities

hij(θ̂) for each cell. For the Clayton copula, it shows that the probabilities hij(θ̂) are

higher at the left-front corner, while for Gumbel copula, the probabilities hij(θ̂) are

higher at the right-back corner. These features occur due to the parametric copula

characteristics mentioned in Section 2.2. Consequently, the NPI lower and upper

probabilities for the event Tn+1 > t in Table 2.14 are different. For example, from

Figure 2.7, at t ≥ 125, the imprecision for the Clayton copula is smallest among

the four parametric copulas considered due to lower probabilities hij(θ̂), shown in

Figure 2.8, at the right-back corner of the Clayton copula 3D-plot. The Gumbel

copula leads to the largest imprecision at the same t value due to large probabilities

hij(θ̂), shown in Figure 2.8, at the right-back corner of the Gumbel copula 3D-plot.
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(a) Normal copula (b) Clayton copula

(c) Gumbel copula (d) Frank copula

Figure 2.8: 3D-Plots for probabilities hij(θ̂), Example 2.6.1

2.6.2 Body-Mass Index example

Thus far, we have illustrated our method by considering the sum of the two values

in the next bivariate observation, Xn+1 + Yn+1. In order to illustrate application

to scenarios where interest is in a different function of (Xn+1, Yn+1), consider the

data presented in Table 2.15 and Figure 2.9 [46]. These present the heights (m)

and weights (kg) of n = 30 eleven-year-old girls attending Heaton Middle School in

Bradford. Let heights be X and weights be Y random quantities. Suppose that one

is interested in the body-mass index (BMI) of a further girl, where one can imagine



2.6. Examples 39

there having been 31 girls with one selected randomly to not be included in the

data set, and whose BMI one would wish to predict after learning the heights and

weights of the other 30 girls. Interest in the BMI may be in order to investigate

whether they have healthy weight, are underweight or overweight, or even obese,

so we derive the lower and upper probabilities for the thirty-first girl to be in each

of these categories, based on our semi-parametric method. The BMI is calculated

using the well-known formula,

BMI =
Weight (kg)

[Height (m)]2

Height (m) Weight (kg) BMI Height (m) Weight (kg) BMI

1.35 26 14.27 1.33 31 17.53

1.46 33 15.48 1.49 34 15.31

1.53 55 23.50 1.41 32 16.10

1.54 50 21.08 1.64 47 17.47

1.39 32 16.56 1.46 37 17.36

1.31 25 14.57 1.49 46 20.72

1.49 44 19.82 1.47 36 16.66

1.37 31 16.52 1.52 47 20.34

1.43 36 17.60 1.40 33 16.84

1.46 35 16.42 1.43 42 20.54

1.41 28 14.08 1.48 32 14.61

1.36 28 15.14 1.49 32 14.41

1.54 36 15.18 1.41 29 14.59

1.51 48 21.05 1.37 34 18.11

1.55 36 14.98 1.35 30 16.46

Table 2.15: The heights (m), weights (kg) and BMI of 30 eleven-year-old girls

Figure 2.9: Heights (m) and corresponding weights (kg) values, Example 2.6.2
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For this illustrative example, we use the classification of BMI values provided by

the Center for Disease Control and Prevention (www.cdc.gov), according to which

an eleven-year-old girl is considered underweight if her BMI is less than 14.08, has

healthy weight if the BMI is between 14.08 and 19.50, is overweight if the BMI is

between 19.50 and 24.14, and obese if the BMI is at least 24.14. The lower and upper

probabilities for these events of interest are given in Table 2.16. These are calculated

using equations (2.3) and (2.4) with the same parametric copulas and estimation

method used in Example 2.6.1. To avoid difficulties due to the functional form of the

BMI, we restricted the range of possible values for the height and weight quantities

by setting finite end-points for the ranges used in NPI for the marginals. We set these

values at x0 = 1.25, x31 = 1.70, y0 = 20 and y31 = 60, which seem quite realistic

and lead to corresponding minimum BMI 6.92 and maximum BMI 38.40, which are

included in the ranges in Table 2.16. Choosing different values for x0, x31, y0 and

y31 will have some impact on the lower and upper probabilities resulting from our

method, but the effect of minor differences to these values is quite minimal. There

are many ways to interpret the results in Table 2.16. For example, from the table,

we can see using the Normal copula, our method gives lower and upper probabilities

for the event that a future eleven-year-old girl is in healthy weight are 0.6521 and

0.8107, respectively. The results are quite similar for all four parametric copulas

considered.

BMI∈
Normal Clayton Gumbel Frank

P P P P P P P P

Underweight [6.92,14.08) 0.0303 0.1010 0.0313 0.1098 0.0520 0.1245 0.0479 0.1080

Healthy weight [14.08,19.50) 0.6521 0.8107 0.6514 0.7869 0.6078 0.7733 0.6479 0.7862

Overweight [19.50,24.14) 0.1368 0.2456 0.1331 0.2236 0.1431 0.2636 0.1300 0.2377

Obese [24.14,38.40) 0.0013 0.0222 0.0152 0.0487 0.0042 0.0217 0.0064 0.0360

Table 2.16: NPI lower and upper probabilities for different parametric copula

2.7 Concluding remarks

This chapter presents a new semi-parametric method for predictive inference about

a future bivariate observation, which can be used to consider any function of in-
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terest involving the two quantities in such an observation. It combines NPI on the

marginals, which is predictive by nature, with the use of a parametric copula to

take dependence into account and the parameter of the copula estimated based on

available data. This method can be used with a wide variety of estimation methods

because only a single point estimator is used. For the semi-parametric predictive

method presented in this chapter, any of the available methods to estimate the

copula parameter can be used, of course advantages and disadvantages of specific

estimation methods are carried over. A possible generalization of the method is by

introducing some further robustness, or imprecision, in the copula, either by using a

range of parameter values (e.g. related to a confidence interval) or a set of copulas.

Implementing these straightforward ideas would require further research, as they

would lead to imprecise probabilities instead of the probabilities hij(θ̂) which are

central to our method.

By combining NPI with an estimated copula, the proposed method does not fully

adopt the strong frequentist properties of NPI, and hence has a heuristic nature. We

have investigated its performance via simulation studies, more detailed research of

its performance in a wider range of applications will be of benefit. The main idea of

this research is that the robustness provided by our method, with the use of a quite

basic copula, will often lead to satisfactory inferences for small to medium sized data

sets. Of course this is not an argument for neglecting important information about

the dependence structure, but it will enable, for many applications, trustworthy

predictive inference with the use of a relatively basic copula. For larger data sets,

it is expected that the method may work well using a nonparametric copula instead

of a parametric copula, this will be investigated in Chapter 3.

Throughout this work, we restricted attention to a single future observation. In

practice, one may be interested in multiple future observations, in NPI the inter-

dependence of such multiple future observations is taken into account [19]. It will

be of interest to develop the bivariate method presented in this chapter, for multiple

future observations.

A major advantage of the presented method is its relatively easy computations,

as the use of NPI on the marginals combines naturally with the discretization of the
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copula. Hence, the computational complexity is only with regard to the estimation

of the copula parameter, which for the copulas considered in this chapter is a routine

procedure for which standard software is available. It may be attractive to use cop-

ulas with multi-dimensional parameters, which would provide better opportunities

to take more information about dependence in the data into account. As long as

suitable estimation methods are available, this can be implemented in our method

without any difficulties.

The bivariate method presented here can straightforwardly be generalized to

multivariate data, where the curse of dimensionality [32, 85] implies that the number

of data required to get meaningful inferences grows exponentially with the dimension

of the data. We restricted attention to the bivariate case in order to introduce,

illustrate and investigate the method, application to higher dimensional situations

is an important topic for future research.

It should be emphasized that the method used in Section 2.5 (i.e. predictive

performance) is useful to investigate the frequentist performance of our method with

regard to the quantiles considered, using the imprecision in our method. However,

for large n there is very little imprecision, so it will happen more that q is not in the

p1 and p2 interval. Further investigation into methods for performance evaluation for

our method is an important topic for future research, as such methods for imprecise

predictive methods have not yet been studied in detail.



Chapter 3

NPI with nonparametric copula

3.1 Introduction

In this chapter, we introduce our new method of predictive inference for bivariate

data by combining NPI for the marginals with an estimated nonparametric copula,

where we restrict attention to kernel-based methods. Kernel-based copulas provide

more flexibility than the parametric copulas used in Chapter 2. The main interest in

this chapter is to introduce our new method with the use of nonparametric copulas.

We investigate its performance via simulations, both for small and large data sets.

Section 3.2 is a brief introduction to nonparametric copulas. In Section 3.3

we introduce how NPI for the marginals can be combined with an estimated non-

parametric kernel-based copula to provide a nonparametric predictive method, and

demonstrates how the proposed method can be used for inference about different

events of interest. Section 3.3 is relatively similar to Sections 2.3 and 2.4. In Section

3.4 we investigate the performance of this method via simulations, considering dif-

ferent bandwidths for the kernel copula. Two examples are presented in Section 3.5

to illustrate our method, these are the same data sets used in Chapter 2. Some brief

comments, conclusions and suggestions for further research are included in Section

3.6.

43
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3.2 Nonparametric copula

There are many nonparametric methods to estimate the dependence structure be-

tween two random quantities, such as Deheuvels’ empirical copula [31], polynomial

approximation copula [14, 65] and kernel smoothing copulas [12, 14]. In this re-

search we use kernel type estimators because this method offers a flexible alterna-

tive compared to parametric copulas and the method is the most commonly used in

nonparametric estimation of copulas. In this research, we use the R package np [49]

to estimate the copula using the kernel method.

Generally, we have two main different kinds of kernel in literature, which can

be classified as ’classical statistics’ kernel [64, 85, 88] and ’machine learning’ kernel

[29, 52]. In the classical statistics literature, a kernel is a nonparametric method for

estimating the probability density function (pdf) of a continuous random variable.

Any probability density can be used for the kernel [85]. The kernel estimate places a

probability mass of size 1/n (where n is the sample size) in the shape of the kernel,

which has been scaled by a smoothing parameter, centered on each data point. These

probability masses are then summed up at each point to give the kernel estimate.

In machine learning, kernel methods are a class of algorithms used mainly for

pattern analysis, for example in support vector machine (SVM) [52]. SVM are

supervised learning models with associated learning algorithms that analyse data

and recognize patterns, used for classification and regression analysis [29].

Some other density estimation algorithms, equivalent to classical kernel method,

use weights 1/n but have an adaptive bandwidth, for example kth nearest neighbour

estimator. This type of kernel method is estimating the pdf depending on nearest

neighbours of the observations. It is related to distance of any point to its nearest

observations and it is centered on that point [64, 85, 90]. Loftsgaarden and Que-

senberry [70] used the nearest neighbour density estimator for multivariate data.

The distance can be any types of distance but the most popular used is Euclidean

distance [64, 85].

The main difference between these two approaches is how the kernel method is

used in each area. In machine learning, the kernel method is used to express the

machine learning algorithms in terms of dot products instead of feature vectors.
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So, the machine learning algorithms can work with highly complex, efficient-to-

compute, and high performing kernels without ever having to write down huge and

potentially infinite dimensional feature vector [52]. While, in classical statistics,

the kernel method is used to put weights to the data (points) when estimating the

probability density function. The machine learning kernel method has been also

used in the classical statistics literature, especially for multivariate data [49, 64].

Let xi, i = 1, ..., n, be a random sample from a distribution with an unknown

probability density function, f(x). A standard kernel density estimator for f(x) is

given by [74]

f̂(x) =
1

nb

n∑
i=1

K

(
x− xi
b

)
(3.1)

where K(·) is a univariate kernel function and b > 0 is a bandwidth, where b→ 0 as

n→∞. As mentioned earlier, in this research we focus on bivariate data. Suppose

that we have a bivariate sample (xi, yi), i = 1, . . . , n, then the kernel bivariate

density function of empirical data is given by [11]

f̂(x, y) =
1

nbXbY

n∑
i=1

K

(
x− xi
bX

,
y − yi
bY

)
(3.2)

where bX , bY > 0 are bandwidths and K : R2 → R is a kernel function. In general,

one could use any probability density function as the K(·) but it is advisable to

choose a bivariate kernel with a simple covariance structure [85]. According to

Silverman [88], the appropriate sample size to be used in kernel bivariate density

estimation is n ≥ 19.

There are two ways to interpret the kernel density estimator, from a local and

global point of view. From a local view, we see a point estimate as a weighted

average of frequencies in a neighbourhood of a point. The weighting is conducted

according to the kernel function K(·) and the size of the neighbourhood is controlled

by the bandwidth. From a global point of view, an estimate of the density is

constructed as follows: Centered upon each observation, a bump in the shape of

a scaled kernel, K(·), is placed and all the bumps are averaged to give the whole

surface of the density. We should emphasize that K(·) can be from any density

function [85]. It is well-known that, for estimation, the choice of K(·) is not as
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important as the bandwidth, and it does not strongly affect the density estimation,

but the smoothness of the density function depends on it [85, 88].

For estimation, the most important feature in kernel method is to choose the

appropriate bandwidth or smoothing parameter, b. One may want to choose b as

small as the data allow, however there is always a trade-off between the bias of the

estimator and its variance. A large bandwidth leads to an estimate with a small

variance but a large bias. In contrast, a small bandwidth induces a small bias and

a larger variance. There are two ways to choose b, rule-of-thumb or plug-in method

and least squares cross-validation (LSCV) [8, 64, 85, 88, 96]. The LSCV method

proposed by Rudemo [81] is a fully automatic data-driven method for selecting

b. The LSCV method is based on the principle of selecting the value of b that

minimizes the integrated squared error of the resulting estimate, i.e. it provides

an optimal bandwidth (not over-smooth or under-smooth) tailored to fitting of all

data in estimating the probability density function [63, 88]. The normal reference

rule-of-thumb bandwidth is given as [85]

bz = 1.06σzn
(−1/4) (3.3)

where z denotes either variable X or Y , σz is an adaptive measure of spread of the

continuous variable z, defined as min(standard deviation, interquatile range /1.349),

n is the sample size.

Another kernel method in classical statistics is the kernel method which estimates

the pdf function depending on nearest neighbours of the observations and it is related

to the distance of any point to its nearest observations. Let dk(x, y) be the Euclidean

distance from (x, y) to the kth nearest data point in two dimensions, and let Vk(x, y)

be the volume of the two dimensional sphere of radius dk(x, y); thus, Vk(x, y) =

πdk(x, y)2 [88]. The nearest neighbours density estimate is then defined by Silverman

[88]

f̂(x, y) =
k/n

Vk(x, y)
=

k/n

πdk(x, y)2
(3.4)

Consider the kernel estimate based on the kernel

K(x, y) =


1
π
, if | x, y |≤ 1

0, otherwise.

(3.5)
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Then, the generalized kth nearest neighbour (generalized-nn) estimate for two di-

mensions is defined by

f̂(x, y) =
1

ndk(x, y)2

n∑
i=1

K

(
x− xi
dk(x, y)

,
y − yi
dk(x, y)

)
(3.6)

where K is defined in equation (3.5). An estimate of f(x, y) can be obtained by

choosing k such that k → ∞ and k/n → 0 as n → ∞. In this case, k/n plays

a similar role to the fixed smoothing parameter b for the kernel estimator. The

conditions k → ∞ and k/n → 0 are similar to n → ∞ and b → 0. However, the

generalized-nn method is not very satisfactory for overall estimates (global point of

view) because they are likely to suffer from local noise (unexplained variation in a

sample), to produce an estimate with very heavy tails (peakedness), and the density

estimate will have discontinuities because the function dk(x, y) is not differentiable

due to unknown density [88, 96]. In addition, the integral over the estimated density

function is not equal to 1 and, in general, diverges.

Adaptive kernel estimation is one of the methods used to overcome the problems

of the nearest neighbour method [10, 85, 88]. It combines features of the kernel and

the nearest neighbour approaches. Adaptive kernel estimation or adaptive nearest

neighbour (adaptive-nn) estimation is an approach that adapts sparseness of data

using a wider kernel over observations located in areas of low density. In other

words, a large bandwidth is used for area where the data points are far-off from

each other and the density is smooth (low density is provided). But when the data

points are close to each other a small bandwidth is used, allowing the kernel density

function to provide high density estimation in those parts of the distribution. The

adaptive kernel density estimate, f̂(x, y) given by Breiman et al. [10] is

f̂(x, y) =
1

n

n∑
i=1

1

di(x, y)2
K

(
x− xi
di(x, y)

,
y − yi
di(x, y)

)
(3.7)

where K is a bivariate kernel function and di(x, y) is the distance from the point

(xi, yi) to its kth nearest neighbour.

Basically in practice, a pilot estimate is obtained for the unknown density func-

tion at the sample points, whereby an initial density estimate is computed using a

pilot estimate (fixed bandwidth) to get an idea of the density at each of the data
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points [10]. In np package [49], the adaptive nearest neighbour (adaptive-nn) band-

width method is given as in equation (3.3), but the value 1.06 is replaced by kz i.e.

bz = kzσzn
(−1/4) where kz is an integer value.

There are many books and papers about the choice of the bandwidth, for ex-

ample see [64, 69, 85]. However, generally, there is no evidence or proof which

method is more appropriate and reliable either for estimation or prediction pur-

pose. It is well-known that selecting an appropriate bandwidth is very important as

under-smoothing or over-smoothing can substantially reduce the precision of estima-

tion, and it might also reduce accuracy in prediction. As we have discussed above,

different types of bandwidths and different bandwidth selections offered different ad-

vantages and disadvantages. For example, fixed bandwidth gives the same value of

bandwidth to all observation points when estimating the density [64, 85, 88]. While

the adaptive-nn and the generalized-nn give different value of bandwidth to each

observation point when estimate the density [64, 85, 88]. All the methods discussed

in this section will be considered in Chapter 3.

As mentioned earlier in Section 2.2, a copula is a multivariate probability distri-

bution for which the marginal probability distribution of each variable is uniform.

Consider (Xi, Yi) as a random quantity with marginal distributions FX(Xi) and

FY (Yi) where i = 1, ..., n, and let F (x, y) be its joint marginal distribution. Let

(U, V ) ∼ [0, 1] be random quantities with joint distribution C and corresponding

probability density function, c : [0, 1]2 → R. In line with equation (3.2), the kernel

smoothing copula can be denoted as

ĉ(u, v) =
1

nbUbV

n∑
i=1

K

(
u− Ui
bU

,
v − Vi
bV

)
(3.8)

where for all u, v ∈ [0, 1], K : R2 → R is a bivariate kernel function and bU , bV > 0

is a bandwidth where b → 0 as n → ∞. Then, it well-known that FX ∼ U [0, 1]

and FY ∼ U [0, 1]. The corresponding copula, C is then defined as the distribution

function of (FX(Xi), FY (Yi)). This explains a copula as the distribution of uniformly

distributed random quantities.

Many researchers argue that the kernel estimator is not suitable for the unit-

squared copula densities, mainly because it is heavily affected by boundary bias
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issues for estimation purpose [40, 97]. In addition, most common copulas admit

unbounded densities, and kernel methods are not consistent in that case. Therefore,

many researchers study and provide solutions to the boundary bias, including Gi-

jbels and Mielniczuk [44], Charpentier et al. [12], Geenens et al. [40] and recently,

Wen and Wu [97]. As discussed in Section 2.3, we use the NPI on the marginals

combined with the discretization of the copula, the problem does not occur due to

the transformations of variables that are used to estimate the densities, which is free

of boundary bias.

As mentioned earlier, we use the R package np [49] to estimate the copula pdf

using kernel method. In this package, the coding allows us to choose the bandwidth

selection methods and type of bandwidths which discussed in this section. Further-

more, the package allows us to choose either the coding to give the value of the

bandwidth or we give it manually.

3.3 Combining NPI with kernel-based copula

In this section, we present how NPI for the marginals can be combined with a

nonparametric copula. The idea is effectively the same as in Section 2.3. Let

(Xn+1, Yn+1) be a future bivariate observation and X̃n+1 and Ỹn+1 denote trans-

formed versions of the random quantities Xn+1 and Yn+1, respectively, following

from the natural transformations related to the marginal A(n) assumptions as pre-

sented in Section 2.3. For an assumed kernel smoothing copula, equation (3.8), an

estimate ĉ can be defined as

ĉ(x, y) =
1

nbXbY

n∑
i=1

K

(
x− FX(X̃i)

bX
,
y − FY (Ỹi)

bY

)
(3.9)

where K : R2 → R is a bivariate kernel function satisfying, bX , bY > 0 are band-

widths, and FX(X̃i) = rix
n+1

and FY (Ỹi) =
riy
n+1

for i = 1, ..., n+ 1, with rix and riy are

rank values of xi and yi, where these ranks are only among the x and y observa-

tions, respectively. As mentioned in Section 2.3, the discretization using NPI which

correspond to copulas shows that the NPI approach for the marginals can be easily

combined with this nonparametric kernel-based copula to reflect the dependence

structure.
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Using the same natural transformations related to the marginal A(n) assumptions

as given in Section 2.3 and equation (3.9), NPI on the marginals can be combined

with the estimated kernel-based nonparametric copula, ĉ as follows,

hij(ĉ) = PC(X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

)
|ĉ) (3.10)

where i, j = 1, ..., n+1 and PC(·|ĉ) represents the nonparametric kernel-based copula

probability with estimated density function, ĉ, and the corresponding cumulative

distribution function is

Hij(ĉ) = PC(X̃n+1 ≤
i

n+ 1
, Ỹn+1 ≤

j

n+ 1
|ĉ) =

i∑
k=1

j∑
l=1

hkl(ĉ) (3.11)

As mentioned in Section 3.2, we use the np package in R [49] to estimate the kernel in

equation (3.9), ĉ(x, y) resulting probabilities hij(ĉ) and Hij(ĉ) are used for inference

about the future observation (Xn+1, Yn+1) as in Section 2.4, using lower and upper

probabilities.

As in Chapter 2, our method consists of two steps. First we consider NPI for

the marginals and the second step is to use the bivariate nonparametric kernel-

based copula, where we estimate the copula as in equation (3.9). At this stage,

the bandwidths b affect the probabilities hij(ĉ). As mentioned in Section 2.3, the

probabilities hij(ĉ) must satisfy the three conditions discussed in such section.

We present an example using simulated data and study the types of bandwidths

and bandwidth selections discussed in Section 3.2, in order to investigate how the

probabilities hij(ĉ) are dispersed in the (n + 1)2 equal-sized squares. In order to

investigate the probabilities hij(ĉ) and to get an insight how the proposed method

works with the nonparametric copula, we present an example using a small simulated

data set. We should emphasize that, as mentioned in Section 3.2, there are many

nonparametric methods can also be used instead of kernel-based copula methods.

However, the performance of the proposed method with other nonparametric copulas

should be studied and investigated. We left these as a topic for future research.

3.3.1 Example: Simulated data

Consider a set of bivariate data, (xi, yi) where i = 1, ..., 9. Using the proposed

method in this chapter, we calculate the probabilities hij(ĉ), which is equation (3.10)
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for different types of bandwidth selections and different types of bandwidths. In this

example, we simulated data from the Frank copula with Kendall’s τ = 0.75, which

indicates a strong positive association between the two random quantities. The data

and the scatter plot are shown in Table 3.1 and Figure 3.1.

x 0.0654 0.0988 0.2234 0.2515 0.3010 0.3640 0.5440 0.8986 0.9660

y 0.0692 0.1118 0.1825 0.3419 0.3642 0.3973 0.6839 0.8058 0.8314

Table 3.1: Simulation data from Frank copula, τ = 0.75

Figure 3.1: Scatter plot of the simulation data

Tables 3.2 - 3.5 show the probabilities hij(ĉ) and Hij(ĉ) based on different types

of bandwidth selections and types of bandwidths. These tables are presented this

way in order to show the natural corresponding to the bivariate plots of simulated

data in Figure 3.1 with the corresponding probabilities hij(ĉ) and Hij(ĉ).

For Table 3.2, the normal reference rule-of-thumb from equation (3.3), discussed

in Section 3.2, has been used. We see that the sum of hij(ĉ) is equal to 1, each row

and column is equal to 1
n+1

, and all hij(ĉ) ≥ 0. Figure 3.2 shows a 3D-plot of the

probabilities hij(ĉ). The plots of probabilities hij(ĉ) in this section are given with x,

y and z are equal to 0 at the left-front corner, and at the right-back corner x, y and
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z are equal to 1. This figure shows that the probabilities hij(ĉ) are higher at left-

front corner and right-back corner compared to other corners due to the simulated

data, where we have two points with small x and y values and also two with large x

and y values, but no points with one value small and one large. The corresponding

bandwidths, b for X and Y are given in Table 3.6.

i=1 2 3 4 5 6 7 8 9 10

Hij(ĉ)

j=10 0.1001 0.2004 0.3003 0.4012 0.5009 0.6005 0.7013 0.8010 0.9027 1.0000

9 0.0995 0.1985 0.2965 0.3942 0.4891 0.5814 0.6709 0.7546 0.8341 0.9027

8 0.0978 0.1935 0.2870 0.3788 0.4663 0.5491 0.6261 0.6944 0.7546 0.8010

7 0.0949 0.1854 0.2721 0.3558 0.4340 0.5062 0.5712 0.6259 0.6707 0.7013

6 0.0905 0.1739 0.2515 0.3248 0.3919 0.4525 0.5056 0.5484 0.5811 0.6005

5 0.0845 0.1589 0.2259 0.2872 0.3421 0.3908 0.4326 0.4652 0.4887 0.5009

4 0.0762 0.1401 0.1952 0.2437 0.2860 0.3227 0.3536 0.3773 0.3936 0.4012

3 0.0648 0.1164 0.1586 0.1941 0.2237 0.2488 0.2696 0.2852 0.2958 0.3003

2 0.0495 0.0868 0.1157 0.1386 0.1567 0.1714 0.1832 0.1921 0.1980 0.2004

1 0.0288 0.0493 0.0642 0.0752 0.0831 0.0891 0.0937 0.0971 0.0993 0.1001

hij(ĉ)

10 0.0006 0.0013 0.0020 0.0031 0.0048 0.0074 0.0113 0.0160 0.0222 0.0288

9 0.0017 0.0033 0.0045 0.0059 0.0074 0.0095 0.0124 0.0155 0.0193 0.0222

8 0.0029 0.0052 0.0068 0.0082 0.0093 0.0105 0.0121 0.0135 0.0154 0.0159

7 0.0044 0.0072 0.0090 0.0104 0.0111 0.0115 0.0119 0.0119 0.0121 0.0111

6 0.0061 0.0089 0.0107 0.0119 0.0122 0.0119 0.0113 0.0102 0.0092 0.0072

5 0.0083 0.0105 0.0119 0.0128 0.0127 0.0120 0.0108 0.0090 0.0071 0.0046

4 0.0114 0.0124 0.0128 0.0131 0.0126 0.0116 0.0101 0.0080 0.0058 0.0031

3 0.0153 0.0142 0.0133 0.0126 0.0116 0.0104 0.0089 0.0068 0.0047 0.0021

2 0.0207 0.0168 0.0140 0.0119 0.0101 0.0087 0.0073 0.0055 0.0037 0.0015

1 0.0288 0.0205 0.0150 0.0110 0.0079 0.0060 0.0046 0.0033 0.0022 0.0009

Table 3.2: Hij(ĉ) and hij(ĉ) with Normal reference rule-of-thumb and fixed band-

width
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Figure 3.2: 3D-plot of probabilities hij(ĉ) for normal reference rule-of-thumb

In Table 3.3, the probabilities hij(ĉ) are obtained using the LSCV bandwidth

selection and fixed bandwidth (discussed in Section 3.2). The logical conditions for

the hij(ĉ) are always satisfied except when explicitly mentioned. The corresponding

3D-plot in Figure 3.3 shows that the probabilities hij(ĉ) are large close to the obser-

vation points, this happens because the method for estimating the density is based

on the minimum distance measure between f̂(x, y) and f(x, y) (i.e. the integrated

squared error mentioned in Section 3.2). This also reflects the bandwidths obtained

from this method is smaller than normal reference rule-of-thumb which shown in

Table 3.6. The same 3D-plot also shows that the probabilities hij(ĉ) are higher in

three main areas, namely left-front corner, the right-back corner and in the middle

of the 3D-plot, which reflects the simulated data.
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i=1 2 3 4 5 6 7 8 9 10

Hij(ĉ)

j=10 0.1004 0.2006 0.3014 0.4011 0.5009 0.6006 0.7004 0.8012 0.9010 1.0000

9 0.1004 0.2006 0.3014 0.4011 0.5007 0.5999 0.6960 0.7836 0.8529 0.9013

8 0.1004 0.2005 0.3008 0.3996 0.4981 0.5944 0.6804 0.7456 0.7840 0.8015

7 0.1003 0.1995 0.2963 0.3884 0.4807 0.5702 0.6403 0.6803 0.6961 0.7004

6 0.0997 0.1949 0.2797 0.3532 0.4302 0.5105 0.5688 0.5938 0.5998 0.6006

5 0.0983 0.1850 0.2493 0.2968 0.3541 0.4240 0.4764 0.4969 0.5006 0.5009

4 0.0967 0.1752 0.2220 0.2483 0.2844 0.3370 0.3802 0.3978 0.4010 0.4011

3 0.0939 0.1661 0.2039 0.2182 0.2344 0.2622 0.2881 0.2992 0.3013 0.3014

2 0.0822 0.1395 0.1667 0.1744 0.1789 0.1873 0.1957 0.1996 0.2003 0.2003

1 0.0517 0.0820 0.0941 0.0968 0.0975 0.0985 0.0996 0.1001 0.1002 0.1002

hij(ĉ)

10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0036 0.0132 0.0306 0.0506

9 0.0000 0.0001 0.0005 0.0009 0.0011 0.0029 0.0101 0.0224 0.0308 0.0310

8 0.0001 0.0009 0.0035 0.0066 0.0062 0.0068 0.0159 0.0252 0.0226 0.0132

7 0.0006 0.0040 0.0120 0.0187 0.0152 0.0091 0.0119 0.0149 0.0098 0.0034

6 0.0014 0.0085 0.0205 0.0259 0.0197 0.0103 0.0059 0.0045 0.0023 0.0006

5 0.0016 0.0082 0.0175 0.0212 0.0212 0.0174 0.0091 0.0029 0.0006 0.0001

4 0.0028 0.0063 0.0091 0.0120 0.0199 0.0247 0.0174 0.0064 0.0011 0.0001

3 0.0118 0.0148 0.0106 0.0066 0.0116 0.0195 0.0174 0.0073 0.0013 0.0001

2 0.0305 0.0270 0.0151 0.0049 0.0039 0.0073 0.0074 0.0033 0.0006 0.0000

1 0.0517 0.0303 0.0121 0.0027 0.0007 0.0010 0.0011 0.0005 0.0001 0.0000

Table 3.3: Hij(ĉ) and hij(ĉ) with LSCV and fixed bandwidth

Figure 3.3: 3D-plot of probabilities hij(ĉ) for LSCV
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For an adaptive-nn type of bandwidth discussed in Section 3.2, the probabilities

hij(ĉ) are shown in Table 3.4 and the corresponding 3D-plot of probabilities hij(ĉ)

given in Figure 3.4. From the 3D-plot, we see that the shape of the figure is quite

similar with Figure 3.3 where the probabilities hij(ĉ) are higher in three main ar-

eas, but the probabilities hij(ĉ) for each cell are different. Providing the type of

bandwidth used, the probabilities hij(ĉ) are distributes based on the observed data.

Basically, the adaptive-nn type of bandwidth uses a large bandwidth to the data

that sparse, providing a low density, and a small bandwidth to the data that close

to each other, providing a high density. The corresponding bandwidths for X and

Y this method are shown in Table 3.6.

i=1 2 3 4 5 6 7 8 9 10

Hij(ĉ)

j=10 0.1006 0.2001 0.3008 0.4003 0.5001 0.6012 0.7010 0.8017 0.9009 1.0000

9 0.1005 0.2000 0.3006 0.3998 0.4985 0.5949 0.6838 0.7677 0.8434 0.9001

8 0.1005 0.1997 0.2995 0.3973 0.4937 0.5837 0.6575 0.7200 0.7705 0.8006

7 0.1003 0.1979 0.2940 0.3857 0.4746 0.5544 0.6106 0.6523 0.6831 0.7003

6 0.0993 0.1918 0.2777 0.3551 0.4282 0.4951 0.5382 0.5669 0.5877 0.6006

5 0.0970 0.1799 0.2495 0.3069 0.3603 0.4143 0.4498 0.4726 0.4894 0.5009

4 0.0936 0.1657 0.2193 0.2584 0.2941 0.3334 0.3607 0.3784 0.3917 0.4011

3 0.0879 0.1493 0.1906 0.2169 0.2381 0.2610 0.2770 0.2875 0.2956 0.3015

2 0.0740 0.1196 0.1484 0.1651 0.1760 0.1855 0.1917 0.1957 0.1988 0.2011

1 0.0456 0.0687 0.0828 0.0908 0.0955 0.0983 0.0996 0.1003 0.1009 0.1013

hij(ĉ)

10 0.0000 0.0000 0.0001 0.0004 0.0011 0.0047 0.0109 0.0168 0.0235 0.0424

9 0.0000 0.0003 0.0008 0.0014 0.0023 0.0064 0.0152 0.0215 0.0251 0.0266

8 0.0002 0.0016 0.0037 0.0060 0.0076 0.0103 0.0175 0.0208 0.0198 0.0128

7 0.0010 0.0051 0.0102 0.0144 0.0158 0.0128 0.0131 0.0130 0.0101 0.0043

6 0.0023 0.0096 0.0163 0.0200 0.0197 0.0130 0.0076 0.0058 0.0039 0.0015

5 0.0034 0.0108 0.0161 0.0181 0.0178 0.0146 0.0083 0.0051 0.0035 0.0021

4 0.0057 0.0107 0.0123 0.0128 0.0144 0.0165 0.0113 0.0072 0.0052 0.0036

3 0.0139 0.0159 0.0124 0.0097 0.0102 0.0133 0.0098 0.0065 0.0050 0.0036

2 0.0284 0.0225 0.0147 0.0086 0.0063 0.0067 0.0048 0.0033 0.0025 0.0019

1 0.0456 0.0231 0.0141 0.0080 0.0047 0.0028 0.0013 0.0008 0.0006 0.0004

Table 3.4: Hij(ĉ) and hij(ĉ) with LSCV and adaptive-nn bandwidth
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Figure 3.4: 3D-plot of probabilities hij(ĉ) for adaptive-nn

Finally, in Table 3.5, we show the probabilities hij(ĉ) for generalized-nn type of

bandwidth. From this table, we can see that the sum of the probabilities hij(ĉ) are

not 1, each row and column is not equal with 1
n+1

and there are probabilities hij(ĉ)

values less than 0. The probabilities hij(ĉ) obtained are clearly seen not as they

should be, hence, this method cannot be used further. These features reflect the

generalized-nn used and it problem mentioned in Section 3.2 where the integral over

the estimated density function does not equal 1 and tends to produce an estimate

with very heavy tails.
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i=1 2 3 4 5 6 7 8 9 10

Hij(ĉ)

j=10 0.0971 0.2015 0.3004 0.3987 0.4973 0.5956 0.6919 0.7825 0.8648 0.8879

9 0.0961 0.2017 0.3014 0.4011 0.5009 0.6004 0.6987 0.7912 0.8633 0.8648

8 0.0913 0.2017 0.3012 0.4007 0.4997 0.5970 0.6870 0.7562 0.7912 0.7825

7 0.0848 0.2013 0.2978 0.3902 0.4830 0.5733 0.6472 0.6870 0.6987 0.6919

6 0.0755 0.1985 0.2811 0.3520 0.4295 0.5099 0.5730 0.5970 0.6004 0.5957

5 0.0646 0.1922 0.2528 0.2975 0.3561 0.4244 0.4809 0.4996 0.5009 0.4971

4 0.0538 0.1854 0.2258 0.2484 0.2864 0.3376 0.3846 0.4004 0.4011 0.3980

3 0.0441 0.1785 0.2094 0.2192 0.2358 0.2621 0.2905 0.3009 0.3014 0.2995

2 0.0335 0.1560 0.1784 0.1830 0.1864 0.1920 0.1989 0.2015 0.2017 0.2012

1 0.0120 0.0338 0.0449 0.0541 0.0640 0.0746 0.0845 0.0913 0.0961 0.0970

hij(ĉ)

10 0.0009 -0.0011 -0.0008 -0.0014 -0.0012 -0.0012 -0.0021 -0.0018 0.0102 0.0216

9 0.0048 -0.0048 0.0001 0.0003 0.0007 0.0022 0.0083 0.0233 0.0372 0.0102

8 0.0065 -0.0062 0.0032 0.0070 0.0062 0.0070 0.0161 0.0293 0.0233 -0.0019

7 0.0093 -0.0064 0.0137 0.0216 0.0153 0.0098 0.0108 0.0159 0.0083 -0.0021

6 0.0109 -0.0047 0.0221 0.0261 0.0188 0.0121 0.0067 0.0053 0.0021 -0.0009

5 0.0108 -0.0041 0.0201 0.0222 0.0206 0.0171 0.0094 0.0029 0.0005 -0.0007

4 0.0097 -0.0029 0.0096 0.0126 0.0215 0.0249 0.0186 0.0054 0.0003 -0.0012

3 0.0105 0.0120 0.0084 0.0052 0.0132 0.0207 0.0215 0.0077 0.0004 -0.0014

2 0.0215 0.1006 0.0113 -0.0045 -0.0066 -0.0050 -0.0030 -0.0042 -0.0047 -0.0014

1 0.0120 0.0218 0.0111 0.0092 0.0099 0.0106 0.0099 0.0068 0.0048 0.0009

Table 3.5: Hij(ĉ) and hij(ĉ) with LSCV and generalized-nn bandwidth

Table 3.6 shows the corresponding bandwidths, b of the two random quantities

for the two bandwidth selections and the four type of bandwidths discussed above

in Section 3.2.

Bandwidth selection Type of bandwidth bX bY Table

Normal Reference rule-of-thumb fixed 0.2089 0.2089 Table 3.2

Least Square Cross-Validation fixed 0.0868 0.0926 Table 3.3

average adaptive-nn 0.1649 0.4019 Table 3.4

average generalized-nn 0.1648 0.2009 Table 3.5

Table 3.6: Bandwidth selections and type of bandwidths

As discussed in Section 2.4, equations (3.10) and (3.11) can be considered to infer

about an event E that involves the next observation (Xn+1, Yn+1). Given the same

definition in Section 2.4, the nonparametric method presented in Section 3.3 leads

to the lower and upper probabilities for the event E(Xn+1, Yn+1) as in equations

(2.3) and (2.4). Consider the similar event as in Section 2.4, where we are interested

in the sum of the next observations Xn+1 and Yn+1, say Tn+1 = Xn+1 + Yn+1. Then
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the lower and upper probability for the event that the sum of the next observations

will exceed a particular value t are following equations (2.5) and (2.6), where in this

chapter, we use nonparametric copula instead of parametric copula.

3.3.2 Example: Insurance data

We consider the data from casualty insurances, given in Example 2.6.1 with the X

value representing Loss and the Y value ALAE (allocated loss adjustment expenses).

We are interested in the event that the sum of the two values for the next observation

is greater than a certain value t, so, Tn+1 = Xn+1 + Yn+1 > t. In this example we

used only the bandwidth selections and the types of bandwidths discussed in Section

3.3.1, which did not lead to problem with the hij values, i.e. normal reference rule-

of-thumb and LSCV bandwidth selections, with fixed and adaptive-nn bandwidths.

The results are presented in Table 3.7.

Bandwidth selection Type of bandwidth bX bY

Normal Reference rule-of-thumb fixed 0.1647 0.1647

Least Square Cross Validation fixed 0.1673 0.2577

average adaptive-nn 0.5329 0.9325

Table 3.7: Bandwidth selections and type of bandwidths

The results in Table 3.7 show that the bandwidths of the Loss and ALAE vari-

ables are 0.1647 when using the normal reference rule-of-thumb. The value is the

same for both variables because its a fixed bandwidth type. For the LSCV method,

the fixed bandwidth type gives bandwidth for Loss 0.1673 and for ALAE 0.2577.

The bandwidths for these two random quantities are different because the LSCV

method chooses the bandwidth based on minimizing the integrated squared error

as discussed in Section 3.2. For Loss and ALAE variables, the algorithm produced

4-th and 7-th adaptive-nn, respectively. The corresponding bandwidth values are

b = 0.5329 and b = 0.9325, respectively, using the formula given in Section 3.2 i.e.

bz = kzσzn
(−1/4). Figure 3.5 shows lower and upper probabilities according to our

method for the event Tn+1 > t corresponding to these bandwidth selections and

types of bandwidths. This figure can be interpreted and implemented in many ways
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depending on applications or events of interest. From this figure we cannot see much

differences, it seem all bandwidth selections and types of bandwidth used give an

identical figure of lower and upper probabilities for the event Tn+1 > t. However,

the bandwidths obtained in Table 3.7 shows that the LSCV method gives higher

bandwidth for ALAE compared to normal reference rule-of thumb which shows the

LSCV method is over-smoothing the probabilities hij. As the probabilities hij are

the most important part in this study, we show the 3D-plot of this data set for

all bandwidth selections and types of bandwidths in Figure 3.6. From this figure,

the probabilities hij are quite higher at left-front corner and right-back corner for

each subfigure (i.e. Figures 3.5(a), 3.5(b) and 3.5(c)), and the probabilities hij are

scattered at most of the cells for all bandwidth selections and the types of band-

widths. However, the probabilities hij are different in small amount among the cells.

These features are the reason that the lower and upper probabilities for the event

Tn+1 > t is quite identical in Figure 3.5. Another noticeable feature when the pro-

posed method applied for this data set, the probabilities hij are more scattered in

Figure 3.6 compared to Figure 2.8 in Section 2.6.1.
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(a) Normal reference rule-of-thumb; fixed

bandwidth

(b) LSCV; fixed bandwidth

(c) LSCV; Adaptive-nn bandwidth kx = 4 and

ky = 7

Figure 3.5: Lower and upper probabilities for the event Tn+1 > t
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(a) Normal reference rule-of-thumb; fixed

bandwidth

(b) LSCV; fixed bandwidth

(c) LSCV; Adaptive-nn bandwidth kx = 4

and ky = 7

Figure 3.6: 3D-plot of probabilities hij for bandwidth selections and types of band-

widths

Due to quite identical lower and upper probabilities for the event Tn+1 > t in

Figure 3.5, we use different values of kz for the adaptive-nn bandwidth. kz is the

kth nearest neighbours of the observations and it is related to the distance of any

point to its nearest observations as discussed in Section 3.2. We only use this type of

bandwidth because this method allows us to determine the nearest neighbour to be

used, while the other types of bandwidth do not offer this possibility. Another reason

why we investigate this method further for different values of kz is, as mentioned in
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Section 3.2, estimation is influenced by the values of kz, so, the values of kz might

also affect prediction. Figure 3.7 shows the lower and upper probabilities for the

event Tn+1 > t for our method, for different values of kz. From this figure, we can

see that as kz increases, the lower and upper survival functions become smoother.

This is due to the adaptive-nn bandwidth used in our method and the specific event

of interest. For example, when we consider kz = 2 in adaptive-nn bandwidth, this

type of bandwidth uses two nearest points from the point that need to be estimated,

and this gives a few peaks. If we consider kz = 5, the adaptive-nn bandwidth uses

the five nearest points from the point that need to be estimated, and this gives

fewer peaks. In other words, the 5-th nearest neighbour uses a broader distance for

estimating the points. In addition, as we consider the sum event of the bivariate

random quantities, the possibility probabilities hij to be included or not is depending

on how the probabilities hij are scattered. We show the 3D-plots of probabilities

hij for kz = 2 and kz = 5 in Figure 3.8. Figure 3.8 shows that the probabilities

hij are scattered differently between kz = 2 and kz = 5, whereby the probabilities

hij are higher at kz = 2 compared to kz = 5. So, these 3D-plots suggest that

the kz for adaptive-nn bandwidth does affect the prediction. This is due to the

nearest point used and the way of adaptive-nn bandwidth work. As the value of kz

increases, the adaptive-nn method over-smooth the probabilities hij. Consequently,

the three conditions for the probabilities hij discussed in Section 2.3 are not satisfied.

In the following section, we will investigate the bandwidth selection related to the

predictive performance of our method.
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(a) kx = ky = 1 (b) kx = ky = 2

(c) kx = ky = 3 (d) kx = ky = 4

(e) kx = ky = 5 (f) kx = ky = 6

Figure 3.7: Lower and upper probabilities for the event Tn+1 > t, adaptive-nn

bandwidth for different kz, in each case kx = ky
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(a) kz = 2 (b) kz = 5

Figure 3.8: 3D-plot of probabilities hij for kx = ky = 2 and kx = ky = 5 adaptive-nn

bandwidth.

3.4 Predictive performance

We conducted a simulation study to obtain an indication of the predictive perfor-

mance of this method. We used a similar method as discussed in Section 2.5 to

indicate the predictive performance of our method, but now using a nonparametric

copula. The results are based on N = 10, 000 bivariate simulated samples, each

of size n + 1, using the Frank, Normal, Clayton and Gumbel copulas. For each

simulated sample, the first n pairs are used as data for our predictive method, the

additional pair is considered as a future observation and is used to test the predic-

tive performance of this method. Equations (2.9) and (2.10) in Section 2.5 are used

to indicate the performance of the proposed method. In other words, the proposed

method performs well if the two inequalities in equations (2.9) and (2.10) hold.

Based on previous example in Section 3.3.2, we conducted two types of simulation

studies. First, in Section 3.4.1 we use auto-driven bandwidth selection where we

let algorithm namely npudistbw in the R package np [49] choose the bandwidth.

Secondly, in Section 3.4.2 we use manual bandwidth selection where we choose the

value of bandwidth manually. In function npudistbw, a multivariate numerical
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search algorithm uses direction set (Powell [78]) methods in multidimensions [49] to

optimize the bandwidth. In the np package, the optimizer used is Powell’s conjugate

direction method, which requires the setting of initial values and search directions

for bandwidths, and when restarting, random values for successive invocations [49].

3.4.1 np R package bandwidth selection

In this section, we let algorithm in the np R package choose the bandwidth using

the normal reference rule-of-thumb and LSCV bandwidth selections with fixed and

adaptive-nn bandwidths. We run N = 10, 000 simulations for different sample

sizes, n = 20, 50, 100, using the Normal, Frank, Clayton and Gumbel copulas with

τ = −0.75,−0.50,−0.25, 0.25, 0.50, 0.75. One can use any values of q, we choose the

same values of q used in Section 2.5, i.e. q = 0.25, 0.50, 0.75. As discussed in Section

2.5, for q ∈ (0, 1), the inverse values of the lower and upper survival functions of Tn+1

in equations (2.5) and (2.6) are defined as in equations (2.7) and (2.8), respectively.

In this simulation study, we show results from the Clayton and Frank copulas for

both methods. We also repeat the simulation study for the Normal and Gumbel

copulas, which leads to the same conclusions as Clayton and Frank copulas.

Table 3.8 shows the predictive performance of the proposed method with kernel-

based copula, using normal reference rule-of-thumb bandwidth selection and fixed

bandwidth for simulated data from the Clayton copula. Table 3.9 shows the cor-

responding bandwidth. The bandwidth values bx and by, in Table 3.9, are average

of the respective bandwidths over 10, 000 runs. In this section, θ which is given in

the second column of each table, is the copula parameter value corresponding to

the Kendall’s tau given in the same table, as discussed in Section 2.2. In Table

3.8, θ is the Clayton copula parameter value. Table 3.8 shows that there are a few

cases for which q is not contained in the interval [p1, p2] especially for τ = −0.5 and

τ = −0.75, and sample size, n = 50 and n = 100. These are highlighted by bold font

numbers in the table. First of all, the data are simulated from the Clayton copula,

so the simulated data obtained will exhibit greater dependence in the negative tail

than in the positive tail. For example, consider the data simulated from τ = −0.75,

the data will have greater dependence at the large x and small y observation val-
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ues of the data set as mentioned in Section 3.2. Then, using the normal reference

rule-of-thumb bandwidth selection with fixed bandwidth, the probabilities hij are

highly scattered at the right-front corner of the 3D-plot of the probabilities hij as

shown in Figure 3.9 for different sample sizes. As we are interested on the sum of

the two values in the bivariate data, the probabilities hij are tend to be included

when calculating the lower and upper of the survival functions for t at the middle

or diagonal of the 3D-plots. But, when t at the left-front corner (small x and small

y observation values) and right-back corner (large x and large y observation values)

of the 3D-plots, very small value of probabilities hij to be included when calculating

the lower and upper of the survival functions. The results that the values q = 0.25

and q = 0.75 are not in the corresponding p1 and p2, are mostly for τ = −0.5 and

τ = −0.75, and for n = 20, n = 50 and n = 100. For positive correlation, the values

q are not in the corresponding p1 and p2 for n = 100 and two cases for n = 50. From

Table 3.9, we can see that the average bandwidth of 10, 000 repetitions is smaller as

n increases, which is a logical feature in estimation. One feature noticeable is that

the bandwidth corresponding to negative τ is greater than positive τ . This might

occur because the simulated data from the Clayton copula have greater dependence

in the negative tail. From this table, we also see that, as the correlation decrease,

the bandwidth values become larger regardless of positive or negative correlation.

This feature reflects the closeness of the data to each other.
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2470 0.2987 0.2516 0.2733 0.2566 0.2671

0.50 0.4818 0.5283 0.4951 0.5136 0.4975 0.5079

0.75 0.7137 0.7612 0.7416 0.7612 0.7516 0.7609

0.5 2.0000 0.25 0.2398 0.2987 0.2475 0.2744 0.2540 0.2652

0.50 0.4778 0.5356 0.4919 0.5130 0.4996 0.5113

0.75 0.7150 0.7602 0.7450 0.7608 0.7531 0.7610

0.25 0.6667 0.25 0.2277 0.2937 0.2397 0.2691 0.2537 0.2673

0.50 0.4821 0.5460 0.5037 0.5362 0.5045 0.5196

0.75 0.7211 0.7728 0.7461 0.7681 0.7462 0.7573

-0.25 -0.6667 0.25 0.1873 0.2692 0.2234 0.2636 0.2336 0.2510

0.50 0.4338 0.5600 0.4839 0.5420 0.4840 0.5133

0.75 0.7274 0.8086 0.7499 0.7829 0.7479 0.7633

-0.5 -2.0000 0.25 0.1476 0.2509 0.1874 0.2317 0.2119 0.2350

0.50 0.4097 0.6160 0.4536 0.5514 0.4827 0.5376

0.75 0.7577 0.8563 0.7735 0.8155 0.7725 0.7956

-0.75 -6.0000 0.25 0.0626 0.1743 0.1098 0.1694 0.1426 0.1745

0.50 0.3150 0.6770 0.4119 0.6090 0.4593 0.5729

0.75 0.8193 0.9431 0.8435 0.8996 0.8380 0.8687

Table 3.8: Simulated data from Clayton copula; normal reference rule-of-thumb;

fixed bandwidth

(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.9: 3D-plot of probabilities hij for Clayton simulated data with normal

reference rule-of-thumb, fixed bandwidth for τ = −0.75
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τ θ
n = 20 n = 50 n = 100

bX bY bX bY bX bY

0.75 6.0000 0.0909 0.0910 0.0627 0.0627 0.0473 0.0473

0.5 2.0000 0.1628 0.1633 0.1144 0.1144 0.0874 0.0875

0.25 0.6667 0.2295 0.2294 0.1619 0.1611 0.1250 0.1248

-0.25 -0.6667 0.3432 0.2668 0.2279 0.1689 0.1702 0.1206

-0.5 -2.0000 0.3403 0.2321 0.2071 0.1288 0.1445 0.0863

-0.75 -6.0000 0.2367 0.1581 0.1254 0.0815 0.0816 0.0543

Table 3.9: Bandwidth for simulated data from Clayton copula; normal reference

rule-of-thumb; fixed bandwidth

Table 3.10 shows the predictive performance of the proposed method, using nor-

mal reference rule-of-thumb bandwidth selection and fixed bandwidth for simulated

data from the Frank copula. Table 3.11 shows the corresponding bandwidth. Table

3.10 shows that there are a few cases for which q is not contained in the interval

[p1, p2] which quite similar with the data simulated from the Clayton copula. But,

the number of highlighted bold font number are less than Table 3.8. This happens

because we simulate data from the Frank copula which is symmetric and as we ap-

plied the normal reference rule-of-thumb bandwidth selection and fixed bandwidth,

the probabilities hij are quite symmetrically distributed as shown in Figure 3.10.

However, for τ = 0.5 and τ = 0.75, and for n = 50 and n = 100, the q is not

contained in the interval [p1, p2]. Table 3.11 shows the same relationship between

bandwidth and sample sizes. As n increases, the average bandwidths are decreases,

and as the strength of correlation become stronger, the average bandwidths tend to

be smaller.
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2422 0.2909 0.2494 0.2702 0.2515 0.2621

0.50 0.4778 0.5248 0.4871 0.5059 0.5040 0.5126

0.75 0.7146 0.7611 0.7288 0.7468 0.7458 0.7574

0.5 5.7363 0.25 0.2478 0.2998 0.2526 0.2768 0.2484 0.2592

0.50 0.4741 0.5236 0.4957 0.5169 0.4970 0.5066

0.75 0.7063 0.7605 0.7377 0.7586 0.7391 0.7495

0.25 2.3719 0.25 0.2409 0.2972 0.2495 0.2735 0.2517 0.2648

0.50 0.4691 0.5347 0.4876 0.5147 0.4983 0.5137

0.75 0.7116 0.7690 0.7283 0.7514 0.7426 0.7542

-0.25 -2.3719 0.25 0.1927 0.2775 0.2190 0.2543 0.2339 0.2525

0.50 0.4459 0.5656 0.4716 0.5289 0.4897 0.5183

0.75 0.7279 0.8132 0.7441 0.7799 0.7501 0.7670

-0.5 -5.7363 0.25 0.1504 0.2629 0.1814 0.2289 0.2105 0.2348

0.50 0.4174 0.5994 0.4603 0.5408 0.4810 0.5215

0.75 0.7529 0.8626 0.7589 0.8058 0.7654 0.7907

-0.75 -14.1385 0.25 0.0467 0.1852 0.1033 0.1732 0.1445 0.1863

0.50 0.3415 0.6675 0.4330 0.5827 0.4808 0.5574

0.75 0.8210 0.9529 0.8360 0.9044 0.8385 0.8761

Table 3.10: Simulated data from Frank copula; normal reference rule-of-thumb; fixed

bandwidth

(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.10: 3D-plot of probabilities hij for Frank simulated data with normal ref-

erence rule-of-thumb, fixed bandwidth for τ = −0.75
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τ θ
n = 20 n = 50 n = 100

bX bY bX bY bX bY

0.75 14.1385 0.0842 0.0843 0.0619 0.0620 0.0497 0.0497

0.5 5.7363 0.1422 0.1422 0.1030 0.1034 0.0815 0.0815

0.25 2.3719 0.2034 0.2035 0.1439 0.1437 0.1108 0.1106

-0.25 -2.3719 0.3085 0.3095 0.2010 0.2011 0.1464 0.1460

-0.5 -5.7363 0.2921 0.2925 0.1718 0.1716 0.1212 0.1213

-0.75 -14.1385 0.1985 0.1989 0.1096 0.1093 0.0768 0.0769

Table 3.11: Bandwidth for simulated data from Frank copula; normal reference

rule-of-thumb; fixed bandwidth

Tables 3.12 and 3.14 show the predictive performance of the proposed method,

using LSCV bandwidth selection with fixed bandwidth for simulated data from the

Clayton and Frank copulas, respectively. The corresponding bandwidths are shown

in Tables 3.13 and 3.15, respectively. Tables 3.12 and 3.14 show that there are

quite many cases where q is not in the interval p1 and p2, mostly at q = 0.25 and

q = 0.75 for negative τ . This happened due to the probabilities hij obtained, using

the bandwidth selection and type of bandwidth used for these tables, are different.

This can be shown by 3D-plots in Figures 3.11 and 3.12 for data simulated from the

Clayton and Frank copulas, respectively. Tables 3.13 and 3.15 show that the average

bandwidths for bx and by are quite different because the bandwidth selection method

that we used for these tables are LSCV, where the bandwidth is selected based on

the smallest integrated squared error as discussed in Section 3.2. This reflects the

trade-off between the bias of the estimator and its variance.
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2339 0.2846 0.2438 0.2653 0.2401 0.2499

0.50 0.4744 0.5244 0.4984 0.5171 0.4944 0.5060

0.75 0.7236 0.7698 0.7422 0.7621 0.7487 0.7572

0.5 2.0000 0.25 0.2357 0.2938 0.2505 0.2799 0.2450 0.2561

0.50 0.4845 0.5375 0.5002 0.5222 0.4935 0.5073

0.75 0.7231 0.7693 0.7462 0.7659 0.7411 0.7507

0.25 0.6667 0.25 0.2370 0.3017 0.2449 0.2687 0.2472 0.2604

0.50 0.4811 0.5527 0.4931 0.5223 0.4981 0.5120

0.75 0.7201 0.7705 0.7366 0.7562 0.7413 0.7525

-0.25 -0.6667 0.25 0.1786 0.2549 0.2066 0.2426 0.2218 0.2399

0.50 0.4428 0.5702 0.4769 0.5379 0.4820 0.5137

0.75 0.7487 0.8239 0.7583 0.7886 0.7568 0.7743

-0.5 -2.0000 0.25 0.1193 0.2087 0.1708 0.2132 0.2130 0.2346

0.50 0.4065 0.6071 0.4551 0.5584 0.4946 0.5451

0.75 0.7929 0.8818 0.7895 0.8292 0.7867 0.8072

-0.75 -6.0000 0.25 0.0515 0.1607 0.1203 0.1805 0.1615 0.1998

0.50 0.3288 0.6952 0.4134 0.6149 0.4564 0.5758

0.75 0.8485 0.9466 0.8281 0.8859 0.8101 0.8451

Table 3.12: Simulated data from Clayton copula; LSCV; fixed bandwidth

τ θ
n = 20 n = 50 n = 100

bX bY bX bY bX bY

0.75 6.0000 0.0911 0.0912 0.0626 0.0626 0.0383 0.0383

0.5 2.0000 0.1635 0.1631 0.0953 0.0962 0.0750 0.0745

0.25 0.6667 0.2297 0.2286 0.1433 0.1410 0.1094 0.1090

-0.25 -0.6667 0.3432 0.2688 0.2134 0.1492 0.1549 0.1055

-0.5 -2.0000 0.3398 0.2317 0.1909 0.1106 0.1307 0.0751

-0.75 -6.0000 0.2376 0.1585 0.1129 0.0702 0.0735 0.0476

Table 3.13: Bandwidth for simulated data from Clayton copula; LSCV; fixed band-

width
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2328 0.2814 0.2452 0.2647 0.2479 0.2585

0.50 0.4753 0.5175 0.4935 0.5128 0.4959 0.5069

0.75 0.7275 0.7767 0.7464 0.7659 0.7447 0.7548

0.5 5.7363 0.25 0.2383 0.2913 0.2421 0.2645 0.2464 0.2566

0.50 0.4745 0.5257 0.4884 0.5112 0.4873 0.4973

0.75 0.7159 0.7685 0.7399 0.7628 0.7376 0.7482

0.25 2.3719 0.25 0.2361 0.2957 0.2437 0.2682 0.2497 0.2610

0.50 0.4727 0.5403 0.4851 0.5118 0.4960 0.5110

0.75 0.7142 0.7726 0.7377 0.7625 0.7427 0.7537

-0.25 -2.3719 0.25 0.1784 0.2542 0.2182 0.2506 0.2321 0.2509

0.50 0.4503 0.5766 0.4804 0.5272 0.5019 0.5271

0.75 0.7611 0.8349 0.7586 0.7907 0.7615 0.7772

-0.5 -5.7363 0.25 0.1122 0.2086 0.1699 0.2166 0.1923 0.2212

0.50 0.4098 0.5990 0.4649 0.5489 0.4763 0.5188

0.75 0.8023 0.8925 0.7864 0.8318 0.7745 0.7976

-0.75 -14.1385 0.25 0.0424 0.1592 0.1164 0.1941 0.1619 0.2098

0.50 0.3476 0.6672 0.4407 0.5908 0.4723 0.5531

0.75 0.8518 0.9629 0.8208 0.8937 0.8072 0.8484

Table 3.14: Simulated data from Frank copula; LSCV; fixed bandwidth

τ θ
n = 10 n = 50 n = 100

bX bY bX bY bX bY

0.75 14.1385 0.0836 0.0837 0.0620 0.0620 0.0498 0.0497

0.5 5.7363 0.1423 0.1424 0.1031 0.1030 0.0817 0.0817

0.25 2.3719 0.2032 0.2035 0.1433 0.1435 0.1108 0.1106

-0.25 -2.3719 0.3094 0.3099 0.2006 0.2005 0.1463 0.1461

-0.5 -5.7363 0.2922 0.2929 0.1718 0.1719 0.1212 0.1211

-0.75 -14.1385 0.1982 0.1987 0.1096 0.1097 0.0769 0.0769

Table 3.15: Bandwidth for simulated data from Frank copula; LSCV; fixed band-

width
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(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.11: 3D-plot of probabilities hij for Clayton simulated data with LSCV,

fixed bandwidth for τ = −0.75

(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.12: 3D-plot of probabilities hij for Frank simulated data with LSCV, fixed

bandwidth for τ = −0.75
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Tables 3.16 and 3.18 show the predictive performance of the proposed method,

using LSCV bandwidth selection with adaptive-nn bandwidth for simulated data

from the Clayton and Frank copulas, respectively. These tables show that the re-

sults are similar with previous methods where there are many q not in the interval

[p1, p2] mostly for q = 0.25 and q = 0.75, for negative correlation. The 3D-plots of

the probabilities hij for the adaptive-nn bandwidth are shown in Figures 3.13 and

3.14 for the Clayton and Frank copulas, respectively. Tables 3.17 and 3.19 show the

average value of kz out of 10, 000 repetitions for the adaptive-nn bandwidth for the

Clayton and Frank copulas, respectively. These tables show that kz is decreasing

as the strength of the correlation get stronger for both negative and positive cor-

relations. This feature reflects the adaptive-nn bandwidth that we used, whereby

the bandwidth obtained is based on the minimum distance between the estimation

point and its k-th closest neighbour. Therefore, as the data has a strong correlation

regardless the sign of the correlation, smallest kz is used to estimate the density and

vice versa. Another noticeable feature, the kz values obtained for negative correla-

tion are bigger than the kz values obtained for positive correlation. This feature has

occurred due to the characteristic of the simulated data and the role of kz, which

plays a similar role to the bandwidth as mentioned in Section 3.2.
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2252 0.2751 0.2458 0.2667 0.2485 0.2594

0.50 0.4712 0.5162 0.4910 0.5103 0.4979 0.5083

0.75 0.7271 0.7725 0.7347 0.7545 0.7426 0.7530

0.5 2.0000 0.25 0.2296 0.2901 0.2507 0.2791 0.2606 0.2742

0.50 0.4888 0.5426 0.4970 0.5206 0.5073 0.5193

0.75 0.7268 0.7693 0.7436 0.7605 0.7512 0.7593

0.25 0.6667 0.25 0.2317 0.2973 0.2532 0.2796 0.2600 0.2740

0.50 0.4797 0.5483 0.4997 0.5287 0.5054 0.5189

0.75 0.7170 0.7685 0.7349 0.7556 0.7418 0.7508

-0.25 -0.6667 0.25 0.1642 0.2397 0.2054 0.2335 0.2259 0.2439

0.50 0.4321 0.5566 0.4759 0.5270 0.4903 0.5223

0.75 0.7462 0.8220 0.7621 0.7891 0.7619 0.7778

-0.5 -2.0000 0.25 0.1118 0.1960 0.1703 0.2126 0.2034 0.2248

0.50 0.4017 0.6054 0.4584 0.5565 0.4752 0.5302

0.75 0.8029 0.8854 0.7946 0.8370 0.7811 0.8042

-0.75 -6.0000 0.25 0.0503 0.1498 0.1226 0.1875 0.1722 0.2107

0.50 0.3361 0.7001 0.4029 0.5985 0.4572 0.5759

0.75 0.8719 0.9573 0.8102 0.8765 0.8072 0.8458

Table 3.16: Simulated data from Clayton copula; LSCV; adaptive-nn bandwidth

(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.13: 3D-plot of probabilities hij for Clayton simulated data with LSCV,

adaptive-nn bandwidth for τ = −0.75
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τ θ
n = 20 n = 50 n = 100

kx ky kx ky kx ky

0.75 6.0000 1.8961 2.0165 4.4392 4.5173 6.7678 6.6949

0.50 2.0000 4.0297 4.0229 8.8033 8.7824 13.3366 13.2996

0.25 0.6667 6.1116 6.1232 13.7028 13.5721 20.5234 20.4914

-0.25 -0.6667 9.5598 7.6125 20.5537 14.9094 27.1986 18.5107

-0.50 -2.0000 9.6201 6.6610 15.2807 9.3460 19.8181 12.7705

-0.75 -6.0000 6.9047 4.4894 8.5346 6.1043 11.4056 7.9370

Table 3.17: Bandwidth for simulated data from Clayton copula; LSCV; adaptive-nn

bandwidth

τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2286 0.2794 0.2405 0.2616 0.2467 0.2575

0.50 0.4814 0.5268 0.4924 0.5107 0.4976 0.5090

0.75 0.7247 0.7735 0.7382 0.7605 0.7520 0.7641

0.5 5.7363 0.25 0.2316 0.2784 0.2495 0.2726 0.2543 0.2649

0.50 0.4739 0.5246 0.4922 0.5142 0.4940 0.5030

0.75 0.7143 0.7697 0.7373 0.7580 0.7404 0.7522

0.25 2.3719 0.25 0.2390 0.2952 0.2482 0.2718 0.2572 0.2695

0.50 0.4690 0.5337 0.4815 0.5112 0.5034 0.5183

0.75 0.7035 0.7623 0.7265 0.7509 0.7489 0.7613

-0.25 -2.3719 0.25 0.1738 0.2510 0.2011 0.2356 0.2260 0.2446

0.50 0.4406 0.5621 0.4776 0.5301 0.4913 0.5214

0.75 0.7532 0.8358 0.7632 0.7962 0.7663 0.7858

-0.5 -5.7363 0.25 0.1057 0.1976 0.1681 0.2138 0.2131 0.2378

0.50 0.4159 0.5999 0.4627 0.5455 0.4867 0.5278

0.75 0.8091 0.8957 0.7871 0.8327 0.7813 0.8056

-0.75 -14.1385 0.25 0.0384 0.1455 0.1137 0.1848 0.1695 0.2153

0.50 0.3513 0.6676 0.4269 0.5717 0.4746 0.5564

0.75 0.8665 0.9670 0.8107 0.8879 0.8101 0.8529

Table 3.18: Simulated data from Frank copula; LSCV; adaptive-nn bandwidth
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(a) n = 20 (b) n = 50 (c) n = 100

Figure 3.14: 3D-plot of probabilities hij for Frank simulated data with LSCV,

adaptive-nn bandwidth for τ = −0.75

τ θ
n = 20 n = 50 n = 100

kx ky kx ky kx ky

0.75 14.1385 1.9902 2.0998 4.5753 4.6184 7.4318 7.3959

0.5 5.7363 3.5318 3.5522 8.1875 8.1506 12.8683 12.8383

0.25 2.3719 5.4412 5.4190 12.0616 11.9634 18.2404 18.2444

-0.25 -2.3719 8.7456 8.7039 16.0160 15.9642 22.5893 22.5785

-0.5 -5.7363 8.3683 8.3336 12.4967 12.4804 17.1447 17.1081

-0.75 -14.1385 5.7864 5.7522 7.7915 7.8060 11.1956 11.1314

Table 3.19: Bandwidth for simulated data from Frank copula; LSCV; adaptive-nn

bandwidth

Generally, from this simulation study, the proposed method seems to perform

well (q ∈ [p1, p2]) for positive correlation regardless (mostly) of sample size, band-

width selections and types of bandwidths. In the cases where q is not in the interval

between p1 and p2, the q is quite close to p1 or p2. However, for negative correla-

tion the proposed method does not perform so well, especially for strong negative

correlation at quantiles q equal to 0.25 and 0.75. As discussed in Section 2.5, due

to the fact that we are considering the events Tn+1 = Xn+1 + Yn+1 > t, and can

be explained by considering the probabilities hij(ĉ) which are the key ingredients

of our method for inference, the imprecision p2 − p1 is always greater for negative

correlation than for positive correlation, and this effect is stronger for larger absolute

values of the correlation.
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Although the predictive performance of the proposed method is not good for

negative correlation (especially strong negative correlation), a perhaps somewhat less

expected feature of our method is seen when the sample size increases, which leads

to the values of p1 and p2 to decrease or increase, respectively. This feature shows

that the method might work well for negative correlation if we used small bandwidth

for n = 100. We show this in next section, using the adaptive-nn bandwidth, we

consider small values of kz for n = 100. As mentioned in Section 3.2, the bandwidth,

b controls how wide the probability mass is spreading and controls the smoothness

and roughness of a density estimate. From this simulation study, we can see that

the bandwidth decreases as n increases.

3.4.2 Manually selecting bandwidth

In order to investigate suitable bandwidths for prediction, we performed a simulation

study with different values of kz for the adaptive-nn method. As mentioned in

Section 3.2, kz is a smoothing parameter for the kernel estimate which controls

the bandwidth values, and it therefore also controls the spread of probability mass

around the observed data and the smoothness of the probabilities hij(ĉ).

We have run N = 10, 000 simulations for n = 20, 50, 100 from the Normal, Frank,

Clayton and Gumbel copulas, with τ = −0.75,−0.50,−0.25, 0.25, 0.50, 0.75 and q =

0.25, 0.50, 0.75. For this simulation study we used the adaptive-nn bandwidth with

Gaussian kernel for different values of kz = 1, 2, 3, 4. The corresponding bandwidths

for these kz can be calculated by using formula given in Section 3.2. In this chapter,

we show results of the simulation study for data simulated from the Clayton copula

and some from Frank copula. We repeated the simulation study for the Normal and

Gumbel copulas, the results obtained leads to the same conclusion as Clayton and

Frank copulas.

Tables 3.20 - 3.23 show the results of the predictive performance of the proposed

method for simulated data from the Clayton copula. These tables show that, for

each value of kz, there is at least one scenario for which q is not contained in [p1, p2].

As kz increases, there are more scenarios for which q is not contained in [p1, p2],

especially for strong negative correlation. For kz = 1, kz = 2 and kz = 3, the values
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of q are mostly in the intervals [p1, p2], even if they are not in the interval, they close

to the intervals [p1, p2]. However, from Table 3.23, for kz = 4, we can see that for

τ = −0.5 and τ = −0.75, the values of q are not in the intervals [p1, p2], especially

for q = 0.25 and q = 0.75. This feature due to the characteristic of the Clayton

copula discussed in Section 3.4.1. As the value of kz increases, and n increases, the

conditions for the probabilities hij mentioned in Section 2.3 are dissatisfied. This

can be shown by 3D-plot of the probabilities hij for different kz and sample sizes

given in Figure 3.15. This figure show that the probabilities hij decreases as kz and n

increases, which shows the LSCV bandwidth selection with adaptive-nn bandwidth

over-smooth the probabilities hij. In addition, as we interested on the sum events,

calculating the lower and upper probabilities in equations (2.5) and (2.6) tend to

include several more hij(ĉ) values in the latter than in the former, and for events

Tn+1 > t these extra hij(ĉ) included in the upper probability tend to have the sum of

their subscripts i and j about constant as explained in detail in Section 2.5. Hence,

for positive correlation these extra hij(ĉ) tend to include few larger values for most

values of t compared to negative correlation.

τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2256 0.2733 0.2401 0.2627 0.2423 0.2536

0.5 0.4714 0.5187 0.4956 0.5167 0.5000 0.5087

0.75 0.7151 0.7611 0.7379 0.7580 0.7506 0.7597

0.5 2.0000 0.25 0.2231 0.2851 0.2433 0.2673 0.2494 0.2642

0.5 0.4686 0.5206 0.4910 0.5097 0.4967 0.5066

0.75 0.7229 0.7672 0.7465 0.7661 0.7446 0.7543

0.25 0.6667 0.25 0.2142 0.2782 0.2314 0.2570 0.2400 0.2554

0.5 0.4599 0.5308 0.4862 0.5141 0.4951 0.5085

0.75 0.7145 0.7686 0.7371 0.7567 0.7523 0.7620

-0.25 -0.6667 0.25 0.2047 0.2913 0.2377 0.2691 0.2438 0.2599

0.5 0.4352 0.5614 0.4777 0.5331 0.4946 0.5235

0.75 0.6999 0.7892 0.7340 0.7714 0.7474 0.7634

-0.5 -2.0000 0.25 0.1888 0.3088 0.2279 0.2783 0.2391 0.2660

0.5 0.4065 0.5983 0.4573 0.5555 0.4775 0.5303

0.75 0.6970 0.8157 0.7227 0.7733 0.7310 0.7567

-0.75 -6.0000 0.25 0.1223 0.3370 0.1894 0.2931 0.2246 0.2783

0.5 0.3213 0.6914 0.4047 0.6101 0.4486 0.5699

0.75 0.6784 0.8835 0.7172 0.8177 0.7332 0.7852

Table 3.20: Simulated data from Clayton copula; adaptive-nn; kz = 1
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2171 0.2701 0.2427 0.2672 0.2539 0.2640

0.5 0.4747 0.5267 0.4980 0.5179 0.4972 0.5076

0.75 0.7221 0.7666 0.7469 0.7640 0.7413 0.7515

0.5 2.0000 0.25 0.2225 0.2786 0.2328 0.2600 0.2406 0.2523

0.5 0.4706 0.5273 0.4848 0.5069 0.4935 0.5079

0.75 0.7182 0.7640 0.7424 0.7591 0.7538 0.7634

0.25 0.6667 0.25 0.2157 0.2782 0.2363 0.2632 0.2457 0.2584

0.5 0.4685 0.5397 0.4835 0.5155 0.4968 0.5137

0.75 0.7261 0.7782 0.7366 0.7610 0.7505 0.7606

-0.25 -0.6667 0.25 0.2117 0.2917 0.2329 0.2698 0.2401 0.2588

0.5 0.4365 0.5670 0.4653 0.5216 0.4794 0.5100

0.75 0.7129 0.7983 0.7305 0.7693 0.7406 0.7593

-0.5 -2.0000 0.25 0.1757 0.2922 0.2232 0.2779 0.2385 0.2636

0.5 0.3959 0.5982 0.4577 0.5587 0.4783 0.5347

0.75 0.7112 0.8311 0.7314 0.7837 0.7408 0.7676

-0.75 -6.0000 0.25 0.0991 0.2843 0.1844 0.2828 0.2221 0.2744

0.5 0.3096 0.6752 0.4121 0.6120 0.4521 0.5730

0.75 0.7093 0.8974 0.7311 0.8257 0.7440 0.7889

Table 3.21: Simulated data from Clayton copula; adaptive-nn; kz = 2

τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2365 0.2890 0.2397 0.2620 0.2431 0.2558

0.5 0.4808 0.5263 0.4939 0.5138 0.4953 0.5062

0.75 0.7199 0.7681 0.7407 0.7591 0.7426 0.7522

0.5 2.0000 0.25 0.2236 0.2859 0.2352 0.2620 0.2466 0.2606

0.5 0.4753 0.5284 0.4852 0.5090 0.4916 0.5024

0.75 0.7208 0.7683 0.7398 0.7590 0.7474 0.7565

0.25 0.6667 0.25 0.2246 0.2899 0.2303 0.2580 0.2452 0.2571

0.5 0.4774 0.5438 0.4891 0.5193 0.4926 0.5090

0.75 0.7223 0.7766 0.7426 0.7644 0.7425 0.7536

-0.25 -0.6667 0.25 0.1953 0.2720 0.2321 0.2668 0.2448 0.2598

0.5 0.4245 0.5568 0.4722 0.5303 0.4877 0.5166

0.75 0.7161 0.7986 0.7301 0.7620 0.7452 0.7630

-0.5 -2.0000 0.25 0.1547 0.2645 0.2130 0.2638 0.2403 0.2675

0.5 0.3897 0.5925 0.4513 0.5489 0.4888 0.5435

0.75 0.7249 0.8351 0.7283 0.7794 0.7488 0.7710

-0.75 -6.0000 0.25 0.0905 0.2351 0.1728 0.2646 0.2061 0.2530

0.5 0.3256 0.6820 0.4110 0.6108 0.4509 0.5676

0.75 0.7723 0.9183 0.7516 0.8363 0.7459 0.7970

Table 3.22: Simulated data from Clayton copula; adaptive-nn; kz = 3
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 6.0000 0.25 0.2376 0.2911 0.2460 0.2669 0.2415 0.2516

0.5 0.4800 0.5313 0.4991 0.5198 0.4979 0.5082

0.75 0.7193 0.7616 0.7455 0.7634 0.7418 0.7526

0.5 2.0000 0.25 0.2386 0.2961 0.2469 0.2759 0.2481 0.2607

0.5 0.4797 0.5328 0.4965 0.5193 0.5010 0.5118

0.75 0.7147 0.7610 0.7441 0.7601 0.7455 0.7555

0.25 0.6667 0.25 0.2201 0.2852 0.2391 0.2660 0.2445 0.2585

0.5 0.4712 0.5425 0.4839 0.5146 0.4959 0.5099

0.75 0.7181 0.7690 0.7397 0.7583 0.7472 0.7569

-0.25 -0.6667 0.25 0.1905 0.2680 0.2375 0.2773 0.2380 0.2549

0.5 0.4378 0.5651 0.4870 0.5396 0.4843 0.5142

0.75 0.7310 0.8116 0.7472 0.7807 0.7458 0.7621

-0.5 -2.0000 0.25 0.1402 0.2419 0.2112 0.2597 0.2357 0.2602

0.5 0.3925 0.5947 0.4602 0.5554 0.4784 0.5366

0.75 0.7478 0.8503 0.7381 0.7853 0.7459 0.7716

-0.75 -6.0000 0.25 0.0661 0.1866 0.1598 0.2370 0.2094 0.2582

0.5 0.3320 0.6946 0.4005 0.6002 0.4530 0.5701

0.75 0.8269 0.9386 0.7632 0.8482 0.7565 0.8036

Table 3.23: Simulated data from Clayton copula; adaptive-nn; kz = 4
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(a) kz = 1, n = 20 (b) kz = 1, n = 50 (c) kz = 1, n = 100

(d) kz = 2, n = 20 (e) kz = 2, n = 50 (f) kz = 2, n = 100

(g) kz = 3, n = 20 (h) kz = 3, n = 50 (i) kz = 3, n = 100

(j) kz = 4, n = 20 (k) kz = 4, n = 50 (l) kz = 4, n = 100

Figure 3.15: 3D-plot of probabilities hij for Clayton simulated data for kz = 1, 2, 3, 4

and τ = −0.75

For data simulated from the Frank copula, the performance of the method is

shown in Tables 3.24 - 3.26, for kz = 1, kz = 2 and kz = 3, respectively. For kz = 4,
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the results leads to similar conclusion as data simulated from the Clayton copula

discussed above. We see that q ∈ [p1, p2] for all repeated cases for kz = 1 and

kz = 2. For kz = 3, there are cases where q is not contained in intervals [p1, p2],

but the number of q not contained in the intervals [p1, p2] are less than for the data

simulated from the Clayton copula. Another noticeable feature from these tables is

that the predictive performance of the proposed method (most cases) works well,

with data simulated from the Frank copula compared to data simulated from the

Clayton copula. This happened because of the characteristic of the copula itself. The

3D-plot of the probabilities hij for Frank copula is given in Figure 3.16. Figure 3.16

shows that the probabilities hij are symmetrically distributed due to the fact that

we simulate data from the Frank copula. This figure shows that the probabilities hij

decreases as kz and n increases, which again, shows the LSCV bandwidth selection

with adaptive-nn bandwidth over-smooth the probabilities hij.

τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2229 0.2705 0.2427 0.2621 0.2413 0.2516

0.5 0.4720 0.5224 0.4933 0.5145 0.4984 0.5074

0.75 0.7251 0.7770 0.7478 0.7676 0.7466 0.7560

0.5 5.7363 0.25 0.2241 0.2787 0.2359 0.2592 0.2461 0.2576

0.5 0.4766 0.5335 0.4884 0.5128 0.4975 0.5085

0.75 0.7268 0.7783 0.7356 0.7594 0.7448 0.7576

0.25 2.3719 0.25 0.2226 0.2804 0.2423 0.2674 0.2438 0.2565

0.5 0.4717 0.5353 0.4895 0.5150 0.4908 0.5035

0.75 0.7237 0.7827 0.7330 0.7578 0.7422 0.7567

-0.25 -2.3719 0.25 0.2047 0.2924 0.2347 0.2698 0.2411 0.2582

0.5 0.4354 0.5585 0.4738 0.5228 0.4916 0.5191

0.75 0.7123 0.8003 0.7302 0.7674 0.7392 0.7566

-0.5 -5.7363 0.25 0.1827 0.3162 0.2233 0.2814 0.2410 0.2690

0.5 0.4099 0.5957 0.4684 0.5494 0.4854 0.5279

0.75 0.6951 0.8276 0.7295 0.7837 0.7386 0.7667

-0.75 -14.1385 0.25 0.1157 0.3505 0.1907 0.3010 0.2174 0.2763

0.5 0.3468 0.6697 0.4299 0.5859 0.4601 0.5441

0.75 0.6667 0.8918 0.7046 0.8185 0.7315 0.7861

Table 3.24: Simulated data from Frank copula; adaptive-nn; kz = 1
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τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2264 0.2717 0.2389 0.2593 0.2440 0.2543

0.5 0.4836 0.5296 0.4919 0.5130 0.4937 0.5042

0.75 0.7232 0.7754 0.7422 0.7642 0.7421 0.7520

0.5 5.7363 0.25 0.2318 0.2788 0.2378 0.2586 0.2461 0.2555

0.5 0.4746 0.5239 0.4864 0.5068 0.4939 0.5036

0.75 0.7202 0.7722 0.7338 0.7552 0.7456 0.7577

0.25 2.3719 0.25 0.2288 0.2878 0.2464 0.2688 0.2485 0.2604

0.5 0.4776 0.5420 0.4925 0.5208 0.4927 0.5067

0.75 0.7199 0.7734 0.7392 0.7647 0.7437 0.7555

-0.25 -2.3719 0.25 0.2037 0.2902 0.2319 0.2709 0.2411 0.2577

0.5 0.4436 0.5713 0.4730 0.5250 0.4890 0.5167

0.75 0.7152 0.7992 0.7328 0.7726 0.7409 0.7603

-0.5 -5.7363 0.25 0.1706 0.2948 0.2222 0.2773 0.2431 0.2715

0.5 0.4065 0.5896 0.4655 0.5473 0.4984 0.5370

0.75 0.7054 0.8305 0.7334 0.7862 0.7487 0.7714

-0.75 -14.1385 0.25 0.0993 0.3055 0.1819 0.2921 0.2236 0.2801

0.5 0.3367 0.6632 0.4224 0.5828 0.4618 0.5441

0.75 0.6954 0.9030 0.7211 0.8189 0.7308 0.7843

Table 3.25: Simulated data from Frank copula; adaptive-nn; kz = 2

τ θ q
n = 20 n = 50 n = 100

p1 p2 p1 p2 p1 p2

0.75 14.1385 0.25 0.2322 0.2825 0.2453 0.2664 0.2479 0.2571

0.5 0.4864 0.5381 0.4929 0.5127 0.4972 0.5076

0.75 0.7270 0.7750 0.7441 0.7637 0.7437 0.7536

0.5 5.7363 0.25 0.2392 0.2927 0.2353 0.2560 0.2359 0.2477

0.5 0.4817 0.5360 0.4915 0.5117 0.4924 0.5010

0.75 0.7182 0.7714 0.7375 0.7588 0.7387 0.7498

0.25 2.3719 0.25 0.2206 0.2799 0.2452 0.2691 0.2479 0.2598

0.5 0.4733 0.5323 0.4848 0.5119 0.4952 0.5097

0.75 0.7145 0.7704 0.7357 0.7587 0.7466 0.7591

-0.25 -2.3719 0.25 0.1991 0.2782 0.2288 0.2663 0.2426 0.2621

0.5 0.4288 0.5523 0.4806 0.5331 0.4843 0.5149

0.75 0.7094 0.7979 0.7389 0.7739 0.7407 0.7602

-0.5 -5.7363 0.25 0.1617 0.2826 0.2171 0.2747 0.2392 0.2678

0.5 0.4134 0.5905 0.4606 0.5395 0.4882 0.5311

0.75 0.7219 0.8448 0.7276 0.7841 0.7450 0.7708

-0.75 -14.1385 0.25 0.0748 0.2430 0.1706 0.2705 0.2081 0.2610

0.5 0.3389 0.6631 0.4231 0.5745 0.4592 0.5426

0.75 0.7582 0.9316 0.7276 0.8341 0.7413 0.7962

Table 3.26: Simulated data from Frank copula; adaptive-nn; kz = 3



3.4. Predictive performance 85

(a) kz = 1, n = 20 (b) kz = 1, n = 50 (c) kz = 1, n = 100

(d) kz = 2, n = 20 (e) kz = 2, n = 50 (f) kz = 2, n = 100

(g) kz = 3, n = 20 (h) kz = 3, n = 50 (i) kz = 3, n = 100

Figure 3.16: 3D-plot of probabilities hij for Frank simulated data for kz = 1, 2, 3

and τ = −0.75

From this simulation study, the proposed method can be considered to work quite

well to giving q ∈ [p1, p2], for positive and negative correlation, for the considered

sample sizes. However, the performance of the proposed method depends on the

kz value and the distribution used for the simulation. As discussed above, the

conditions for the probabilities hij mentioned in Section 2.3 are not met, as kz

increases or n increases. From this simulation study, it is suggested that the proposed

method works best if we used kz = 1, kz = 2 or kz = 3, regardless of sample size

(for n = 20, 50, 100), the strength of the correlation and the copula families. The
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proposed method also works well with kz = 4 for n ≥ 50, except for τ = −0.75 in

Table 3.23.

As known, kz also controls the bandwidth for the adaptive-nn bandwidth. In

this simulation study, we do not show the exact value of the bandwidth. However,

as mentioned before in Section 3.2, the bandwidth decreases as kz increases or n

increases. From Section 3.4.1, the average bandwidths for data simulated from the

Clayton copula are shown in Table 3.17 which give large values of kz for most cases

discussed. As we compare the average bandwidth obtained in Section 3.4.1 with the

predictive performance in this section, the predictive performance of the proposed

method work well when we have smaller values of kz especially for the negative

correlation.

In terms of imprecision, for corresponding cases with increasing n, the impre-

cision, reflected through the difference p2 − p1, decreases. This is logical from the

perspective that more data allow more precise inferences, which is common in statis-

tical methods using imprecise probabilities [2]. In addition, as the events of interest

involve sum of the bivariate data, the imprecision of the proposed method is larger

in case of negative correlation than for positive correlation, as discussed in Section

2.5.

Generally, based on simulation study in Sections 3.4.1 and 3.4.2, for the mis-

specified copula occurred in Chapter 2, the proposed method work quite well with

kernel-based copula for larger n as discussed above. However, the performance of

the proposed method depends on the bandwidth selections, types of bandwidths

and the characteristic of the simulated data. The probabilities hij obtained rely on

a trade-off between the value of kz and the sample size. As our main interest is

to use the nonparametric copula in order to solve the misspecified copula for larger

sample size, further study is needed by using other types of nonparametric copulas

in comparison to the results obtained in this chapter. One should also consider other

types of dependence structures such as nonlinear. We left these as topics for future

research.
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3.5 Examples

In this section, we present two examples using the same data sets discussed in Section

2.6 in order to show the proposed method with kernel-based copula for real data

sets.

3.5.1 Insurance example

Consider the insurance data set in example 2.6.1 with interest in the same event

Tn+1 = Xn+1 + Yn+1 > t. We study the appropriate bandwidth to be used for these

data in order to obtain good prediction for a future observation. Recall that in

Section 3.3.2, we have used same data set in order to investigate which bandwidth

selections and types of bandwidths to be used for analysing the predictive perfor-

mance of the proposed method. However, based on simulation results in Section

3.4.2, we investigate more details which values of kz to be used for prediction. We

used kz = 1, 2, 3, 4 as discussed in Section 3.4.2. The results are shown in Table 3.27

and the corresponding bandwidths are given in Table 3.28.

t in 1000s
kz = 1 kz = 2 kz = 3 kz = 4

P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t) P (Tn+1 > t)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.9089 0.9651 0.8993 0.9501 0.8956 0.9403 0.8914 0.9335

10 0.7084 0.7444 0.7158 0.7568 0.7286 0.7784 0.7366 0.7855

15 0.5605 0.6353 0.5661 0.6376 0.5917 0.6528 0.6053 0.6649

20 0.4998 0.5546 0.5016 0.5564 0.5130 0.5696 0.5230 0.5826

25 0.4536 0.5050 0.4567 0.5096 0.4527 0.5110 0.4564 0.5194

30 0.4157 0.4897 0.4167 0.4883 0.4098 0.4742 0.4083 0.4754

35 0.3340 0.4153 0.3367 0.4169 0.3363 0.4034 0.3345 0.3995

40 0.2953 0.3641 0.2944 0.3656 0.2925 0.3585 0.2899 0.3545

45 0.2702 0.3342 0.2681 0.3348 0.2650 0.3318 0.2638 0.3302

50 0.2637 0.3310 0.2602 0.3306 0.2491 0.3188 0.2433 0.3125

55 0.2006 0.2679 0.1997 0.2691 0.2092 0.2737 0.2093 0.2705

60 0.1944 0.2612 0.1909 0.2579 0.1934 0.2588 0.1924 0.2546

65 0.1846 0.2447 0.1804 0.2398 0.1749 0.2402 0.1728 0.2367

70 0.1395 0.2006 0.1371 0.2011 0.1430 0.2106 0.1458 0.2109

75 0.1311 0.1829 0.1278 0.1795 0.1323 0.1899 0.1342 0.1922

80 0.1203 0.1593 0.1171 0.1570 0.1150 0.1663 0.1152 0.1696

85 0.1025 0.1378 0.0992 0.1351 0.0949 0.1444 0.0947 0.1484

Table 3.27: NPI lower and upper probabilities; different values of kz
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kz b for Loss b for ALAE

1 0.1332 0.1332

2 0.2664 0.2664

3 0.3996 0.3996

4 0.5329 0.5329

Table 3.28: Bandwidth for Loss, x and ALAE, y

Table 3.27 shows the NPI lower and upper probabilities for the event Tn+1 > t

for different values of kz. There are many ways to explain the lower and upper

probabilities obtained depending on the actual questions of interest. This table

shows that the value of NPI lower and upper probabilities for the event Tn+1 > t

are different at each t among the values of kz considered. It is quite difficult to see

the differences between the kz from this table. However, these NPI lower and upper

probabilities have been shown in Figure 3.7 in Section 3.3.2, which show that the

NPI lower and upper probabilities become smooth as kz increases. As mentioned

in Section 3.4.2, as the kz increases, the adaptive-nn bandwidth will not satisfy the

conditions discussed in Section 2.3 where the sum of probabilities hij are not equal

to 1.
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(a) kx = ky = 1 (b) kx = ky = 2

(c) kx = ky = 3 (d) kx = ky = 4

Figure 3.17: 3D-plot of probabilities hij for adaptive-nn bandwidth with kz =

1, 2, 3, 4 and kx = ky

Figure 3.17 shows 3D-plot of the probabilities hij for kz = 1, 2, 3, 4. As seen in

Figure 3.17, the probabilities hij are different for each value of kz, which reflects the

imprecision (the difference between the NPI upper and lower probabilities). Given

smaller values of kz, the probabilities hij are higher near the observation data. Figure

3.18 shows that the imprecision for kz = 1 and kz = 2 is not consistent (fluctuate up

and down) for different values of t. While for kz = 3 and kz = 4, the imprecision is

quite consistent with different values of t but it is not that much differences compared

to kz = 1 and kz = 2. As discussed in Sections 2.6.1 and 3.4.2, this happens due

to the sum event considered, which the imprecision is pretty similar through the

main range of empirical distribution of the values xi + yi due to positive correlation
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between Loss and ALEA combined with interest in the sum of these quantities.

Figure 3.18: Imprecision for different values of kz

In Table 3.28, the bandwidths increase as the values of kz increase. This feature

occurs due to the adaptive-nn bandwidth applied which it consider the kth nearest

neighbour to estimate the density. The bandwidth of this data set is identical for

loss and ALAE, due to same value of kz used for both variables and the transform

data used in estimating the density.

3.5.2 Body-Mass Index example

Consider the same data set and event of interest for the Body-Mass Index (BMI)

as in example 2.6.2 in Section 2.6. Suppose that we are interested in the event that

the next 11 year old girl has healthy weight, so, the event of interest E(Xn+1, Yn+1)

is that BMI(Xn+1, Yn+1) ∈ [14.08, 19.50). This example is different from the sum

event that we have in example 3.5.1.

The lower and upper probabilities that resulting from our method for under-

weight, healthy weight, overweight and obese categories, using equations (2.3) and

(2.4) in Section 2.4, are given in Table 3.29. For this table, we use the same al-

gorithm from R package np [49] used in Section 3.4.1 to compute the bandwidths

for height and weight. Table 3.29 shows the lower and upper probabilities for all
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bandwidth selections and types of bandwidths considered in this example. The cor-

responding bandwidths are given in Table 3.30. For LSCV bandwidth selection with

adaptive-nn bandwidth, the algorithm produced kh = 6 and kw = 4 for height and

weight variables, respectively, and the corresponding bandwidths are given in Table

3.30.

BMI∈

LSCV, Normal reference LSCV,

Fixed bandwidth rule-of-thumb averaging adaptive-nn

P P P P P P

Underweight [6.92,14.08) 0.0758 0.1486 0.0906 0.1607 0.0818 0.1504

Healthy weight [14.08,19.50) 0.5910 0.7330 0.5745 0.7147 0.5892 0.7277

Overweight [19.50,24.14) 0.1475 0.2519 0.1442 0.2512 0.1456 0.2519

Obese [24.14,38.40) 0.0084 0.0437 0.0136 0.0505 0.0085 0.0449

Table 3.29: NPI lower and upper probabilities for different types of bandwidths

Types of bandwidths b for heights b for weights

LSCV, Fixed 0.1197 0.1073

Normal reference rule-of-thumb 0.1450 0.1450

LSCV, averaging adaptive-nn 0.7280 0.4854

Table 3.30: Bandwidth for height, h and weight, w

The 3D-plots in Figure 3.19 shows that the probabilities hij are quite similar for

all methods applied, where the probabilities hij are higher at left-front corner of the

3D-plots compared to other corners. In addition, as the data set has a strong positive

correlation, the probabilities hij are along the diagonal of the left-front corner to

the right-back corner of the 3D-plots for all methods. However, the probabilities hij

are quite different at certain values of (xi, yi). It should be emphasized that in this

example we have different events from the sum event that we have above. Therefore,

the direction (from left-front corner to right-back corner of the 3D-plots) of the

probabilities hij to be included when calculating the lower and upper probabilities

are different from example 3.5.1. The lower and upper probabilities obtained in

Table 3.29 are reasonable and can be used in prediction. For example, from Table

3.29, the next eleven-year-old girl has healthy weight is at least 59.10% chances and

at most 73.30% chances using the LSCV with fixed bandwidth.

The bandwidth obtained are different among the methods used which can be
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seen in Table 3.30, especially for adaptive-nn bandwidth. This occurred due to how

the bandwidth selections and types of bandwidths chose the bandwidth, whereby

the LSCV bandwidth selection is based on the minimum integrated squared error,

and the adaptive-nn is based on the minimum distance from the observations to the

nearest neighbour, as discussed in Section 3.2. We further investigate the adaptive-

nn bandwidth for this example in order to study more details how the probabilities

hij spread.

(a) LSCV and fixed bandwidth (b) Normal reference rule-of-thumb

(c) LSCV and adaptive-nn bandwidth,

kh = 6 and kw = 4

Figure 3.19: 3D-plot of probabilities hij for different bandwidth selections and types

of bandwidths
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Table 3.31 shows the lower and upper probabilities of the BMI event (for all

categories) using different values of kz using the adaptive-nn bandwidth. We used

kz = 1, 2, 3, 4, 5, and the corresponding bandwidth for height and weight are also

given in Table 3.31. In this example, we consider equal value of kz for heights and

weights.

kz b BMI(Xn+1, Yn+1) ∈ P P 4(·)

1 0.1213 Underweight [6.92, 14.08) 0.0290 0.1303 0.1012

Healthy weight [14.08, 19.50) 0.6031 0.7675 0.1644

Overweight [19.50, 24.14) 0.1685 0.2664 0.0979

Obese [24.14, 38.40) 0.0002 0.0349 0.0347

2 0.2427 Underweight [6.92, 14.08) 0.0457 0.1303 0.0846

Healthy weight [14.08, 19.50) 0.6069 0.7596 0.1527

Overweight [19.50, 24.14) 0.1585 0.2611 0.1026

Obese [24.14, 38.40) 0.0017 0.0362 0.0346

3 0.3640 Underweight [6.92, 14.08) 0.0578 0.1353 0.0775

Healthy weight [14.08, 19.50) 0.6044 0.7473 0.1429

Overweight [19.50, 24.14) 0.1570 0.2577 0.1006

Obese [24.14, 38.40) 0.0026 0.0379 0.0353

4 0.4854 Underweight [6.92, 14.08) 0.0709 0.1423 0.0715

Healthy weight [14.08, 19.50) 0.6005 0.7394 0.1389

Overweight [19.50, 24.14) 0.1481 0.2523 0.1042

Obese [24.14, 38.40) 0.0049 0.0417 0.0368

5 0.6067 Underweight [6.92, 14.08) 0.0782 0.1499 0.0717

Healthy weight [14.08, 19.50) 0.5908 0.7318 0.1411

Overweight [19.50, 24.14) 0.1450 0.2506 0.1056

Obese [24.14, 38.40) 0.0087 0.0449 0.0362

Table 3.31: NPI lower and upper probabilities for different values of kz; adaptive-nn

bandwidth

As in Section 2.6.2, we assume x0 = 1.25, x31 = 1.70, y0 = 20, y31 = 60, the

minimum BMI index corresponding to x0 = 1.25 and y0 = 20 equal to 6.92, and the

maximum BMI index corresponding to x31 = 1.70 and y31 = 60 is equal to 38.40.

As mentioned in Section 2.6.2, choosing different values for x0, x31, y0 and y31 will

have an impact on the minimum and the maximum values of BMI, therefore will

also affect on the lower and upper probabilities presented in Tables 3.29 and 3.31,

but the impact is expected to be small. These assumed values might be based on
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general information of the variables.

Table 3.31 shows that the lower and upper probabilities obtained for all categories

are different, for different values of kz. This feature occurred due to the different

probabilities hij obtained for different values of kz. This can be shown by using

3D-plots of the probabilities hij in Figure 3.20. As mentioned in Section 3.4.2, as kz

increases, the probabilities hij decrease, whereby the adaptive-nn bandwidth method

over-smooth the probabilities hij. Therefore, this feature is affecting the lower and

upper probabilities obtained in Table 3.31.

Based on the analysis in this example, by considering strong positive correlation

and different event of interest (i.e. BMI), we suggest to used the proposed method

with kz = 1, 2, 3, 4, 5. The proposed method gives reasonable lower and upper

probabilities for all categories for all values of kz discussed above. This show that

the proposed method works well with LSCV bandwidth selection with adaptive-nn

bandwidth.

In Chapters 2 and 3, we used the same examples to illustrate the proposed

method i.e. insurance and BMI examples. For insurance example, the event of

interest is the total sum of the bivariate data. Based on the results discussed in

Sections 2.6.1 and 3.5.1, the proposed method works well either using parametric

copula or kernel-based nonparametric copula given the sample size. However, for

LSCV bandwidth selection with adaptive-nn bandwidth, it was suggested to use

adaptive-nn bandwidth with options kz = 1, kz = 2, kz = 3 or kz = 4 depending on

the interest of study as discussed in Section 3.5.1.

For the BMI example, the event of interest is different from the simulation studies

in Sections 2.5, 3.4.1, 3.4.2 and insurance example. Although the event of interest

is different, how the probabilities hij obtained are similar, including the strength of

the correlation and the sample size, for both parametric and nonparametric copulas.

From this example, the lower and upper probabilities are determined by including

the probabilities hij or not, which also depends on the events of interest. As discussed

in Sections 2.6.2 and 3.5.2, the proposed method works well using both parametric

and kernel-based nonparametric copulas. But, it was suggested to use kz ≤ 5 for the

LSCV bandwidth selection with adaptive-nn bandwidth because as we increase the
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(a) kx = ky = 1 (b) kx = ky = 2

(c) kx = ky = 3 (d) kx = ky = 4

(e) kx = ky = 5

Figure 3.20: 3D-plots of probabilities hij for different values of kz where kx = ky;

adaptive-nn bandwidth
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kz > 5, the probabilities hij will not sum to 1 which dissatisfied the three conditions

discussed in Section 2.3.

3.6 Concluding remarks

In this chapter we presented a new proposed method in Chapter 2 with the use of

nonparametric copulas. The main research of this chapter is to use kernel-based

copula method to overcome the misspecification problem occurred in Chapter 2

where for large data set, the method presented in this chapter can be used and leads

to sensible inferences.

The probabilities hij are the key ingredients of our method for inference. With

a kernel-copula based method, it gives more freedom to obtain the probabilities hij.

However, there are three conditions on the probabilities hij to take into account

as discussed in Section 2.3. Based on our study in this chapter, generally, the

normal reference rule-of-thumb and the LSCV bandwidth selections for fixed and

adaptive-nn types of bandwidths satisfied the conditions. The proposed method

works well specifically for a positive correlation, regardless of sample size. However,

the predictive performance of the proposed method does not work so well for negative

correlation as discussed in Section 3.4.1 specifically for sum event of interest. As we

investigate further the probabilities hij in Section 3.4.2, the proposed method works

well using adaptive-nn bandwidth, regardless of the strength of the correlation but

it depends on the value of kz, where the probabilities hij obtained rely on a trade-off

between the kz and sample size.

As mentioned in Section 3.2, the standard kernel estimator of the copula den-

sity suffers from boundary biases and inconsistency due to unbounded densities.

It should be emphasized that using the NPI on the marginals combined with the

discretization of the copula, the problem does not occur in this research due to

the transformations of variables that are used to estimate the densities, which is

free of boundary bias. However, this topic should be studied in detail theoretically

in terms of mathematical equations, and we left this question as a future research.

Again, in this chapter, the major advantage of this presented method is its relatively
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easy computations, as the use of NPI on the marginals combines naturally with the

discretization of the copula. The kernel-based copulas considered in this chapter

are implemented using command available in R. As long as suitable nonparametric

copula estimation methods are available, these can be implemented in our method

without any difficulties.

However, further study is needed for this chapter, in particular for use of other

nonparametric copula methods, as discussed in Section 3.2, or other types of depen-

dence structures such as nonlinear dependence structure of the bivariate data. The

performance of the proposed method should be studied and investigated. We left

these as topics for future research.



Chapter 4

NPI for combining diagnostic tests

4.1 Introduction

Measuring the accuracy of diagnostics tests is crucial in many application areas in-

cluding medicine and health care. The Receiver Operating Characteristic (ROC)

curve is a popular statistical tool for describing the performance of diagnostic tests.

The area under the ROC curve (AUC) is often used as a measure of the overall per-

formance of the diagnostics test [75]. It is increasingly clear that in medical settings,

one test result is often not sufficient to serve as screening device for early detection

of diseases [43, 100]. In addition, many researchers believe that a combination of

test results will potentially lead to more sensitive screening rules for detecting dis-

eases [67, 77]. Therefore in medical application, there is great interest in developing

strategies for combining test results in order to increase the diagnostic accuracy.

Usually [75], the objective function to be maximized is the area under the ROC

curve (AUC).

Many researchers have discussed ways for combining test results, for example in

[37, 76]. Often, linear combinations of the test results are used. For example, Su

and Liu [91] derived an optimal linear combination that maximises the AUC when

the test results for the non-diseased and diseased categories follow bivariate normal

distributions. Pepe and Thompson [77] considered an empirical search of the optimal

linear combination that maximises the Mann-Whitney U statistic of AUC, but this

method is computationally complex as a search algorithm must be used. Liu et al.

98
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[68] proposed a linear combination by combining the minimum and maximum values

of the test results. This involves searching for a single coefficient that maximises the

Mann-Whitney U statistic of AUC but not all test results are measured on the same

scale [68]. Esteban et al. [37] proposed a step-by-step algorithm for estimating the

parameter of a linear combination of the test results, which is close to the maximizing

the AUC corresponding to the best linear combination. Kang et al. [57] proposed

a nonparametric stepwise approach for the linear combination of the test results

to search coefficient that maximises the Mann-Whitney U statistic of AUC. Both

methods proposed by Esteban et al. [37] and Kang et al. [57] are computationally

tractable. Recently, Yan et al. [99] proposed a combination method called pairwise

approach, to maximize the AUC, by pairing one biomarker with the other biomarkers

separately specifically for weak biomarkers (0.50 < AUC < 0.70).

All researchers mentioned above did not take dependence structures into ac-

count, such as using copula except Ghosh [43] and Sen [86]. Sen [86] presented the

concept of copulas for multivariate distributions and dependence, and motivated

the benefit of copulas via a number of applications including the design of clini-

cal trials, microarray studies with survival endpoints and the analysis of dependent

ROC curves. Ghosh [43] presented a binormal model for ROC curve estimation to

accommodate multiple test results by considering the dependence using copulas. As

mentioned by Bansal and Pepe [5], the dependence could be very important among

the test results. They investigated the increment in the performance of measure

accuracy that is possible by combining a novel continuous test result with a mod-

erately performing standard continuous test result (AUC around 0.70 to 0.80) and

found that an uncorrelated continuous test result with moderate performance on

its own usually yields only minimally improved performance on the AUC [5]. The

novel test result that has very poor performance on its own but is highly correlated

with the standard test result, and a novel test result with poor (AUC < 0.70) to

moderate performance that is highly correlated with the standard test result gives

large improvements in the performance of measure accuracy [5].

The performance of AUC estimation is measured using a re-substitution method

(use complete data set), as used often for example, by Su and Liu [91], Pepe and
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Thomson [77], Pepe [76], Vexler at al. [95], Jin and Lu [54], Esteban at al. [37] and

Liu et al. [68]. Re-substitution methods begin with finding the linear combination

coefficient (let say, optimal coefficient, α̂) from a data set, then a total score is

calculated by linearly combining the diagnostic test results using the optimal coef-

ficient, α̂, which gives the maximal AUC value. Finally, the AUC was maximized

based on the total score. This re-substitution method is usually overoptimistic for

maximizing the diagnostic accuracy of future observations [28, 33, 53, 57]. So, the

maximized AUC may perform well for the data set used but this is no guarantee for

good performance for a future observation. Huang et al. [53] and Kang et al. [57]

propose a leave-out one pair (LO1P) method, which to compares between the linear

combination methods of the test results more fairly. Huang et al. [53] proved that

the LO1P cross validation gives unbiased AUC maximized that associated with the

combination coefficient (i.e. α).

Many articles have addressed the problem of finding the optimal linear combina-

tions to maximise the AUC, as mentioned above. In this chapter, we introduce NPI

for combining two diagnostic test results. First, by considering a weighted average

of the two diagnostic test results without parametric copula, which directly applies

the results of NPI for single diagnostic test [27]. Second we use NPI with a para-

metric copula introduced in Chapter 2, to combine two test results. NPI has been

used for accuracy of the diagnostic tests with ordinal outcomes, with the inferences

based on data for a disease group and non-disease group [35]. For accuracy of bi-

nary tests, NPI has been presented and discussed by Coolen-Maturi et al. [26], and

for continuous test results in [27]. As NPI does not aim at inference for an entire

population but instead explicitly considers a future observation, this provides an

attractive alternative to standard methods [26].

We briefly discuss the basic concept of the empirical (distribution-free approach)

and NPI-based ROC curves for a single test result in Section 4.2. We briefly discuss

the empirical ROC curves for combining two diagnostics test results in order to

optimize the diagnostic accuracy in Section 4.3. We present NPI for combining

two diagnostic tests without copula including ROC curves and AUC in Section 4.4.

In Section 4.5, we present the concepts of NPI for a weighted average of bivariate
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continuous diagnostic test results, taking dependence structure into account using

copulas for ROC curves and the AUC. We investigate the predictive performance of

these approaches in Section 4.6 by simulation study. We present an example using

data from the literature in Section 4.7. The chapter is finished with some concluding

remarks in Section 4.8.

4.2 Receiver Operating Characteristic curve

The evaluation of the accuracy of diagnostic tests is important in medical applica-

tions where such tests are performed to detect diseases. Often, a diagnostic test

yields more than one output value of test results. The diagnostic test results can

take two values (binary test), or a value in a finite number of ordered categories

(ordinal test), or real values (continuous test) [75]. There are several accuracy mea-

sures which vary depending on the type of diagnostic test results mentioned above,

for example for continuous test results, Receiver Operating Characteristic (ROC)

curve is often used [75]. In this chapter, we focus on the ROC curve as we consider

the continuous test results. In addition to medical applications, ROC curves also

play an important role in areas such as signal detection and machine learning [9],

radiology [47], data mining [84] and credit scoring [7].

Let Y denote the result of a diagnostic test, assumed to be a continuous random

quantity. Using a threshold ξ, the test result is assumed to be positive if Y > ξ,

which indicates the disease, and negative if Y ≤ ξ, where ξ ∈ (−∞,∞). The

sensitivity of a test is the probability of a positive test result for an individual with

the disease, this is also known as the true positive fraction (TPF). The specificity

is the probability of a negative test result for an individual without the disease.

An accurate diagnostic test will have sensitivity and specificity both close to one.

The false positive fraction (FPF) is the probability of a positive test result for an

individual without the condition, hence, the specificity is equal to 1− FPF.

Let D denote the disease status, where D = 1 for the diseased group and D = 0

for the non-diseased group. Let Y 1 be used to denote the test result for the diseased

group and Y 0 be used to denote the test result for the non-diseased group, let n1
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and n0 be the numbers of individuals in the diseased and the non-diseased groups,

respectively. The TPF and FPF can be written as

TPF(ξ) = P
[
Y 1 > ξ|D = 1

]
= S1(ξ)

FPF(ξ) = P
[
Y 0 > ξ|D = 0

]
= S0(ξ)

where S1(ξ) and S0(ξ) are the survival functions for the random quantities Y 1 and Y 0

for the diagnostic test results for the diseased and non-diseased groups, respectively.

The ROC curve is a graphical plot that illustrates the performance of diagnostic

tests which yield ordinal or continuous results. The curve is created by plotting the

TPF(ξ) against the FPF(ξ) at all possible threshold settings, ξ and can be defined

as

ROC = {(FPF(ξ),TPF(ξ)) , ξ ∈ (−∞,∞)} (4.1)

The ROC curve depicts relative trade-offs between TPF(ξ) and FPF(ξ). A test

is considered ideal if it completely separates the individuals with and without the

disease for a particular threshold ξ, FPF(ξ) = 0 and TPF(ξ) = 1. For an extreme

situation, a test has no ability to distinguish between the individuals with and

without the disease if FPF(ξ) = TPF(ξ) for all thresholds ξ.

4.2.1 Empirical ROC curve

In this section, we briefly review the empirical method for the ROC curve. The

ROC curve depends on the distributions of Y 1 and Y 0, however these distributions

are usually unknown. The ROC curve for a diagnostic test with continuous results

can be estimated by the nonparametric empirical method. This method is popular

due to its flexibility to adapt fully to the available data, it yields the empirical ROC

curve which we will use in Section 4.3, in particular to compare with the NPI method

introduced in this thesis. Methods using assumed parametric distributions for both

Y 1 and Y 0, together with methods for estimation of the parameters, are of course

also used, but are less popular because these require strong assumptions about the

forms of the distribution of the diagnostic test results [75]. More details on these

methods can be found in [75].
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Suppose that we have test data on n1 individuals from a diseased group and n0 in-

dividuals from a non-diseased group, denoted by y1
i , i = 1, ..., n1 and y0

i , i = 1, ..., n0,

respectively. Assume that the two groups are fully independent, meaning that no

information about any aspect related to one group contains information about any

aspect of the other group. For the empirical ROC curve method, these observations

per group are assumed to be realisations of random quantities that are identically

distributed as Y 1 for the diseased group, and as Y 0 for the non-diseased group, with

corresponding survival functions S1(y) = P [Y 1 > y] and S0(y) = P [Y 0 > y]. The

empirical estimator of the ROC is [75],

R̂OC =
{(

F̂PF(ξ), T̂PF(ξ)
)
, ξ ∈ (−∞,∞)

}
(4.2)

with

T̂PF(ξ) = Ŝ1(ξ) =
1

n1

n1∑
i=1

1{y1
i > ξ} (4.3)

F̂PF(ξ) = Ŝ0(ξ) =
1

n0

n0∑
i=1

1{y0
i > ξ} (4.4)

where 1 {A} is the indicator function which is equal to 1 if A is true and 0 else,

and where Ŝ1(ξ) and Ŝ0(ξ) are the empirical survival functions for Y 1 and Y 0,

respectively.

To represent the accuracy of a diagnostic test or to compare two or more ROC

curves, a single numerical value or summary may be useful in many cases [75].

A useful summary is the area under the ROC curve, AUC [75]. The AUC mea-

sures the overall performance of the diagnostic test. Higher values of AUC in-

dicate more precise tests, with AUC = 1 for a perfect test, and AUC = 0.5

for uninformative tests. We can also write the ROC curve in equation (4.2) as

ROC(·) = {(t, ROC(t)), t ∈ (0, 1)}, where the ROC function maps t to TPF (ξ),

and ξ is the threshold corresponding to FPF (ξ) = t [75]. Thus the AUC is [75]

AUC =

∫ 1

0

ROC(t)dt (4.5)

The AUC is equal to the probability that the test results from a randomly selected

pair of diseased and non-diseased subjects are correctly ordered [4], i.e.

AUC = P
[
Y 1 > Y 0

]
(4.6)
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Proof:We have

AUC =

∫ 1

0

ROC(t)dt

=

∫ 1

0

S1(S−1
0 (t))dt

=

∫ ∞
−∞

S1(y)dS0(y)

=

∫ ∞
−∞

P [Y 1 > y]f0(y)

Using the change of variable from t to y = S−1
0 in the second line and where f0

denotes the probability density function for Y0 in the third line. Thus by statistical

independence of Y1 and Y0, we can write

AUC =

∫ ∞
−∞

P [Y 1 > y, Y 0 = y]dy

=P [Y 1 > Y 0]

2

The empirical estimator of the AUC is the well-known Mann-Whitney U statistic

[75], which is defined as

ÂUC =
1

n1n0

n0∑
j=1

n1∑
i=1

ψ(y1
i , y

0
j ) (4.7)

where

ψ(y1
i , y

0
j ) =


1, if y1

i > y0
j

1
2
, if y1

i = y0
j

0, if y1
i < y0

j

(4.8)

The empirical estimation ÂUC value will be used in Section 4.3 for a weighted

average of bivariate diagnostic test results.

4.2.2 NPI for ROC curve

In this section, we introduce Nonparametric Predictive Inference (NPI) for diag-

nostic accuracy, following Coolen-Maturi et al. [27]. The NPI method is different

from the nonparametric empirical method as it is explicitly predictive, considering
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a single next future observation given the past observations instead of aiming at

estimation for an entire assumed underlying population. As mentioned in Section

1.2, in NPI the uncertainty is quantified by lower and upper probabilities for events

of interest. The NPI lower and upper ROC curves, and the corresponding lower

and upper AUC, have been derived by Coolen-Maturi et al. [27], corresponding to

the assumptions A(n1) for the diseased group and A(n0) for the non-diseased group,

where the inferences involve one further patient from each group.

Suppose that {Y 1
i , i = 1, ..., n1, n1 + 1} and {Y 0

i , i = 1, ..., n0, n0 + 1} are contin-

uous and exchangeable random quantities from the diseased group and the non-

diseased group, where Y 1
n1+1 and Y 0

n0+1 are the next future observations from the

diseased and non-diseased groups following n1 and n0 observations, respectively. As

explained in Section 4.2.1, we assume that both groups are fully independent. Let

y1
1 < ... < y1

n1
be the ordered observed values for n1 individuals from the diseased

group and y0
1 < ... < y0

n0
the ordered observed values for n0 individuals from the

non-diseased group. For ease of notation, let y1
0 = y0

0 = −∞ and y1
n1+1 = y0

n0+1 =∞

and assume that there are no ties in the data. The NPI lower and upper survival

functions for Y 1
n1+1 and Y 0

n0+1 are

TPF (ξ) = S1(ξ) = P (Y 1
n1+1 > ξ) =

∑n1

i=1 1{y1
i > ξ}

n1 + 1
(4.9)

TPF (ξ) = S1(ξ) = P (Y 1
n1+1 > ξ) =

∑n1

i=1 1{y1
i > ξ}+ 1

n1 + 1
(4.10)

FPF (ξ) = S0(ξ) = P (Y 0
n0+1 > ξ) =

∑n0

j=1 1{y0
j > ξ}

n0 + 1
(4.11)

FPF (ξ) = S0(ξ) = P (Y 0
n0+1 > ξ) =

∑n0

j=1 1{y0
j > ξ}+ 1

n0 + 1
(4.12)

where P and P are the NPI lower and upper probabilities [1]. These NPI lower and

upper survival functions are used to derive the lower and upper FPF and TPF for

the next future individual per group, for different threshold values ξ, which then

are combined to derive the corresponding NPI lower and upper ROC curves. The

NPI lower and upper survival functions are optimal bounds for all survival functions

corresponding to A(n), they immediately lead to the optimal bounds for the TPF

and FPF [22]. As the ROC combines the survival functions for the two groups, the
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NPI lower and upper ROC curves are defined to be the optimal bounds for all such

curves corresponding to any pair of survival functions S1(t) and S0(t) for Y 1
n1+1 and

Y 0
n0+1 in between their respective NPI lower and upper survival functions as given by

equations (4.9) - (4.12). As the ROC curve depends monotonously on the survival

functions, it is easily seen that the optimal bounds, the NPI lower and upper ROC

curves, are [27]

ROC =
{(
FPF (ξ), TPF (ξ)

)
, ξ ∈ (−∞,∞)

}
(4.13)

ROC =
{(
FPF (ξ), TPF (ξ)

)
, ξ ∈ (−∞,∞)

}
(4.14)

For all ξ, it can be seen that FPF (ξ) ≤ F̂PF(ξ) ≤ FPF (ξ) and TPF (ξ) ≤ T̂PF(ξ) ≤

TPF (ξ). This implies that the empirical ROC curve is bounded by the NPI lower

and upper ROC curves [27].

Consider an event that the test result for the next future individual from the

diseased group is greater than the test result for the next future individual from the

non-diseased group, the NPI lower and upper probabilities for the event is defined

as [27]

AUC = P (Y 1
n1+1 > Y 0

n0+1) =
1

(n1 + 1)(n0 + 1)

n0∑
j=1

n1∑
i=1

1(y1
i ≥ y0

j ) (4.15)

AUC = P (Y 1
n1+1 > Y 0

n0+1) =
1

(n1 + 1)(n0 + 1)

[
n0∑
j=1

n1∑
i=1

1
{
y1
i ≥ y0

j

}
+ n1 + n0 + 1

]
(4.16)

The imprecision of the NPI lower and upper AUC (the difference between NPI upper

AUC and the NPI lower AUC) depends only on the two sample sizes, n1 and n0 [27].

The empirical and NPI lower and upper ROC curves discussed here will be used in

Sections 4.3 and 4.4.

4.3 Empirical method for combining two diagnos-

tic tests

In this section, we briefly review methods used for combining two diagnostic tests

in order to optimize the diagnostic accuracy by following Pepe and Thompson [77],

who proposed an empirical approach which relates to our work in this chapter.
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Let D be a disease status where D = 1 for diseased group and D = 0 for non-

diseased group. Let XD and Y D be continuous random quantities of two diagnostic

test results. Consider a weighted average of the two test results, TD(XD, Y D) =

αXD + (1 − α)Y D where α ∈ [0, 1] and the coefficient α is chosen to maximize

the diagnostic accuracy associated with the resultant composite score TD. In this

chapter, we focus on the area under the ROC curve (AUC) as the objective function

following [77]. As discussed in Section 4.2, the ROC curve for a total or composite

score such as TD is defined as the set of points {(FPF (ξ), TPF (ξ)), ξ ∈ (−∞,∞)}

where TPF (ξ) = P [T 1
i > ξ|D = 1] and can be interpreted as the true positive rate

associated with the positivity criterion T > ξ and FPF (ξ) = P [T 0
i > ξ|D = 0],

which similarly can be interpreted as the false positive rate at threshold ξ [77].

Suppose that we have two test results on each of n1 individuals from a diseased

group and n0 individuals from a non-diseased group, denoted by {(x1
i , y

1
i ), i = 1, ..., n1}

and
{

(x0
j , y

0
j ), j = 1, ..., n0

}
, respectively. Consider a weighted average of the test re-

sults, t1i = αx1
i +(1−α)y1

i for diseased group and t0j = αx0
j+(1−α)y0

j for non-diseased

group where α ∈ [0, 1]. In line with equations (4.2) - (4.4), the empirical estimator

of the ROC curve is

R̂OC =
{(

F̂PF(ξ), T̂PF(ξ)
)
, ξ ∈ (−∞,∞)

}
(4.17)

with

T̂PF(ξ) = Ŝ1(ξ) =
1

n1

n1∑
i=1

1{t1i > ξ} (4.18)

F̂PF(ξ) = Ŝ0(ξ) =
1

n0

n0∑
j=1

1{t0j > ξ} (4.19)

where 1 {A} is the indicator function which is equal to 1 if A is true and 0 else, and

where Ŝ1(·) and Ŝ0(·) are the empirical survival functions for T 1 and T 0, respectively.

The AUC of the TD can be interpreted as a probability P [T 1 ≥ T 0] where T 1

and T 0 are composite scores for independent, randomly selected study units from the

diseased and non-diseased groups, respectively [4]. As mentioned in Section 4.2.1,

the empirical estimator of the AUC is the well-known Mann-Whitney U statistic

[75], which is defined in equation (4.7). Alternatively, the AUC associated with
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TD(XD, Y D) given by Pepe and Thomson [77] is

ÂUC =
1

n1n0

n0∑
j=1

n1∑
i=1

1
{
αx1

i + (1− α)y1
i ≥ αx0

j + (1− α)y0
j

}
(4.20)

An optimal coefficient, αopt is defined by α that maximizes the AUC in equation

(4.20) and can be denoted by α̂.

We should emphasize that the linear combination used by Pepe and Thomson

in [77] is slightly different from our weighted average.

4.4 NPI without copula for combining two diag-

nostic tests

In this section, we present NPI for a weighted average of two diagnostic test results

without copula where we directly apply the results presented in Section 4.2.2. Con-

sider the same random quantity of diagnostics test results, X and Y in Section 4.3,

let XD
nD+1 and Y D

nD+1 be the next future observation of the diagnostics test results

and let TDnD+1 = αXD
nD+1 + (1− α)Y D

nD+1 be the weighted average of the future two

test results where α ∈ [0, 1]. Let t11 < ... < t1n1
be the ordered observed values for n1

total of the two test results from the diseased group and t01 < ... < t0n0
be the ordered

observed values for n0 total of the two test results from the non-diseased group. For

ease of notation, let t10 = t00 = −∞ and t1n1+1 = t0n0+1 = ∞. We assume that there

are no ties in the data (these can be dealt with by assuming that such observations

differ by a very small amount, a common method to break ties in statistics [71]).

From equations (4.9) - (4.12) in Section 4.2.2, the NPI lower and upper survival

functions for T 1
n1+1 and T 0

n0+1 are

TPF (ξ) = S1(ξ) = P (T 1
n1+1 > ξ) =

∑n1

i=1 1{t1i > ξ}
n1 + 1

(4.21)

TPF (ξ) = S1(ξ) = P (T 1
n1+1 > ξ) =

∑n1

i=1 1{t1i > ξ}+ 1

n1 + 1
(4.22)

FPF (ξ) = S0(ξ) = P (T 0
n0+1 > ξ) =

∑n0

j=1 1{t0j > ξ}
n0 + 1

(4.23)

FPF (ξ) = S0(ξ) = P (T 0
n0+1 > ξ) =

∑n0

j=1 1{t0j > ξ}+ 1

n0 + 1
(4.24)
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where P and P are the NPI lower and upper probabilities [1] and threshold, ξ ∈

(−∞,∞). In line with equations (4.13) and (4.14) in Section 4.2.2, the ROC curve

clearly depends monotonously on the survival functions, it is easily seen that the

optimal bounds, which define to be the NPI lower and upper ROC curves, are

ROC =
{(
FPF (ξ), TPF (ξ)

)
, ξ ∈ (−∞,∞)

}
(4.25)

ROC =
{(
FPF (ξ), TPF (ξ)

)
, ξ ∈ (−∞,∞)

}
(4.26)

For all ξ, FPF (ξ) ≤ F̂PF(ξ) ≤ FPF (ξ) and TPF (ξ) ≤ T̂PF(ξ) ≤ TPF (ξ), this

implies that the empirical ROC curve is bounded by the NPI lower and upper ROC

curves [27].

In line with equation (4.6) and Section 4.3, we are interested in the NPI lower

and upper probabilities for the event that the weighted average score for the future

two test results from the diseased group is greater than the weighted average score

for the future two test results from the non-diseased group. In line with equations

(4.15) and (4.16) in Section 4.2.2 and Coolen-Maturi et al. [27], the NPI lower and

upper combine AUC can be defined as

AUC =P (T 1
n1+1 > T 0

n0+1)

=
1

(n1 + 1)(n0 + 1)

n0∑
j=1

n1∑
i=1

1(αx1
i + (1− α)y1

i ≥ αx0
j + (1− α)y0

j )

=
1

(n1 + 1)(n0 + 1)

n0∑
j=1

n1∑
i=1

1(t1i ≥ t0j) (4.27)

AUC =P (T 1
n1+1 > T 0

n0+1)

=
1

(n1 + 1)(n0 + 1)

[
n0∑
j=1

n1∑
i=1

1
{
αx1

i + (1− α)y1
i ≥ αx0

j + (1− α)y0
j

}
+ n1 + n0 + 1

]

=
1

(n1 + 1)(n0 + 1)

[
n0∑
j=1

n1∑
i=1

1
{
t1i ≥ t0j

}
+ n1 + n0 + 1

]
(4.28)

The optimal coefficients, αopt’s that maximizes the lower and upper AUC in

equations (4.27) and (4.28) can be denoted by α̂L and α̂U , respectively.
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4.5 NPI with parametric copula for bivariate di-

agnostic tests

In this section we present NPI for the weighted average of the two diagnostic tests

to optimize the diagnostic accuracy with consideration of the dependence structure,

using a copula as proposed in Chapter 2. As mentioned in Section 4.1, dependence

is important when considering the combination of the bivariate test results, as it

can influence the accuracy of detection of diseases [5]. From Section 2.3, we found

that NPI with parametric copula for bivariate data is a straightforward method

for prediction of a bivariate random quantity, where imprecision in the marginals

provides robustness with regard to the assumed copula for small sample size. Hence,

in this chapter, the proposed method in Chapter 2 can be used and considered to

measure the accuracy of the bivariate diagnostic test results in order to increase the

detection rate.

Consider a bivariate random quantity of diagnostic test results, (X, Y ), let

(XD
nD+1, Y

D
nD+1) be the next future bivariate random quantity of diagnostic test re-

sults and let TDnD+1 = αXD
nD+1 + (1−α)Y D

nD+1 be the weighted average of the future

two test results where α ∈ [0, 1]. For the diseased group, the lower probability

for the event that the sum of the next future observations will exceed a particular

threshold ξ is

S1
c(t) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1
il(θ̂1) (4.29)

with L1
t = {(i, l) : αx1

i−1 +(1−α)y1
l−1 > ξ}, and the corresponding upper probability

is

S
1

c(t) = P (T 1
n1+1 > ξ) =

∑
(i,l)∈U1

t

h1
il(θ̂1) (4.30)

with U1
t = {(i, l) : αx1

i +(1−α)y1
l > ξ} where ξ ∈ (−∞,∞), and S1

c(t) and S
1

c(t) are

the lower and upper survival functions for the sum of the next future observations,

T 1
n1+1 with considering copula denotes by subscript c. In line with equation (2.1) in

Section 2.3, the probabilities h1
il(θ̂1) are defined as

h1
il(θ̂1) = PC(X̃1

n1+1 ∈
(
i− 1

n1 + 1
,

i

n1 + 1

)
, Ỹ 1

n1+1 ∈
(
l − 1

n1 + 1
,

l

n1 + 1

)
|θ̂1) (4.31)
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for i, l = 1, 2, . . . , n1 +1 where PC(·|θ̂1) represents the copula-based probability with

estimated copula where θ̂1 is a parameter value from parametric copula for diseased

group.

For the non-diseased group, the lower probability for the event that the sum of

the next future observations will exceed a particular threshold ξ is

S0
c(t) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0
jk(θ̂0) (4.32)

with L0
t = {(j, k) : αx0

j−1+(1−α)y0
k−1 > ξ}, and the corresponding upper probability

is

S
0

c(t) = P (T 0
n0+1 > ξ) =

∑
(j,k)∈U0

t

h0
jk(θ̂0) (4.33)

with U0
t = {(j, k) : αx0

j+(1−α)y0
k > ξ} where ξ ∈ (−∞,∞), and S0

c(t) and S
0

c(t) are

the lower and upper survival functions for the sum of the next future observation,

T 0
n0+1. In line with equation (2.1) in Section 2.3, the probabilities h0

jk(θ̂0) are defined

as

h0
jk(θ̂0) = PC(X̃0

n0+1 ∈
(
j − 1

n0 + 1
,

j

n0 + 1

)
, Ỹ 0

n0+1 ∈
(
k − 1

n0 + 1
,

k

n0 + 1

)
|θ̂0) (4.34)

for j, k = 1, 2, . . . , n0 + 1 where PC(·|θ̂0) represents the copula-based probability

with estimated copula where θ̂0 is a parameter value from parametric copula for

non-diseased group. Throughout this chapter, the subscript c is used to show the

functions are considering the copula.

The NPI lower and upper survival functions from equations (4.29), (4.30), (4.32)

and (4.33) are used to derive lower and upper FPF and TPF for the weighted average

of the next future observation per group, for different threshold values ξ, and we

combined to derive the corresponding NPI lower and upper ROC curves. In line with

equations (4.21) - (4.24), the NPI lower and upper survival functions are optimal

bounds for all survival functions corresponding to A(n) [22], which leads to the

following optimal bounds for the TPF and FPF when considering the dependence

structure

TPFc (ξ) = S1
c(ξ) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1
il(θ̂1) (4.35)
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TPFc (ξ) = S
1

c(ξ) = P (T 1
n1+1 > ξ) =

∑
(i,l)∈U1

t

h1
il(θ̂1) (4.36)

FPFc (ξ) = S0
c(ξ) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0
jk(θ̂0) (4.37)

FPFc (ξ) = S
0

c(ξ) = P (T 0
n0+1 > ξ) =

∑
(j,k)∈U0

t

h0
jk(θ̂0) (4.38)

where P and P the are NPI lower and upper probabilities [1]. As the ROC combines

the survival functions for the two groups, the NPI lower and upper ROC curves are

again defined to be the optimal bounds for all such curves corresponding to any pair

of survival functions S1
c (t) and S0

c (t) for T 1
n1+1 and T 0

n0+1 in between their respective

NPI lower and upper survival functions, as given by equations (4.35) - (4.38). The

ROC curve with copula clearly depends monotonously on the survival functions, it

is easily seen that the optimal bounds, which are the NPI lower and upper ROC

curves with copula, are

ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
(4.39)

ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
(4.40)

In order to optimize the diagnostic accuracy of the weighted average of the future

two diagnostic test results, we maximize the area under ROC curve by finding

the value of α such that TDnD+1 = αXD
nD+1 + (1 − α)Y D

nD+1 maximizes the AUC.

For each block B1
il = (x1

i−1, x
1
i ) � (y1

l−1, y
1
l ), generated by the observed data, let

t1i−1,l−1 = αx1
i−1 + (1− α)y1

l−1 be the combined weighted value corresponding to the

left-bottom of the block. And t1i,l = αx1
i + (1 − α)y1

l be the combined weighted

value corresponding to the right-top of the block. The same can be defined for

each block B0
jk = (x0

j−1, x
0
j) � (y0

k−1, y
0
k), let t0j−1,k−1 = αx0

j−1 + (1 − α)y0
k−1 be

the combined weighted value corresponding to the left-bottom of the block, and

t0j,k = αx0
j + (1 − α)y0

k be the combined weighted value corresponding to the right-

top of the block. In line with equations (4.29) - (4.34), the NPI lower and upper

probabilities AUC associated with the weighted average for the bivariate diagnostic
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test results with parametric copula can directly be defined as

AUCc = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j,k < t1i−1,l−1}h0
jk(θ̂0) (4.41)

AUCc = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j−1,k−1 < t1i,l}h0
jk(θ̂0) (4.42)

where 1 {A} is an indicator function which is equal to 1 if event A occurs and 0

else. The optimal coefficients, αopt’s that maximizes the AUC in equations (4.41)

and (4.42) can be denoted by α̂cL and α̂cU , respectively.

Proof: The NPI lower probability for the event T 1
n1+1 > T 0

n0+1 is derived as follows:

P = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

P (T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
n1+1, X

1
n1+1 ∈ (x1

i−1, x
1
i ), Y

1
n1+1 ∈ (y1

l−1, y
1
l ))

=

n1+1∑
i=1

n1+1∑
l=1

P
(
T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
n1+1, (X

1
n1+1, Y

1
n1+1) ∈ B1

il

)
≥

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)P (T 0

n0+1 < t1i−1,l−1)

=

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

P
(
αX0

n0+1 + (1− α)Y 0
n0+1 < t1i−1,l−1, (X

0
n0+1, Y

0
n0+1) ∈ B0

jk

)
≥

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j,k < t1i−1,l−1}h0
jk(θ̂0)

For the lower probability, we want to make the probability for the event T 1
n1+1 >

T 0
n0+1 as small as possible. To this end, the first inequality follows by putting

the probability h1
il(θ̂1) corresponding to the block B1

il to the left-bottom of the

block, for all i, l = 1, . . . , n1 + 1. Thus the corresponding combined weighted value

is t1i−1,l−1 = αx1
i−1 + (1 − α)y1

l−1. The second inequality follows by putting the

probability h0
jk(θ̂0) corresponding to the block B0

jk to the right-top of the block,

for all j, k = 1, . . . , n0 + 1, and the corresponding combined weighted value is
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t0j,k = αx0
j + (1− α)y0

k.

The NPI upper probability for the event T 1
n1+1 > T 0

n0+1 is derived as follows:

P = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

P (T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
n1+1, X

1
n1+1 ∈ (x1

i−1, x
1
i ), Y

1
n1+1 ∈ (y1

l−1, y
1
l ))

=

n1+1∑
i=1

n1+1∑
l=1

P
(
T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
n1+1, (X

1
n1+1, Y

1
n1+1) ∈ B1

il

)
≤

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)P (T 0

n0+1 < t1i,l)

=

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

P
(
αX0

n0+1 + (1− α)Y 0
n0+1 < t1i,l, (X

0
n0+1, Y

0
n0+1) ∈ B0

jk

)
≤

n1+1∑
i=1

n1+1∑
l=1

h1
il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j−1,k−1 < t1i,l}h0
jk(θ̂0)

For the upper probability, we want to make the probability for the event T 1
n1+1 >

T 0
n0+1 as large as possible. To this end, the first inequality follows by putting the

probability h1
il(θ̂1) corresponding to the block B1

il to the right-top of the block,

for all i, l = 1, . . . , n1 + 1. Thus the corresponding combined weighted value is

t1i,l = αx1
i + (1 − α)y1

l . The second inequality follows by putting the probability

h0
jk(θ̂0) corresponding to the block B0

jk to the left-bottom of the block, for all j, k =

1, . . . , n0 + 1, and the corresponding combined weighted value is t0j−1,k−1 = αx0
j−1 +

(1− α)y0
k−1.

2

This proof has a similar structure as the proof of the NPI lower and upper

probabilities for comparing two independent groups introduced by Coolen [16] and

used by Maturi [71].

4.6 Predictive performance

In this section we analyse the performance of the proposed method including the em-

pirical and NPI without copula methods. We will use the re-substitution and LO1P
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simulation methods to evaluate the performance of the methods that we presented

in Sections 4.3, 4.4 and 4.5. As mentioned in Section 4.1, the re-substitution method

used complete data set in order to find the optimal coefficient which maximizes the

AUC.

We have discussed three methods i.e. empirical AUC (distribution-free approach)

by Pepe and Thompson [77], NPI AUC without copula and NPI AUC with para-

metric copula. For NPI AUC with copula method, we use the parametric copulas

discussed in Section 2.2 (i.e. Clayton, Frank, Normal and Gumbel copulas). The

simulation method for LO1P will be explained below. Generally, the results of

the predictive performance in this simulation studies are based on 10, 000 bivariate

simulated samples, which are simulated from bivariate normal distributions with

different means and correlations for both groups.

Before we explain our procedures for the simulation study for all approaches, we

should emphasize that the optimized coefficients, α obtained using all approaches

defined in Sections 4.3, 4.4 and 4.5, for empirical method is α̂, for NPI without

copulas are α̂L and α̂U , and for NPI with copulas are α̂cL and α̂cU .

For the LO1P simulation method, for each group, for each pair simulated sample

size, nD, the first nD − 1 pairs will be used to find the optimal coefficient α which

maximize the AUC value, and the remaining pair nD from each group, which is

considered as a future observation, will be used to test the prediction performance

of this method. So, this method uses one observation pair from each group as the

validation set and the remaining data as the training set. Using the training data set,

considering the weighted average, TDnD+1 = αXD
nD+1 + (1−α)Y D

nD+1 where α ∈ [0, 1],

we find the optimal coefficients for all approaches (i.e. α̂, α̂L and α̂U , and α̂cL and

α̂cU). Then, using the optimal coefficient obtained from the training data set, we

check the weighted average of the future pair observation for the diseased group is

greater than the weighted average of the future pair observation for the non-diseased

group or not.
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4.6.1 Simulation Results

We have run four cases as defined in Table 4.1, and use the re-substitution and LO1P

simulation methods. These cases were chosen based on how much the distributions

of diseased and non-diseased groups overlap each other. For Case A, the difference

between mean values of diseased and non-diseased for Y is larger than X. For Case

B, the difference between mean values of diseased and non-diseased for X is larger

than Y . We have similar differences between mean values of diseased and non-

diseased for X and Y for Case C. While for Case D, we create this case based on

available real data set in literature where the difference mean values for X is larger

than Y between the groups. The variances for X and Y for all cases are equal to

1, for the diseased and non-diseased groups. The correlation between X and Y are

equal to 0.5 for Cases A - C, for the diseased and non-diseased groups. For the Case

D, the correlation between X and Y is equal to 0.14 for the diseased and −0.14 for

the non-diseased groups.

Cases µX1 µY 1 µX0 µY 0 ρ1 ρ0

Case A 3.00 1.50 2.50 0.50 0.50 0.50

Case B 0.40 0.20 0.00 0.00 0.50 0.50

Case C 0.40 1.00 0.20 1.20 0.50 0.50

Case D 0.44 0.22 −0.78 −0.40 0.14 −0.14

Table 4.1: Scenarios of Simulated Data

As discussed in Section 4.6, in each run of the simulation 10, 000, nD normal

bivariate samples are generated for both groups for Cases A to D. Sample of sizes

(n1, n0) = (10, 10), (20, 30), (30, 50), (50, 50), (90, 50) are generated for all cases dis-

cussed above. The data set is divided into a training (observation) data set and
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a pair future observation as a validation data set for each group. For each pair of

sample size, we use the re-substitution method (using complete data) and LO1P of

simulation method mentioned in Section 4.6. We consider all parametric copulas

discussed in Section 2.2 but, we give results from Clayton copula for the NPI with

copula approach. As we discussed in Chapter 2, the parametric copulas used do

not give many differences. All tables in this simulation study in this section present

results from three approaches discussed in Sections 4.3, 4.4 and 4.5. Each table has

results from the re-substitution and LO1P simulation methods for each pair of sam-

ple size. For the re-substitution method, each table shows the optimal coefficients

for all approaches and the corresponding maximized AUC values. For the LO1P

simulation method, each table shows the optimal coefficients for all approaches and

the corresponding maximize AUC values, and the proportion of cases in which the

weighted average of the future pair observation for the diseased group is greater

than the weighted average of the future pair observation for the non-diseased group.

Table 4.2 shows the results of the re-substitution method and the LO1P simula-

tions method for Case A. Both methods show that the proposed method, NPI with

parametric copula, gives more weight to Y . The difference between mean values of

the diseased and non-diseased groups for Y is greater than for X for all sample sizes

except for n1 = 90 and n0 = 50. So, it seems that our method put more weight

to the variable which provides the descent difference, for small sample sizes. It is

always that the AUC value of the empirical method is in between the lower and

upper AUC values for NPI without copula as discussed in Section 4.4. For the value

in Table 4.2, the AUC value of the empirical method is also bounded by the lower

and upper AUC values of NPI with parametric copula, for both simulation methods

applied. The lower and upper AUC values for NPI without copula are nested within

those for NPI with copula. This simulation do not show a meaningful improvement

by including the copula into the NPI approach. This happens due to the fact that

the data are simulated from bivariate normal distribution, so the dependence struc-

ture is linear and the copula does not has a great chance to take other aspects of

dependence in the data.

For the LO1P simulation method, Table 4.2 shows that NPI with parametric
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copula works well, for small sizes based on the proportion of the weighted average

of the future pair observations for the diseased group is greater than the proportion

of the weighted average of the future pair observations for the non-diseased group.

However, as the sample size increases (i.e. n1, n0 ≥ 50), NPI with parametric copula

does not work so well. This feature reflects the result in Chapter 2 whereby for small

sample sizes, the parametric copula work well with the proposed method. While, for

larger sample size, this happens due to the misspecification of the copula used for

this Case A. As discussed in Section 2.5, the proposed method provides robustness

for the predictive inferences which depends on the parametric copulas used, for small

sample sizes.

Method n1 n0

Re-substitution method LO1P simulation method

E
m

p
ir

ic
a
l

α̂ AUC α̂ AUC P (T 1
f > T 0

f )

10 10 0.3148 0.7762 0.3269 0.7773 0.7420

20 30 0.2151 0.7679 0.2192 0.7679 0.7549

30 50 0.1699 0.7650 0.1728 0.7652 0.7491

50 50 0.1519 0.7635 0.1536 0.7636 0.7583

90 50 0.1291 0.7625 0.1307 0.7625 0.7571

N
P

I
w

it
h

o
u

t
C

o
p

u
la

α̂L AUC α̂U AUC α̂L AUC P (T 1
f > T 0

f ) α̂U AUC P (T 1
f > T 0

f )

10 10 0.3149 0.6415 0.3149 0.8151 0.3266 0.6296 0.7423 0.3266 0.8196 0.7422

20 30 0.2151 0.7077 0.2151 0.7861 0.2192 0.7052 0.7549 0.2192 0.7869 0.7549

30 50 0.1699 0.7258 0.1699 0.7770 0.1729 0.7249 0.7491 0.1729 0.7776 0.7491

50 50 0.1519 0.7338 0.1519 0.7727 0.1536 0.7333 0.7582 0.1537 0.7729 0.7583

90 50 0.1291 0.7393 0.1291 0.7697 0.1307 0.7390 0.7571 0.1307 0.7699 0.7571

N
P

I
w

it
h

C
la

y
to

n
C

o
p

u
la

α̂cL AUCc α̂cU AUCc α̂cL AUCc P (T 1
f > T 0

f ) α̂cU AUCc P (T 1
f > T 0

f )

10 10 0.2540 0.5790 0.2446 0.8289 0.2646 0.5629 0.7457 0.2559 0.8345 0.7463

20 30 0.1835 0.6789 0.1730 0.7936 0.1867 0.6752 0.7558 0.1763 0.7946 0.7574

30 50 0.1600 0.7082 0.1516 0.7830 0.1613 0.7068 0.7493 0.1528 0.7836 0.7507

50 50 0.1532 0.7195 0.1500 0.7776 0.1542 0.7187 0.7560 0.1509 0.7779 0.7568

90 50 0.1429 0.7271 0.1442 0.7739 0.1433 0.7265 0.7541 0.1448 0.7741 0.7538

Table 4.2: LO1P and re-substitution simulation method for Case A
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Table 4.3 shows the results for the re-substitution method and for the LO1P

simulation method for Case B. For this case, the difference in mean values is larger

for X than for Y , we note that that NPI with parametric copula puts more weight

to X compared to other methods. So, as for Case A, our method seem to give some

more weight to the variable which is most different between the two groups. For

the LO1P simulation method, Table 4.3 shows that the method work well in the

sense that the proportion of the weighted average of the future pair observations

of the diseased group is greater than the proportion of the weighted average of the

future pair observations of the non-diseased group, except for sample size n1 = 50

and n0 = 50.

Method n1 n0

Re-substitution method LO1P simulation method

E
m

p
ir

ic
a
l

α̂ AUC α̂ AUC P (T 1
f > T 0

f )

10 10 0.5882 0.6447 0.5830 0.6474 0.5939

20 30 0.6615 0.6287 0.6577 0.6294 0.5958

30 50 0.7018 0.6225 0.6994 0.6228 0.5963

50 50 0.7295 0.6202 0.7277 0.6205 0.6005

90 50 0.7555 0.6175 0.7529 0.6176 0.6009

N
P

I
w

it
h

o
u

t
C

o
p

u
la

α̂L AUC α̂U AUC α̂L AUC P (T 1
f > T 0

f ) α̂U AUC P (T 1
f > T 0

f )

10 10 0.5883 0.5328 0.5883 0.7064 0.5829 0.5244 0.5939 0.5829 0.7144 0.5939

20 30 0.6615 0.5795 0.6615 0.6578 0.6578 0.5780 0.5956 0.6578 0.6597 0.5957

30 50 0.7018 0.5906 0.7018 0.6419 0.6994 0.5900 0.5964 0.6995 0.6427 0.5964

50 50 0.7295 0.5961 0.7295 0.6350 0.7277 0.5959 0.6005 0.7277 0.6355 0.6005

90 50 0.7554 0.5988 0.7554 0.6291 0.7529 0.5985 0.6009 0.7529 0.6294 0.6009

N
P

I
w

it
h

C
la

y
to

n
C

o
p

u
la

α̂cL AUCc α̂cU AUCc α̂cL AUCc P (T 1
f > T 0

f ) α̂cU AUCc P (T 1
f > T 0

f )

10 10 0.6278 0.4863 0.6299 0.7301 0.6197 0.4745 0.5940 0.6217 0.7397 0.5949

20 30 0.6994 0.5581 0.7012 0.6703 0.6990 0.5557 0.5963 0.7009 0.6726 0.5968

30 50 0.7347 0.5773 0.7348 0.6508 0.7321 0.5764 0.5983 0.7321 0.6519 0.5984

50 50 0.7570 0.5854 0.7545 0.6418 0.7562 0.5849 0.5990 0.7536 0.6424 0.5991

90 50 0.7755 0.5897 0.7706 0.6344 0.7745 0.5892 0.6035 0.7698 0.6348 0.6040

Table 4.3: LO1P and re-substitution simulation method for Case B
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Table 4.4 shows the results for the re-substitution method and for the LO1P

simulation method for Case C. Both methods show that the proposed method gives

more weight to X compared to other methods. In this case, our method seem to

give some more weight to variable although we have equal differences between the

two groups, but in different direction (i.e. we have positive difference for X and

negative difference for Y ). This feature occurs due to our α ∈ [0, 1]. A general

linear combination of the bivariate diagnostic test results will allow this scenario

and this topic is left for future research. For the LO1P simulation method, table

4.4 shows that the proposed method work well if we compare the proportion of the

weighted average of the future pair observations of the diseased group is greater than

the proportion of the weighted average of the future pair observations of the non-

diseased group, for all sample sizes. This shows that the proposed method correctly

ordered the future observation(s).

Method n1 n0

Re-substitution method LO1P simulation method

E
m

p
ir

ic
a
l

α̂ AUC α̂ AUC P (T 1
f > T 0

f )

10 10 0.6797 0.5658 0.6643 0.5678 0.5194

20 30 0.8122 0.5575 0.8074 0.5580 0.5268

30 50 0.8801 0.5553 0.8750 0.5554 0.5391

50 50 0.9153 0.5554 0.9127 0.5554 0.5448

90 50 0.9465 0.5547 0.9437 0.5547 0.5514

N
P

I
w

it
h

o
u

t
C

o
p

u
la

α̂L AUC α̂U AUC α̂L AUC P (T 1
f > T 0

f ) α̂U AUC P (T 1
f > T 0

f )

10 10 0.6797 0.4676 0.6797 0.6411 0.6642 0.4599 0.5195 0.6642 0.6499 0.5195

20 30 0.8122 0.5138 0.8123 0.5922 0.8073 0.5124 0.5268 0.8074 0.5941 0.5268

30 50 0.8801 0.5269 0.8801 0.5781 0.8750 0.5262 0.5391 0.8750 0.5789 0.5391

50 50 0.9153 0.5338 0.9153 0.5726 0.9127 0.5334 0.5449 0.9127 0.5730 0.5449

90 50 0.9465 0.5379 0.9465 0.5682 0.9437 0.5376 0.5514 0.9437 0.5685 0.5514

N
P

I
w

it
h

C
la

y
to

n
C

o
p

u
la

α̂cL AUCc α̂cU AUCc α̂cL AUCc P (T 1
f > T 0

f ) α̂cU AUCc P (T 1
f > T 0

f )

10 10 0.7551 0.4329 0.7560 0.6754 0.7401 0.4225 0.5265 0.7425 0.6863 0.5271

20 30 0.8810 0.4982 0.8817 0.6102 0.8747 0.4962 0.5343 0.8760 0.6129 0.5342

30 50 0.9338 0.5169 0.9336 0.5903 0.9307 0.5160 0.5415 0.9306 0.5914 0.5414

50 50 0.9582 0.5254 0.9578 0.5812 0.9569 0.5248 0.5510 0.9561 0.5818 0.5508

90 50 0.9755 0.5300 0.9745 0.5739 0.9748 0.5296 0.5548 0.9738 0.5743 0.5548

Table 4.4: LO1P simulation method for Case C

Table 4.5 shows the results for the re-substitution method and for the LO1P

simulation method for Case D. As mentioned earlier, this scenario is created based
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on the real data that available in the literature and will be discussed in Section 4.7.

Both methods show that the NPI with parametric copula method gives more weight

to X compared to other methods for all sample sizes. So, as for Cases A and B,

our method seems to give some more weight to the variable which is most different

between the two groups. For the LO1P simulation method, the proposed method

does not work so well based on the proportion of weighted average of the future

observations for diseased is greater than non-diseased groups, is less compared to

other methods except for sample size n1 = 90 and n0 = 50. However, these results

do not show many differences.

Method n1 n0

Re-substitution method LO1P simulation method

E
m

p
ir

ic
a
l

α̂ AUC α̂ AUC P (T 1
f > T 0

f )

10 10 0.6206 0.8607 0.6132 0.8626 0.8204

20 30 0.6609 0.8465 0.6616 0.8469 0.8290

30 50 0.6681 0.8414 0.6685 0.8417 0.8292

50 50 0.6714 0.8400 0.6717 0.8402 0.8292

90 50 0.6697 0.8380 0.6702 0.8381 0.8304

N
P

I
w

it
h

o
u

t
C

o
p

u
la

α̂L AUC α̂U AUC α̂L AUC P (T 1
f > T 0

f ) α̂U AUC P (T 1
f > T 0

f )

10 10 0.6207 0.7113 0.6208 0.8849 0.6129 0.6987 0.8204 0.6129 0.8887 0.8204

20 30 0.6609 0.7802 0.6609 0.8585 0.6615 0.7778 0.8291 0.6615 0.8594 0.8291

30 50 0.6681 0.7983 0.6681 0.8496 0.6685 0.7974 0.8292 0.6685 0.8501 0.8292

50 50 0.6714 0.8074 0.6715 0.8462 0.6718 0.8069 0.8291 0.6718 0.8465 0.8291

90 50 0.6697 0.8126 0.6697 0.8429 0.6702 0.8122 0.8305 0.6702 0.8431 0.8305

N
P

I
w

it
h

C
la

y
to

n
C

o
p

u
la

α̂cL AUCc α̂cU AUCc α̂cL AUCc P (T 1
f > T 0

f ) α̂cU AUCc P (T 1
f > T 0

f )

10 10 0.6803 0.5984 0.6892 0.8871 0.6751 0.5795 0.8132 0.6826 0.8919 0.8125

20 30 0.6939 0.7198 0.7047 0.8569 0.6954 0.7155 0.8298 0.7066 0.8579 0.8278

30 50 0.6893 0.7563 0.6979 0.8474 0.6892 0.7544 0.8285 0.6981 0.8479 0.8279

50 50 0.6887 0.7730 0.6940 0.8438 0.6890 0.7719 0.8283 0.6944 0.8441 0.8280

90 50 0.6851 0.7839 0.6877 0.8407 0.6851 0.7831 0.8324 0.6877 0.8409 0.8326

Table 4.5: LO1P simulation method for Case D

It seems that for all cases discussed in this section, the simulation suggest that

the proposed method works well especially, for small sample sizes. In term of im-

precision, NPI with parametric copula seems to lead to more imprecision than NPI

without copula, and as the sample size for each group increases, the imprecision is

reduced.
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As mentioned in Chapter 2, which discussed the NPI with parametric copula,

the proposed method requires relatively easy computations, as the use of NPI on the

marginals combines naturally with the discretization of the copula. However, the

simulation study as represented here is time consuming, because of each simulation,

the parameter of the copula must be estimated. This reduced our ability to perform

many more simulations for different scenarios, which is left for future research.

The next step in this research is to explore the use of NPI with a nonparametric

copula for this ROC curve scenario, and to investigate its performance. Due to time

consuming this has not yet been done.

4.7 Example

In this section, an example is presented using a data set from the literature to

illustrate the method proposed in this chapter. The data set considers diagnostic

markers for pancreatic cancer and consists of 141 patients [98]; 90 pancreatic cancer

patients and 51 control group patients with pancreatitis. Two serum markers were

measured on these patients, the antigens CA125 and CA19-9 which are positively

correlated [77]. To illustrate our approach, we have adjusted the data to avoid tied

observations, as discussed in Section 1.2. Let antigen CA19-9 be the X variable

and antigen CA125 be the Y variable. In this example, the data are transformed

to a natural logarithmic scale as used by Pepe and Thompson in [77]. Then we

standardize the data to have mean zero and variance one in order to assist in the

interpretation of α as a relative weight of Y to X in the combination. The mean

values for X are 0.44 for the diseased group and −0.78 for the non-diseased group,

and the mean values for Y are 0.22 for the diseased group and −0.40 for the non-

diseased group. The scatter plot of this data set is presented in Figure 4.1.
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Figure 4.1: Scatter plot for pancreatic cancer data set

The empirical ROC curve and the NPI lower and upper ROC curves, for NPI

without copula, are shown in Figure 4.2 for CA19-9 (the X variable), and in Figure

4.3 for CA125 (the Y variable), respectively. The corresponding AUC values are

shown in Table 4.6, which shows that the AUC value using the empirical method, if

only antigen CA19-9 is used, is 0.8614, and for antigen CA125, it is 0.7056. Using

NPI without copula, the lower and upper AUC values for antigen CA19-9 are 0.8347

and 0.8648, respectively. For antigen CA125, these lower and upper AUC values are

0.6883 and 0.7130, respectively. These results illustrate the fact that the AUC value

for the empirical method is always in between the lower and upper AUC values for

NPI without copula, as shown in Sections 4.4.

Antigen Empirical AUC
NPI without copula

Lower Prob Upper Prob

CA19-9 0.8614 0.8347 0.8648

CA125 0.7056 0.6883 0.7130

Table 4.6: AUC values for empirical ROC and NPI without copula ROC for antigens

CA19-9 and CA125
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Figure 4.2: ROC curves for X, antigen CA19-9

Figure 4.3: ROC curves for Y , antigen CA125
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We consider the dependence structure by using parametric copulas, as before

we use the Normal, Frank, Clayton and Gumbel copulas. It should be emphasized

that any parametric copulas can be used. Consider a weighted average, TD =

αXD + (1 − α)Y D for empirical method, and TDnD+1 = αXD
nD+1 + (1 − α)Y D

nD+1 for

NPI without copula and NPI with copula methods. The optimal coefficients and

the corresponding AUC values for all methods are shown in Table 4.7.

α̂ AUC

Empirical ROC 0.7188 0.8939

α̂L AUC α̂U AUC

NPI without Copula 0.7188 0.8671 0.7188 0.8971

α̂cL AUCc α̂cU AUCc

NPI with Normal Copula 0.7160 0.8306 0.7151 0.8896

NPI with Frank Copula 0.7077 0.8324 0.7077 0.8920

NPI with Clayton Copula 0.7066 0.8364 0.7061 0.8947

NPI with Gumbel Copula 0.7215 0.8301 0.7226 0.8880

Table 4.7: AUC values for different methods

For the empirical method, Table 4.7 shows that the optimal α̂ is 0.7188 and the

corresponding maximum AUC is 0.8939. For NPI without copula, we get α̂L =

α̂U = 0.7188 and the corresponding lower and upper AUC values are 0.8671 and

0.8971, respectively. For NPI with copula, we have different values of α̂cL, α̂cU and

the AUC values depending on the choice of copula. The Clayton copula gives the

highest lower and upper AUC values compared to the other parametric copulas

used, AUCc = 0.8364 and AUCc = 0.8947, with corresponding α̂cL = 0.7066 and

α̂cU = 0.7061, respectively. This feature occurs due to the data set for diseased

and non-diseased groups have a great dependence on the negative tails compared to

positive tails, which is captured by the Clayton copula. This can be seen from Figure

4.1, where for each group, small x and y observation values are close to each other

compared to large x and y observation values. The second highest of NPI lower and

upper AUC values are achieved by the Frank copula and followed by Normal and

Gumbel copulas as shown in Table 4.7.

By considering the weighted average in the combination of these two random
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quantities, a quite large increment on AUC values for all approaches is achieved

as compared to only one test results used. In terms of weighted values, we can

see that the NPI with Gumbel copula puts more weight on X compared to the

empirical method and NPI without copula, as the difference between mean values of

the diseased and non-diseased groups for X greater than Y . We also saw this effect

in the simulation study in Section 4.6. We show the ROC curves for all methods

for the weighted average discussed above in Figure 4.4. The figure shows the ROC

curves for the empirical method, NPI without copula and NPI with Clayton copula.

This figure illustrates that the ROC curve for the empirical method is not always

bounded by the lower and upper ROC curves for the NPI with parametric copula

method.

Figure 4.4: ROC curves for weighted average of antigen CA19-9 and CA125

4.8 Concluding remarks

This chapter presents an introduction of NPI for combining two diagnostic test

results, aimed at maximizing the area under the ROC curve. We use NPI with
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parametric copula, introduced in Chapter 2, and directly apply results in Section

4.2.2, to combine the two test results.

Based on the simulation study, it seems that NPI with parametric copula puts

more weight on the variable for which the mean values differ most between the

groups. When comparing the AUC values of the empirical method with the NPI

without copula method, the AUC values of the empirical method are always in be-

tween the NPI lower and upper AUC values (without copula), this does not generally

hold for NPI with copula, due to the effect of using a parametric copula and the

lower and upper AUC’s get associated with different optimized α.

The lower and upper AUC values for NPI without copula are nested within

those for NPI with copula. Therefore, these simulations do not show a meaningful

improvement by including the copula into the NPI approach. A likely reason for this

is the fact that the data are simulated from bivariate normal distributions, so the

dependence structure is linear. The use of a linear combination of the two variables

may effectively deal with this linear dependence, hence the copula has no further

opportunity to pick up other aspects of dependence in the data. We expect that the

use of the copula, and particularly nonparametric copulas, in our method will make

a positive difference to the ROC approach in this chapter if the underlying data

have a nonlinear dependence structure. Due to time constraints for this research

project we have not yet been able to investigate this, it is left as an important topic

for future research.

In this work we limit the coefficient, α ∈ [0, 1]. We might consider a general linear

combination of the two variables and investigate the performance of the proposed

method. This gives some more freedom and is likely to give better results in some

cases. However, this was a first step to consider the method of NPI with copulas for

such inference, we wished to keep the combination simple so that results could be

easily interpreted, which a weighted average allows.



Chapter 5

Conclusions

This chapter provides a brief summary of the main results presented in this thesis

and some important challenges for future research. In this thesis, we have presented

Nonparametric Predictive Inference (NPI) combined with a copula for bivariate

data. We discussed the performance of the proposed method with parametric copula

and nonparametric copula, specifically kernel-based copula. We introduce NPI for

combining two diagnostic test results, by considering a weighted average of the two

diagnostic test results directly applying the results in Section 4.2.2, and use NPI

with parametric copula as introduced in Chapter 2.

The method presented in this research has a novel aspect within statistical the-

ory using imprecise probabilities. Traditionally, imprecision is used particularly on

aspects for which one has relatively little information. Here, however, we use impre-

cision on the marginals but not on the copula, while the data tend to contain less

information about the dependence structure than about the marginals. This is done

as the imprecision on the marginals provides robustness with regard to the copula

choice, for small to medium sample size, with the added benefit that the imprecise

probability method used on the marginals is easy to implement and fits naturally

to discretization of the copula. This idea, to add imprecision to the easier part of

an inference in order to provide robustness for the harder part, and all together

simplifying computation, promises to have wider applicability, for example in big

data scenarios where fast computation is crucial. We will explore this idea in other

settings in future research.
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NPI with a nonparametric copula, specifically kernel-based copula, for bivariate

data seems to work well for large data sets. However, the performance depends

on the bandwidth selections and types of bandwidths. For each application, for

different events of interest and sample size, one should perform a detailed study

to investigate the appropriate bandwidth. For future research, the use of other

nonparametric copula methods should be considered, combined with the NPI on

the marginals. The performance of this proposed method should be studied and

investigated. One may also consider other types of dependence structures such as

nonlinear dependence structure.

We presented the application of the proposed method in this thesis to a real

world scenario, where a combination of bivariate data is relevant. The new method

that we introduced for weighted averaging of bivariate diagnostic test results can be

used as an alternative to the classic empirical method. The use of nonparametric

copula for the weighted average of bivariate diagnostics test results can be considered

but the predictive performance of the weighted average in this thesis should be

studied and investigated. We left this topic for next research. Many can be done

in order to possibly improve the proposed method. We can allow wider general

linear combination instead of only weighted average of the bivariate diagnostic test

results. Equally important is to study the threshold which corresponds the optimize

coefficient given from the proposed method. We left these topics for future research.

It should be emphasized that the attractive frequentist properties of NPI men-

tioned in Section 1.2, are not claimed to hold generally for the inferences presented

in this thesis, due to the assumption of a parametric copula and nonparametric

copula which is combined with NPI. If this model assumption would indeed reflect

the true underlying data generating mechanism, then the method would adopt the

attractive properties, but this, of course, would never be the case in practice. This

study could be extended to many different ways of applications such as in wind

energy, survival analysis, hydrology, and finance; by considering events in between

of the bivariate random quantities and taking dependence between these quantities

into account. The proposed method requires easy computations, as the use of NPI

on the marginals combines naturally with the discretization of the copula. Hence,
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the computational complexity is only with regard to the estimation of the copula

parameter, which for the copulas considered in this thesis is a routine procedure for

which standard software is available. However, if one requires fast computation, ex-

ample for real-time predictions, there may be fast computational algorithm available

or one could possible create these; this is a interesting topic for future research.

As mentioned before, we restricted attention to a single future observation. One

may be interested in multiple future observations, in NPI the inter-dependence of

such multiple future observations is taken into account [19]. It will be of interest

to develop this bivariate method for multiple future observations. The bivariate

method presented in this thesis can straightforwardly be generalized to multivariate

data, where the curse of dimensionality [32, 85] implies that the number of data

required to get meaningful inferences grows exponentially with the dimension of the

data. Application to higher dimensional situations is an important topic for future

research.
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[65] Li X., Mikusiński P., Sherwood H. and Taylor M.D. (1997). On Approxima-

tion of Copulas. In Distributions with given Marginals and Moment Problems,
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