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Abstract

This thesis investigates a new bootstrap method, this method is called Nonpara-

metric Predictive Inference Bootstrap (NPI-B). Nonparametric predictive inference

(NPI) is a frequentist statistics approach that makes few assumptions, enabled by

using lower and upper probabilities to quantify uncertainty, and explicitly focuses

on future observations. In the NPI-B method, we use a sample of n observations to

create n+ 1 intervals and draw one future value uniformly from one interval. Then

this value is added to the data and the process is repeated, now with n+ 1 observa-

tions. Repetition of this process leads to the NPI-B sample, which therefore is not

taken from the actual sample, but consists of values in the whole range of possible

observations, also going beyond the range of the actual sample. We explore NPI-B

for data on finite intervals, real line and non negative observations, and compare

it to other bootstrap methods via simulation studies which show that the NPI-B

method works well as a prediction method.

The NPI method is presented for the reproducibility probability (RP) of some

nonparametric tests. Recently, there has been substantial interest in the repro-

ducibility probability, where not only its estimation but also its actual definition

and interpretation are not uniquely determined in the classical frequentist statistics

framework. The explicitly predictive nature of NPI provides a natural formulation

of inferences on RP. It is used to derive lower and upper bounds of RP values (known

as the NPI-RP method) but if we consider large sample sizes, the computation of
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these bounds is difficult. We explore the NPI-B method to predict the RP values

(they are called NPI-B-RP values) of some nonparametric tests. Reproducibility of

tests is an important characteristic of the practical relevance of test outcomes.
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Chapter 1

Introduction

1.1 Overview

Recently nonparametric predictive inference (NPI) [6, 17, 19] has been developed

as a frequentist statistical approach that uses few assumptions. It uses lower and

upper probabilities for events of interest considering future observations, and is based

on Hill’s assumption A(n) [45–47]. The lower and upper probabilities of NPI are

introduced by Coolen and Augustin [6], they showed that NPI has strong consistency

properties in the theory of interval probability [25,68].

The standard bootstrap (standard-B) was introduced by Efron [35]. It is a resam-

pling method for statistical inference, and a computer based method for assigning

measures of accuracy to statistical estimates. Thereafter, various versions of boot-

strap were developed such as smoothed Bayesian bootstrap, which was developed

by Banks’ [8].

In this thesis we present the NPI bootstrap method, which we indicate by NPI-

B, as an alternative to other well known bootstrap methods, and then we discuss

its performance, and use it to predict the reproducibility probability (RP). The

reproducibility probability is a helpful indicator of the reliability of the results of

statistical tests. The predictive nature of NPI provides a natural formulation of

inference on reproducibility probability which is an important characteristic of sta-

tistical test outcomes. In this thesis we consider RP within a frequentist statistical

framework but from the perspective of prediction instead of estimation.

1
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Section 1.2 presents a brief introduction to NPI. In Section 1.3 we describe various

bootstrap methods and Section 1.4 reviews the reproducibility probability for tests.

The outline of this thesis is provided in Section 1.5.

1.2 Nonparametric Predictive Inference (NPI)

In classical probability, a single (precise) probability P (A) is used for each event

A but if the information is vague, the “imprecise probability” is an alternative ap-

proach which uses an interval probability instead of single probability P (A). The

interval probability is specified by lower and upper probabilities and denoted by

P (A) and P (A), respectively, where 0 ≤ P (A) ≤ P (A) ≤ 1, [25].

Nonparametric predictive inference (NPI) [6, 17, 19] is a statistical technique

based on Hill’s assumption A(n). Hill [45] introduced the assumption A(n) for pre-

diction if there is no prior information about an underlying distribution. It is used

to predict direct conditional probabilities for one future value Yn+1 or more than one

future value Yi, i ≥ n+ 1. Conditional on the observed values, the n + 1 intervals

are created by n ordered, exchangeable and continuous random quantities on the

real line y(1) < y(2) < ... < y(n), assigned equal probabilities for the next obser-

vation to belong to each of these intervals, which are denoted by I1 = (−∞, y(1)),

Il = (y(l−1), y(l)), for l = 1, 2, ..., n + 1, and In+1 = (y(n),∞). The assumption A(n)

is:

P (Yn+1 ∈ Il) =
1

n+ 1
(1.1)

for l = 1, 2, ..., n + 1. Hill gave more details about A(n) in [46] and [47]. It is clear

that A(n) is a post data assumption and the statistical inferences based on it are

predictive and nonparametric, and it is suitable if there is no knowledge about the

random quantity of interest. A(n) is not sufficient to get precise probabilities for any

event of interest, but it does give bounds (lower and upper) for probabilities which

are called “interval (valued) probabilities” or “imprecise probabilities”. They are

lower and upper probabilities in interval probability theory [19,68].
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Coolen [15] gave an example to explain the dependence of Y related to A(n):

Suppose we have a single observation y1, providing two intervals, I1, I2. The as-

sumption A(1) now states that P (Yi ∈ I1) = P (Yi < y1) = 1
n+1

= 1
2

for all i ≥ 2. Let

us consider Y3, and in particular how probability statements about Y3 change when

learning the value of Y2. If we remain interested in the event Y3 < y1, the probability

P (Y3 < y1) = 1
2

will change, assuming A(2), according to whether the value of Y2 will

be less than or greater than y1, P (Y3 < y1|Y2 < y1) = 2
3

or P (Y3 < y1|Y2 > y1) = 1
3
,

respectively. This is related to the probability P (Y3 < y1) = 1
2

without conditioning

on the unknown Y2 by the theorem of total probability,

P (Y3 < y1) = P (Y3 < y1|Y2 < y1)P (Y2 < y1) + P (Y3 < y1|Y2 > y1)P (Y2 > y1)

= (2
3
× 1

2
) + (1

3
× 1

2
) = 1

2

A direct consequence of A(2) is that these probabilities for Y3 keep the same values

if the unknown Y2 is replaced by its observed value y2, so P (Y3 < y1|y2 < y1) = 2
3

and P (Y3 < y1|y2 > y1) = 1
3
.

Augustin and Coolen [6] referred to the statistical approach known as nonpara-

metric predictive inference (NPI) based on A(n). They introduced the lower and

upper probabilities of NPI, and explained that NPI based only on the A(n) assump-

tion has strong consistency properties in the theory of interval probability [25, 68].

NPI is exactly calibrated [53], which is a strong consistency property in the fre-

quentist theory of statistics, and it never leads to results that are in conflict with

inferences based on empirical probabilities.

The lower probability for an event A is denoted by P (A) and the upper proba-

bility by P (A). The lower probability in NPI is the maximum lower bound for the

classical (precise) probability for A, P (A), and the upper probability in NPI is the

minimum upper bound for A, where P (A) ∈ [0, 1]. The classical (precise) probability

is a special case of imprecise probability when P (A) = P (A) , 0 ≤ P (A) ≤ P (A) ≤ 1,

whereas P (A) = 0 and P (A) = 1 represent an absence of information about A. The

NPI lower and upper probabilities for the event Yn+1 ∈ B where B ⊂ R are :

P (Yn+1 ∈ B) =
1

n+ 1
|{l : Il ⊆ B}| (1.2)

P (Yn+1 ∈ B) =
1

n+ 1
|{l : Il

⋂
B 6= ∅}| (1.3)
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The lower probability (1.2) is the total taking only probability mass into account

that must be in B, which is only the case for the probability mass 1
n+1

per interval

Il, if this interval is completely contained within B. The upper probability (1.3) is

the total of all the probability mass into account that can be in B, which is the case

for the probability mass 1
n+1

, per interval Il, if the intersection of Il and B is non

empty.

NPI is used in a variety of statistical fields such as quality control [4, 5] and

precedence testing [28]. The NPI method was explained in statistical process control

by Arts, Coolen and van der Laan [5] who presented extrema charts and the run

length distribution for these charts via simulation examples and compared them

with other types of charts. Coolen and Coolen-Schrijner [21] used lower and upper

probabilities for predictive comparison of different groups of proportions data. They

considered NPI pair wise comparison of groups and then generalized to multiple

comparisons. To illustrate their method and discuss the features, they analyzed two

data sets and explained the importance of the choice of the number of future trials,

then analyzed the imprecision in their results. Maturi et al [57] compared the failure

times of units from different groups in life testing experiments if each unit failed at

most once, and studied the effect of the early termination of the experiment on the

lower and upper probabilities.

For data sets containing right-censored observations, Coolen and Yan [24] devel-

oped ’right censoring A(n)’ which is a generalization of A(n). Coolen-Schrijner and

Coolen [27] used that generalization to find a method for the age replacement of tech-

nical units, and in simulations they found this method performed well. Coolen [17]

explained NPI for circular data and multinomial data to show that it is possible

to apply NPI to different data situations. He described two norms of objective

Bayesianism, which both have a predictive nature.

The NPI approach is also used with multinomial data [7] when the observations

fall into one of several unordered categories. It considers whether the number of

categories is known or unknown. In the same paper the same idea is illustrated

to deal with sub-categories, where it is assumed that the main category divides

into several not overlapping sub-categories. In all cases, the multinomial data are
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represented as observations on a probability wheel, like circular data. Recently

presented NPI methods for statistical inference and decision support considered, for

example, precedence testing [28], accuracy of diagnostic tests [26,39] and acceptance

decisions [22,40]. In Chapter 3, we apply NPI to Bernoulli data [16] and to multiple

real valued future observations [5].

NPI for Bernoulli random quantities [16] is based on a latent variable represen-

tation of Bernoulli data as real-valued outcomes of an experiment, in which there is

a completely unknown threshold value, such that the outcomes on one side of the

threshold are successes and on the other side are failures. The use of A(n) together

with lower and upper probabilities enables inference without a prior distribution

on the unobservable threshold value, as is needed in Bayesian statistics where this

threshold value is typically represented by a parameter.

Assume that there is a sequence of n + m exchangeable Bernoulli trials, that

’success’ and ’failure’ are possible outcomes of each one of these trials, and that

the data consisting of s successes in n trials. Let Y n
1 denote the random number

of successes in trials 1 to n, then a sufficient representation of the data for NPI

is Y n
1 = s, due to the assumed exchangeability of all trials. Let Y n+m

n+1 denote

the random number of successes in trials n + 1 to n + m, or in future trials. Let

Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for

ease of notation, define
(
s+r0
s

)
= 0. Then the NPI upper probability for the event

Y n+m
n+1 ∈ Rt, given data Y n

1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =(
n+m

n

)−1 t∑
j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)
(1.4)

The corresponding NPI lower probability can be derived via the conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s) (1.5)

where Rc
t = {0, 1, . . . ,m}\Rt.



1.3. Bootstrapping 6

These NPI lower and upper probabilities are the maximum lower bound and

minimum upper bound, respectively, for the probability for the given event based on

the data, the assumption A(n) and the model presented by Coolen [16]. In Chapter

3 an explanation of the derivation of these NPI lower and upper probabilities is

given, using a counting argument of paths on a grid. This is included in order to

provide a combinatorial argument to prove an important claim in Section 3.4.

1.3 Bootstrapping

In this section we present a description of different bootstrap methods, some of them

are used in this thesis, such as Efron’s bootstrap and Banks’ bootstrap.

1.3.1 Efron’s Bootstrap

The bootstrap method was introduced by Efron [35]. It is a resampling technique

for estimating the distribution of statistics based on independent observations, then

developed to work with other statistical inferences. It is used for assigning the

measures of accuracy of the sample estimate, especially the standard error. Using

the bootstrap method to estimate the standard error does not require theoretical

calculations, and it is available for any estimator. It is also a useful method when the

sample size is not sufficient for statistical inference. The basic bootstrap method uses

Monte Carlo sampling to generate an empirical estimate of the sampling distribution

of the statistic (bootstrap distribution). That means it uses a plug-in principle

to approximate the sampling distribution by using a bootstrap distribution. In

most cases a bootstrap distribution mimics the shape, spread and bias of the actual

sampling distribution. Monte Carlo sampling builds on drawing a large number of

samples from the observations and finding the statistic for each sample. The relative

frequency distribution of these statistics is an estimate of the sampling distribution

of the statistic.

Efron [38] defined a bootstrap sample x∗ = (x∗1, x
∗
2, ..., x

∗
n). It is obtained by ran-

domly sampling n times with replacement, from the original sample x1, x2, ..., xn.

The size of a bootstrap sample can be chosen different to the size of the original sam-
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ple. There are many references that show the principles and validity of bootstrap

and how it works. Efron and Tibshirani [38] and Davison and Hinkley [31] have

described bootstrap methods fully with examples and basic theories of applications,

such as tests, confidence intervals and regression. Both books contain S-plus pro-

grams to implement this method. Efron and Gong [37] covered the nonparametric

estimation of statistical errors, especially the bias and standard error of an estima-

tor, in some resampling methods such as bootstrap, jackknife and cross validation.

Efron [36] was concerned with the same basics but with more efficient computational

methods for bootstrap and one sample problems.

Good [42] provided a brief review of bootstrap and computer code in various

software packages (c++, SAS, MatLab, R, S-plus) in order to put this method into

practice. Furthermore, Hjorth [48] explored FORTRAN code, but with more studies

about bootstrap.

Chernick [13] discussed the key ideas and applications of bootstrap. Also he

illustrated confidence intervals, hypothesis tests, regression models and time series.

Singh [66] examined the convergence of the bootstrap approximation in some cases

of estimation, and considered some of the theorems with proofs. Young [70] re-

viewed research into bootstrap and related methods, and additionally discussed the

bootstrap of independent and dependent data.

We have the observations x1, x2, ..., xn of independent and identically distributed

random variables X1, X2, ..., Xn with distribution function F , and want to estimate

the parameter of interest θ, which is a function of X, by statistic Tn. Now we would

like to know the sampling distribution of the statistic Tn. To do this, we will use the

bootstrap method, the main advantage of the bootstrap is that it can be applied

to any statistic. There are two types of bootstrap: parametric and nonparametric

bootstrap. The first type is the parametric bootstrap, which is used when we know

the exact distribution function F (or the parametric form of the population distri-

bution ), or can assume it with some knowledge about the underlying population,

and then estimate the parameters. The second type is the nonparametric bootstrap,

which is used if F is completely unknown. This type is based on simulation of data

from the empirical cumulative distribution function (CDF) Fn. Fn here is a discrete
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probability distribution giving a probability 1
n

to each value of the observations. The

empirical distribution function is the maximum likelihood estimator of the popula-

tion distribution function when there are no parametric assumptions. Here we show

the basic steps of the nonparametric bootstrap, because it is the general method:

1. Construct Fn, the empirical probability distribution by putting probability 1
n

to each value x1, x2, ..., xn, Fn(x) =
∑n

i=1 I(xi ≤ x)/n. It is the number of

elements which are less than or equal to x in the sample divided by size of this

sample.

2. Draw B random samples of size n from Fn with replacement (from the original

sample which is treated as a population).

3. Calculate the statistic of interest Tn from each sample to get T ∗n1, T
∗
n2, ..., T

∗
nB.

4. Construct the empirical distribution of T ∗n1, T
∗
n2, ..., T

∗
nB by placing probability

1
B

at each one of them. This distribution is a Monte Carlo approximation to

the bootstrap estimate of the sampling distribution of the statistic Tn. It is

used to make inferences about θ.

There are some possible modifications to this bootstrap procedure. Young [70]

and Bickel and Freedman [10] explained a possibility of variation of the size of the

data points and the size of the bootstrap sample.

The sampling distribution of a statistic shows the variation in the statistic, be-

cause the statistic will vary from one sample to another. If we use the bootstrap

distribution as an approximation of a sampling distribution, we have another source

of variation because we resample from the original sample. To solve this problem,

we should use a large original sample and draw large numbers of bootstrap samples.

To estimate the accuracy of an estimator Tn, the standard error of Tn, seF (Tn), is

calculated. The bootstrap estimate of seF (Tn) is seFn (T ∗n). It is a plug-in estimate

because it uses the empirical distribution function Fn instead of the unknown dis-

tribution F . seFn (T ∗n) is called the ideal bootstrap estimate of the standard error

if B →∞, see [38], “idea” does not mean perfect. It simply refers to the use of an

infinite number of bootstrap samples. To approximate seFn (T ∗n), we use a Monte
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Carlo approximation of the bootstrap estimate of the standard error ŝeB by follow

the next algorithm:

1. Draw B random samples of size n with replacement from the empirical distri-

bution function Fn.

2. Calculate the statistic of interest Tn for each bootstrap sample to get

T ∗n1, T
∗
n2, ..., T

∗
nB.

3. Estimate the standard error by the sample standard deviation of the Tnj,

j = 1, 2, ..., B

ŝeB =

[∑B
j=1

(
T ∗nj − T ∗n(.)

)2
B − 1

]0.5
(1.6)

where T ∗n(.) =
∑B
j=1 T

∗
nj

B
.

Note that limB→∞ ŝeB = seFn(Tn). So if B is very large, the difference between the

bootstrap estimate and the Monte Carlo approximation will disappear. We use the

bootstrap estimate of the standard error to compare between different bootstrap

methods in Chapter 2.

The main advantage of the bootstrap method is that it enables us to estimate

the standard error for any estimator. We discussed the standard error as a measure

of accuracy for an estimator Tn, but there are other useful measures of statistical

accuracy like bias, which is in general the difference between the expectation of an

estimator Tn and the quantity θ being estimated,

bias(Tn, θ) = biasF = E(Tn)− θ (1.7)

Of course we want an estimator which has good characteristics such as small bias

and small standard error. The bootstrap estimate of bias is

biasFn = E(T ∗n)− T on (1.8)

where T on is the observed value of a statistic which is calculated from the original

sample. Moreover, biasFn is the ideal bootstrap estimate of bias. It is approximated

by Monte Carlo simulation by generating independent bootstrap samples and eval-

uating the statistic T ∗n from each one, and approximating E(T ∗n) by the average
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T ∗n(.) =
∑B
j=1 T

∗
nj

B
to get the bootstrap estimate of bias based on B replications:

b̂iasB = T ∗n(.)− T on (1.9)

If the ratio of bias to the standard error is small, we do not have to worry about

bias. There is a better method than (1.9), see [38]. Let P ∗ = (P ∗1 , P
∗
2 , ..., P

∗
n) be a

resampling vector which contains the proportion of a bootstrap sample x∗

P ∗b =
#(x∗i = xb)

n
, b = 1, 2, ..., n (1.10)

This vector satisfies 0 ≤ P ∗b ≤ 1 and
∑n

b=1 P
∗
b = 1. For example, if the bootstrap

sample is x∗ = (x1, x6, x6, x5, x1, x1), then the corresponding resampling vector is

P ∗ = (3/6, 0, 0, 0, 1/6, 2/6). If the B bootstrap samples x∗1, x∗2, ..., x∗B give B re-

sampling vectors P ∗1, P ∗2, ..., P ∗B, and P
∗

is the average of these vectors, then the

better bootstrap bias estimate is

biasB = T ∗n(.)− Tn(P ∗) (1.11)

where is P ∗ =
∑B
j=1 P

∗
j

B
and Tn(P ∗) is the bootstrap statistic but written as a function

of the average of the resampling vector. Both biasB and b̂iasB converge to biasFn =

b̂ias∞, the ideal bootstrap estimate of bias, as B →∞, but the convergence is faster

to biasB. Efron and Tibshirani [38] calculated, for some data, biasB and b̂iasB for

B = 25, 50, 100, ..., 3200, and b̂ias∞ approximated by b̂ias100,000, then they found

biasB converged to b̂ias∞ more quickly.

The root mean square error of an estimator Tn for θ is a measure of accuracy

that uses both bias and standard error [38]

√
MSE =

√
se(Tn)2 + bias(Tn, θ)2 (1.12)

Note that these procedures to find the bootstrap estimate of standard error and

bias can be used in parametric and nonparametric bootstrap. In this thesis we use

bias, variance, standard error and mean square error to compare different methods

of bootstrap in Chapter 2.
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Now, we should ask an important question, how large should we take B, the

number of bootstrap replications? Efron [38] made some suggestions based on his

experience. He considered that B = 50 replications is sufficient to estimate the

standard error, but B = 200 replications or more is rarely needed to estimate

a standard error. For confidence intervals and hypotheses tests B = 50 or 200

is not large enough. At least B = 1000 or 2000 replications is needed to give

accurate results. Some researchers use even larger numbers but this consumes a lot

of computer time, depending on the complexity of the method. In this thesis we use

B = 1000 replications which we think is a suitable selection for our purposes here.

It is the most widely used in the literature, especially for hypothesis tests and the

construction of confidence intervals, and for the regression models.

1.3.2 Bayesian Bootstrap

The Bayesian bootstrap was developed by Rubin [63]. He explained that the

Bayesian bootstrap simulates the posterior distribution of the parameter, whereas

the standard bootstrap simulates the estimated sampling distribution of a statistic

of the parameter. He used a noninformative prior distribution which is the uniform

distribution. The standard and Bayesian bootstrap differ in how to assign the prob-

abilities. In Bayesian bootstrap [13,63], instead of sampling with replacement from

the data and with probability 1
n
, it uses a posterior probability distribution for the

data. To simulate the posterior distribution of the parameter Rubin [63] used the

statistic as a function of probabilities g. For simplicity we will consider the data as

one dimensional and as a single parameter but both can be multidimensional. He

drew n − 1 random variables from uniform (0,1) to get u1, u2, ..., un−1 and ordered

them to have gaps g between these values. The vector g is the vector of proba-

bilities of the data value x1, x2, ..., xn. Then he drew a sample from the data and

found the statistic of interest as a function of g. When he repeated this process

the posterior distribution of the parameter was found. The Bayesian bootstrap can

be used in the usual Bayesian inferences about the parameter θ, which is based on

the estimated posterior distribution, but the nonparametric bootstrap just makes

frequentist analysis about the distribution of statistic Tn.
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Several studies have used and discussed the Bayesian bootstrap, such as Meeden

[58], who presented Rubin’s Bayesian bootstrap with a new modification. He used

the same argument of the Bayesian bootstrap to estimate population quantiles but

applied it to subintervals divided to grid, more than one grid is used, and these

grids are given and fixed. Then Meeden compared the Bayesian bootstrap and the

smoothed Bayesian bootstrap to his technique to show that these three methods are

quite similar and preferable to traditional methods.

1.3.3 Banks’ Bootstrap

Banks’ [8] described new versions of the bootstrap, the smoothed Efron’s bootstrap

and the smoothed Bayesian bootstrap, and compared them to the Bayesian boot-

strap and other bootstrap methods. Here we will focus on the smoothed Efron’s

bootstrap. In this method Banks’ [8] smooths Efron’s bootstrap by linear inter-

polation histospline smoothing between the jump points of empirical distribution.

Histospline is a smooth density estimate based only on the information in a his-

togram. This procedure is as follows:

1. Take n observations, which are real valued, one dimensional on a finite interval.

2. Create n+ 1 intervals between the n observations x0, x1, x2, ..., xn, xn+1 where

x0 and xn+1 are the end points of the possible data range (finite).

3. Put uniformly distributed probabilities 1/(n+ 1) over each interval.

4. Sample n observations from the distribution.

5. Find the statistic of interest.

6. Repeat steps 4 and 5 B times to get B bootstrap samples.

In smoothed Efron’s bootstrap, the empirical distribution function Fn(x) is

smoothed using linear interpolation histospline smoothing between the jump points.

It spreads the probability 1/(n+ 1) uniformly over any interval between two values

of observations. Banks’ [8] used confidence regions to compare his method to other

bootstrap methods. Banks’ estimated the confidence region at different values of α
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and applied the chi-square test of goodness of fit to compare methods. The best

region is one with small volume with α (Type I error ).

1.3.4 Comparison of Bootstrap Methods

Efron [35,37,38] discussed different ways of comparing bootstrap methods like bias,

standard error and mean square error, which are shown in Section 1.3.1. In this

section, we illustrate other ways of comparison between bootstrap methods such as

confidence intervals and prediction intervals.

1. Confidence Intervals

In this part we describe different methods for constructing confidence intervals by

bootstrap technique. But we will start with a review of general confidence intervals.

In one sample case, we have the observations x1, x2, ..., xn with the distribution

function F , θ is the parameter of interest with its estimation Tn, ŝe is the estimate

of the standard error of Tn = θ̂. In some cases, if the sample size n grows large, the

distribution of Tn is approximated by normal with mean θ and variance (ŝe2), that

means Tn ∼ N(θ, (ŝe2)) or equivalently

θ̂ − θ
ŝe
∼ N(0, 1) (1.13)

This result is called the large sample theory or asymptotic theory.

Let z(α) be the 100.αth percentile point of N(0, 1), then from (1.13)

P (z(α) ≤ θ̂ − θ
ŝe
≤ z(1−α)) = 1− 2α (1.14)

and

P (θ̂ − z(1−α).ŝe < θ < θ̂ − z(α).ŝe) = 1− 2α (1.15)

It is called the standard confidence interval with coverage probability 1 − 2α, or

confidence level 100.(1− 2α)%.

Now we want to explore the use of the bootstrap method to construct confidence

intervals [38], the first approach is the bootstrap-t interval. We generate B bootstrap

samples and for each one we find

Z∗(b) =
θ̂∗(b)− θ̂
ŝe∗B(b)

=
T ∗nj − Tn
ŝe∗B(b)

(1.16)



1.3. Bootstrapping 14

where θ̂∗(b) is the value of θ̂ of the bootstrap sample x∗b and ŝe∗B(b) is the estimated

standard error of θ̂∗ of the bootstrap sample x∗b. The bootstrap-t confidence interval

is:

(θ̂ − t̂(1−α).ŝeB, θ̂ − t̂(α).ŝeB) (1.17)

where t̂(α) is the αth percentile of Z∗(b), across all bootstrap samples b, and t̂(1−α)

is the (1 − α)th percentile. If B = 1000 and α = 0.05, then t̂(α) is the 50th largest

value of the Z∗(b). If B.α is not an integer, assuming α ≤ 0.5, let k = [(B + 1)α] is

the largest integer≤ (B + 1)α, then determine α and (1−α) by the kth largest and

(B + 1− k)th largest value of Z∗(b), respectively.

Another approach of confidence intervals using the bootstrap technique is based

on the percentiles of the bootstrap distribution of a statistic. It is called the per-

centile interval. The approximate (1− 2α) percentile interval is defined by :

θ̂
∗(α)
B < θ < θ̂

∗(1−α)
B (1.18)

T
∗(α)
nj < θ < T

∗(1−α)
nj (1.19)

where T
∗(α)
nj is the 100.αth empirical percentile of the T ∗nj values and T

∗(1−α)
nj is

the 100.(1 − α)th empirical percentile of them, that means the B.αth value and

B.(1 − α)th value of the ordered list of the B replications of T ∗n . For example, if

B = 1000 and α = 0.05, T
∗(α)
nj and T

∗(1−α)
nj are the 50th and 950th ordered values of

the replications, respectively.

The percentile interval can be improved to get a BCa interval, or a bias corrected

and accelerated interval. To find the endpoints which are given by percentiles,

we need to compute two numbers â and ẑ0, they are called the acceleration and

bias correction, respectively. The value of the bias correction ẑ0 uses the ratio of

bootstrap replications less than the original estimate Tn, it counts the possible bias

in Tn as an estimate of θ

ẑ0 = Φ−1(
#(T ∗nj < Tn)

B
) (1.20)

where Φ−1 is the inverse function of a standard normal cumulative function, for

example, Φ−1(0.95) = 1.645. To find the acceleration â, we will use the easiest way
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by jackknife values of a statistic Tn. Let xi = (x1, x2, ..., xi−1, xi+1, ..., xn) be the

jackknife sample which is the original sample with the ith observation xi deleted,

Tn(i) is the i− th jackknife replication of Tn and

Tn(.) =

∑n
i=1 Tn(i)
n

(1.21)

then

â =

∑n
i=1(Tn(.) − Tn(i))3

6(
∑n

i=1(Tn(.) − Tn(i))2)
3
2

(1.22)

It refers to the rate of change of the standard error of Tn as θ varies.

The (1− 2α) BCa interval in [38] and [56] is:

T
∗(α1)
nj < θ < T

∗(α2)
nj (1.23)

where

α1 = Φ(ẑ0 +
ẑ0 + zα

1− â(ẑ0 + zα)
) (1.24)

α2 = Φ(ẑ0 +
ẑ0 + z1−α

1− â(ẑ0 + z1−α)
) (1.25)

Φ(.) is the standard normal cumulative function and z(α) is the 100.αth percentile

point of standard normal distribution. For example, z(0.95) = 1.645 and Φ(1.645) =

0.95. If â and ẑ0 equal zero, then α1 = Φ(z(α)) = α, α2 = Φ(z(1−α)) = 1 − α, and

the BCa interval and percentile interval are equal in this case.

We will use the BCa interval in Section 2.5.1 to compare different bootstrap

methods because it has a higher order of accuracy and transformation respecting.

To illustrate the transformation respecting property we consider an example, if we

constructed a confidence interval for a parameter θ, then the interval for θ2 will

construct by squares the end points of confidence interval for θ, this interval that is

transformation respecting [38].

2.Prediction Intervals

In [55], the bootstrap method was used to construct a prediction interval for one

or more future values from the Birnbaum-Saunders distribution. They applied the

bootstrap percentile method with the bootstrap calibration for estimating the pre-

diction interval. They assumed that a random sample x1, ..., xn is drawn from the
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Birnbaum Saunders distribution function F with parameters α, β. A bootstrap sam-

ple of size n, x∗1, ..., x
∗
n, is drawn from x1, ..., xn with replacement to construct the

estimated distribution F ∗, and then sampled y∗1, ..., y
∗
m from it, (m is the number of

future observations), we can obtain the mean of y∗1, ..., y
∗
m, which is denoted by ȳ∗m.

Repeat this technique B times to get B values of ȳ∗m, denoted by ȳ∗m(1), ..., ȳ∗m(B).

The 1−α prediction interval for x̄m (the mean of future observations in the popula-

tion) is: [ȳ
∗(α

2
)

m,B , ȳ
∗(1−α

2
)

m,B ]. The lower bound ȳ
∗(α

2
)

m,B is the B.α
2
th value in the ordered list

of the B replications of ȳ∗m, and the upper bound ȳ
∗(1−α

2
)

m,B is the B.(1 − α
2
)th value

in the same ordered list. To find the coverage count how many intervals contain

x̄m. This procedure is used to predict one or more future observations. To explain

this, for example, if we have a sample of x1, x2, x3 , n = 3, and want to predict

m = 3 values, x4, x5, x6, the mean of these values is x̄m = x̄3. Then we construct

the prediction interval for it by sampling the bootstrap sample x∗1, x
∗
2, x
∗
3 and then

generating from them y∗1, y
∗
2, y
∗
3 and finding ȳ∗m. Repeat this B = 1000 times and find

the prediction interval of these B values as described before. If we consider the case

of prediction of one future value x4 the mean will not be used here. Simply resample

x∗1, x
∗
2, x
∗
3 and generate y∗1 from them, and repeat this B times to have the list of

B values y∗1(1), y∗1(2), ..., y∗1(B) to construct the prediction interval for xn+1 = x4.

In that study, the 90% and 95% prediction intervals for a single future value xn+1

and the mean of m future observations x̄m are obtained, and MonteCarlo simulation

is used to estimate the coverage probability by finding the proportion of intervals

which contain xn+1 and x̄m.

Different types of bootstrap prediction intervals [2,60,61] can be used to estimate

the parameter θ: bootstrap-t, percentile and BCa prediction intervals. In this thesis

we use the percentile prediction interval. Let X = (X1, X2, ..., Xn) be the past

random samples and Y1, Y2, ..., Ym be the future random samples, where X and Y

are iid from probability distribution F and T = θ̂ is a scalar parameter, and we want

to construct the prediction interval to predict the statistic (estimator) of θ̂m = Tm

of the future random sample. Let θ̂n = Tn be the estimator using the past sample

of size n. Fn and Fm are the CDF of Tn and Tm, respectively, and let F̂n and F̂m be

the CDF’s of T ∗n and T ∗m. Here F̂n assigns mass 1
n

to each X∗i and F̂m assigns mass
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1
m

on each Y ∗i . The (1− 2α)% percentile prediction interval

lower bound = F̂−1m [Φ(z(α)(1 +
m

n
)
1
2 )] = F̂−1m [α1] (1.26)

here, r = m
n

and z(α) = Φ−1(α)

upper bound = F̂−1m [Φ(z(1−α)(1 +
m

n
)
1
2 )] = F̂−1m [α1] (1.27)

In [61] X∗ and Y ∗ are drawn from the past sample X with replacement while [60] the

iterated (calibration) bootstrap was used by generating X∗ and Y ∗ from X and then

resample Y ∗∗ from X∗, to study the improving of the coverage accuracy of prediction

intervals. The percentile prediction interval to predict future observations, and the

percentile prediction interval to predict the statistic, are used in Section 2.5.2 to

compare the NPI-B method with the standard-B method.

1.4 Reproducibility

Often when we use the applications of the statistical test in several fields, we meet

some problems because the results and conclusions of statistical hypothesis tests can

be different each time the tests are repeated. Goodman [43] raised the topic of re-

producibility of a statistical test, mainly to counter a frequently occurring misunder-

standing about the meaning of a statistical p-value. The reproducibility probability

(RP) for a test is the probability for the event that, if the test is repeated based on an

experiment performed in the same way as the original experiment, the test outcome,

that is either rejection of the null-hypothesis or not, will be the same. The focus is

mostly on reproducibility of tests in which the null-hypothesis is rejected, as signifi-

cant effects tend to lead to new treatments in medical applications, for example. In

a later discussion of Goodman’s paper (and about twice the length of Goodman’s

paper), Senn [64] emphasized the different nature of the p-value and RP. Senn agrees

with Goodman about the importance of reproducibility of test results and the RP,

but disagrees with Goodman’s claim that ‘p-values overstate the evidence against

the null-hypothesis’. Indeed, it is important to recognize the difference between RP

and the p-value, while also recognizing a natural link between the two, in the sense

that the p-value indicates the strength of the statistical conclusion and the smaller
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p-value in the case of a rejected null-hypothesis, the larger one would expect the

corresponding RP to be.

Senn [64] also discusses the importance of reproducibility of tests in the real

world, where actual repeats of tests may well be under slightly different circum-

stances and might involve different teams of analysts performing the tests. So, the

concept of reproducibility is not necessarily uniquely defined, and statistical method-

ology should be flexible enough to deal with varying circumstances. Recently, Begley

and Ellis [9] presented a worrying insight into problems with reproducing tests in

preclinical cancer research in which significant effects were reported. Attempting to

repeat tests from 53 ‘landmark studies’, they managed to get the same significant

scientific findings in only 6 cases. They report further on similar, but more extensive,

studies by Bayer Healthcare in Germany, where only about 25 percent of significant

results had been reproduced. Begley and Ellis [9] provide a detailed discussion of

factors that play a role in such studies of repeatability and provide guidelines for

improving the reliability of such studies which, for example, considers publication

processes (there is an obvious bias due to the tendency for only ‘positive’ results

to be published). Remarkably, Begley and Ellis [9] do not discuss the statistical

methods used in such medical testing, where more emphasis on RP seems a natural

requirement as part of a solution for more reliable medical testing.

During the last decade, the concept of RP has attracted increasing interest in the

literature, with some contributions making clear that the definition and interpreta-

tion of RP are not uniquely determined. Miller [59] emphasizes that two scenarios

for repetition of a test must be distinguished: a general form of repetition by other

researchers, where conditions may vary with regard to the original experiment and

test, and an individual form of repetition by the same researcher under exactly the

same conditions as the original experiment and test. Miller [59] is sceptical about

the possibility to derive useful inferences from one initial experiment, in particular

as real effect sizes will be unknown, and hence the power of the test is unknown.

The difference between these two scenarios is important, and links nicely to the

discussions by Senn [64] and Begley and Ellis [9]. The approach to inference on

RP presented in this thesis sits fully in the ‘individual form of repetition’ in Miller’s
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terminology, and makes clear that meaningful frequentist inference is possible in this

scenario.

The recent literature on RP is fascinating, as it is clear that RP is not a nat-

ural concept in classical frequentist statistics. Shao and Chow [65] present three

approaches to RP: a Bayesian approach, a frequentist approach based on estimating

the power of a future test based on the available test data, and a corresponding ap-

proach where RP is linked to a lower confidence bound of this power estimate. While

the Bayesian approach provides a natural solution to inference for the RP, through

the use of the posterior predictive distribution, the unavoidable influence of the prior

distribution [17] can lead to criticisms in medical scenarios where objectivity is es-

sential. The natural way of formulating inference on RP as a predictive problem is

also followed in the approach presented in this thesis, yet the statistical methodology

presented here is fully frequentist. Shao and Chow [65] emphasize the possible use

of RP in circumstances where evidence in a medical trial is overwhelmingly strong

in favour of a new treatment. Currently, marketing approval of a new drug in the

USA requires substantial evidence of its effectiveness in at least two clinical trials,

although under special circumstances exceptions appear to be possible. Shao and

Chow used several study designs to evaluate RP such as: two samples with equal

variances, two samples with unequal variances and parallel group designs, and then

they used them to study the generalization of the clinical results from one patient

population to a different patient population, and also to adjust the sample size for

the second trial.

With regard to estimation of RP, there is a simple argument that, if the dis-

tribution under the null-hypothesis of the test statistic is (about) symmetric, then

a worst-case scenario would give RP of (about) 0.5 [43, 64]. This follows from the

possibility that a value of the original test statistic could be equal to the critical

value of the test. Without further information, one could expect that a repetition

of the experiment would lead to a second value of the test statistic which is equally

likely to be larger than or smaller than the original value, and therefore the same

conclusion would be reached with probability 0.5 (Goodman [43] supports this with

a Bayesian argument with a non-informative prior). Of course, it is more realistic to
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consider the estimation problem in more detail, and not to be focused solely on the

worst-case scenario of a test statistic that is equal to the critical value of the test.

It seems logical that RP should be considered as a function of the value of the

original test statistic. The estimated power approach by Shao and Chow [65] uses

the original test results to estimate the power of the test, assuming implicitly that

the test would be repeated on the same number of units also sampled from the

same probability distribution. This estimated power of the test is currently actually

called the ‘reproducibility probability’ by several authors (e.g. De Martini [34]),

and while it is a natural concept to consider in the classical frequentist statistics

framework, it does not seem to be fully in line with the intuitive meaning of RP due

to the explicit conditioning, for the power of a test, on the alternative hypothesis

being true. The strength of support for this assumed condition in the results of the

actual test depends again on the p-value, underlining the complications in defining

RP within the classical frequentist framework.

Whether or not this concept for estimation of RP by Shao and Chow [65] is fully

in line with the intuitive concept of RP, the approach has led to insightful further

developments, particularly by De Martini [34] who considers such estimation with

main focus on testing with one-sided alternative hypotheses (the theory for two-

sided alternative hypotheses is also presented in an appendix). Importantly, De

Martini [34] proposes not only to study such RP estimation for tests, but also

to actually use the estimated RP to define tests, which provides an interesting

alternative to tests based mainly on chosen statistically significant levels. De Martini

managed several definitions of the RP of a statistic significant result. The first

one is the power πα of the test, and the second is the lower confidence bound

of the power. This approach is followed by De Capitani and De Martini [32, 33]

in detailed studies for the Wilcoxon Rank Sum (WRS) test, which we will also

consider in this thesis. De Capitani and De Martini [32, 33] evaluated different RP

estimators for the Wilcoxon rank sum WRS test and compared the performance

of these estimators. Goodman [43] illustrated that the p-value gives too optimistic

evaluation so De Capitani and De Martini [32] think it is suitable to use the RP

estimate also. Collings and Hamilton [14] described the approximation of the power
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of the Wilcoxon two sample test for the location shift model, but by bootstrap

method without assumptions and if the shape of distribution is unknown.

Without attempting to provide a full review of the literature on this fascinating

topic, it is worth to mention briefly some further contributions. Posavac [62] uses

the difference between the value of a test statistic based on the actual test and the

corresponding critical value to estimate RP. For example, for a two-sample test this

requires the estimation of the standard error of the difference of the means of the two

samples. This leads to an estimate of the probability of a ‘statistically significant

exact replication’, which we believe is one of several examples of rather confusing

concepts in this topic area.

Killen [51] emphasizes the predictive nature of RP and links it to the effect size.

He proposes to effectively eliminate the effect size by averaging it out in a Bayesian

manner with the use of a flat prior distribution. The paper is accompanied by a

discussion which makes clear that the concept of RP is somewhat confusing, but the

general ideas about RP in Killen’s paper are not too distant from those presented in

this thesis, namely the predictive nature of RP, which we will explicitly use, and the

informal way of considering RP as the ‘real power’ of a test, with ‘power’ interpreted

in its every-day, so non-statistical, meaning, which we also support. In [51] Killen

defined the statistic prep as the estimate of RP. Consider an experiment test where

there is no difference between experimental and control groups, so the null hypothesis

is H0 : µE − µC = 0. The observed effect size is d́ and the population effect size is δ́

d́ =
ME −MC

sp
(1.28)

where sp is the pooled within group standard deviation, ME and MC are the sam-

ple means of the experimental group and control group, respectively. In [50] was

considered the statistic prep as

prep = Φ[Φ−1(1− p

2
)/
√

2] (1.29)

where Φ is the standard normal cumulative distribution function.
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Lecoutre et al [54] discuss Killen’s approach further, referring to it as ‘fiducial

Bayesian predictive probability’, and mentioning that it is now increasingly popular.

They discuss some problems with its computation, resulting again from some appar-

ent confusions. They particularly emphasize the importance of predictive inference,

ending their paper with ‘Predictive probabilities are an unavoidable part of statis-

tical thinking, and the time has come to take them seriously’- we wholeheartedly

agree with this. Recently, Boos and Stefanski [12] considered reproducibility issues

by studying the variability in p-values through bootstrap studies, which showed

‘surprisingly large variability’. They also comment briefly on the importance of this

issue in case of multiple testing, as increasingly used with very large data sets in,

e.g., modern bio-statistics.

Cumming [29,30] provided illustrations of Killen’s statistics [51], but he consid-

ered that Killen’s statistic is the average of all possible replication probabilities (or

RP values). He described three ways to picture the idea of replication: confidence

intervals, p-value and Killen’s statistic.

To summarize, it is quite surprising that there is apparently confusion about

reproducibility, which itself appears to be quite a straightforward concept. In this

thesis, we consider RP within a frequentist statistical framework but from the per-

spective of prediction instead of estimation, which we think is attractive and avoids

some of the confusion in earlier contributions.

1.5 Outline of Thesis

The work in this thesis proposes a new version of bootstrap, which is called non-

parametric predictive inference bootstrap (NPI-B), and uses it to predict the repro-

ducibility probability (RP). Also the NPI-RP is presented for the reproducibility

probability.

In Chapter 2, we present the main idea of NPI-B and the difference between

standard, Banks’ and NPI bootstrap methods. NPI-B with finite intervals and real

line observations is derived. A comparison of the three methods of bootstrap is pre-
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sented using some measures like bias and mean squared error, then using confidence

intervals and prediction intervals. Some results of this chapter were presented at

the 1st International Statistical Conference with special sessions on Science, Engi-

neering and Islamic Finance (ISM-1 2012) in Malaysia and they were also presented

in the paper “On bootstrapping using nonparametric predictive inference” which is

published in the proceedings of this conference [11].

Chapter 3 introduces a summary of three basic nonparametric tests, one sam-

ple sign test, one sample signed rank test and two sample rank sum test. This is

followed by a demonstration of the use of NPI for the reproducibility probability

(NPI-RP) of test results and includes some examples. We found the NPI lower

and upper bounds of RP for various tests, with different sample sizes and levels of

significance. The results of this chapter are included in the paper “Nonparametric

predictive inference for reproducibility of basic nonparametric test”, which has been

accepted for publication in the Journal of Statistical Theory and Practice [20]. But

the calculations of NPI-RP become complicated with large sample sizes or complex

tests, for this reason we introduce an alternative method in Chapter 4.

Chapter 4 shows the reproducibility probability using the NPI bootstrap (NPI-

B-RP). It also explores the reasons for using the NPI-B method rather than the

NPI-RP method, and how the results in this chapter support those in Chapter 3.

Then we show that NPI-B-RP can be applied to other tests by considering the Kol-

mogorov Smirnov test. At the end of this chapter we explore the performance of

NPI-B to find RP. A paper presenting these results is in preparation.

In Chapter 5, we end with some remarks and conclusions. The calculations in

this thesis were performed using the statistical software R version 2.12.2.



Chapter 2

NPI Bootstrap

2.1 Introduction

In this chapter we introduce the main concept of the NPI bootstrap (NPI-B), and

how to derive an NPI-B sample for observations on finite and infinite intervals. The

procedure depends on creating n + 1 intervals using n observations, then drawing

one value from these intervals and adding this value to the data set, and continuing

to sample n further values in the same way in order to obtain an NPI-B sample.

The assumptions are different with finite and infinite intervals. Additionally in this

chapter different methods of bootstrap are compared, using confidence intervals and

prediction intervals to discuss the strength of estimation and prediction inference of

NPI-B, respectively.

Section 2.2 presents the main idea of NPI-B and explains the difference between

standard, Banks’ and NPI bootstrap methods. Section 2.3 explains how to derive

an NPI-B sample from distributions which have restricted intervals, and simulation

studies of this method are shown. In Section 2.4 we present the NPI-B approach

with real line quantities and non negative observations using further assumptions.

In Section 2.5 we compared different methods of bootstrap using confidence intervals

and prediction intervals. Section 2.6 shows how NPI-B works with order statistics.

Section 2.7 presents some concluding remarks.

24
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2.2 The General Idea of NPI Bootstrap

In this section we present the main idea of the three types of bootstrap: standard,

Banks’ and NPI-B, and explain the difference between them. For the standard

bootstrap method, the observations are drawn from the n original sample points,

but with the other two kinds it is drawn from the points of the original sample

and from the intervals between them. NPI-B depends on creating n + 1 intervals

using n observations, then drawing one value from these intervals and adding this

value to the data set, and continuing to sample m further values in the same way

in order to derive an NPI-B sample. Banks’ bootstrap uses the same process but

without adding the new value to the data set. The style of sampling observations

of NPI-B, which samples values from the data points and from the interval between

these points and adds these values to the data set, means that the NPI-B sample

has more variance than other methods of bootstrap. We will show this property in

detail in simulation studies in this chapter and in the next example. All possible

orderings of the new observations among the past observations are equally likely to

appear in NPI-B, while they have multinomial distributions with n+ 1 intervals for

Banks’ bootstrap, and with n data observations for the standard bootstrap, all are

equally likely for each new observation.

The NPI-B algorithm for one-dimensional real-valued data on a finite (bounded)

interval is as follows:

1. Take the data set of n observations which are real-valued, 1-dimensional on a

finite closed interval.

2. These n observations partition the intervals into n+ 1 intervals.

3. Randomly select one of the n+ 1 intervals, each with equal probability.

4. Sample one future value uniformly from this selected interval.

5. Add that value to the data: increase n to n+ 1.

6. Repeat steps 2-4, now with n+ 1 data, to get a further future value.

7. Do this m times to get a NPI bootstrap sample Y1, Y2, ..., Ym of size m.
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NPI-B

Orderings Frequency Observed Proportions

(3,0,0,0) 10 0.05

(2,1,0,0) 9 0.05

(2,0,1,0) 11 0.06

(2,0,0,1) 7 0.04

(1,2,0,0) 14 0.07

(1,1,1,0) 11 0.06

(1,1,0,1) 7 0.04

(1,0,2,0) 16 0.08

(1,0,1,1) 10 0.05

(1,0,0,2) 12 0.06

(0,3,0,0) 8 0.04

(0,2,1,0) 9 0.05

(0,2,0,1) 8 0.04

(0,1,2,0) 12 0.06

(0,1,1,1) 7 0.04

(0,1,0,2) 8 0.04

(0,0,3,0) 11 0.06

(0,0,2,1) 11 0.06

(0,0,1,2) 8 0.04

(0,0,0,3) 11 0.06

Table 2.1: Orderings of NPI-B

8. Repeat all these steps B times, where B is a chosen integer value, to get a

total of B NPI bootstrap samples of size m.

In this algorithm we assumed that the distribution between data points is uniform,

this does not follow from Hill’s assumption, but we assumed that because the NPI-

B method is an improvement on Banks’ bootstrap method. Banks’ put uniformly

distributed probabilities 1/(n + 1) over each interval between data points. This

assumption is convenient for computation and intuitively reasonable. We do not

consider further underlying principles according to which such an assumption would

be optimal, it is just one possible assumption among many possibilities.

Example 2.1

In this example we illustrate the main arguments of the three bootstrap methods

and the differences between them. We use (2, 4, 6) as original sample, and treat it as

a sample drawn from an unknown distribution with support [0,8]. First, to sample

an NPI-B sample of size m = n = 3 there is n + 1 intervals between the data set

values including the end points (0, 8). The intervals are I1 = (0, 2), I2 = (2, 4),

I3 = (4, 6) and I4 = (6, 8). Choose one interval and then sample the new value

from this interval as the first value in NPI-B sample. Then add this value to the
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Banks-B

Orderings Theoretical Probabilities Frequency Observed Proportions

(3,0,0,0) 0.02 7 0.04

(2,1,0,0) 0.05 7 0.04

(2,0,1,0) 0.05 14 0.07

(2,0,0,1) 0.05 12 0.06

(1,2,0,0) 0.05 9 0.05

(1,1,1,0) 0.09 20 0.10

(1,1,0,1) 0.09 14 0.07

(1,0,2,0) 0.05 5 0.03

(1,0,1,1) 0.09 14 0.07

(1,0,0,2) 0.05 7 0.04

(0,3,0,0) 0.02 5 0.03

(0,2,1,0) 0.05 13 0.07

(0,2,0,1) 0.05 12 0.06

(0,1,2,0) 0.05 9 0.05

(0,1,1,1) 0.09 18 0.09

(0,1,0,2) 0.05 8 0.04

(0,0,3,0) 0.02 2 0.01

(0,0,2,1) 0.05 12 0.06

(0,0,1,2) 0.05 10 0.05

(0,0,0,3) 0.02 2 0.01

Table 2.2: Orderings of Banks-B

data set so that it is n = 4 and the intervals become 5 intervals. Continue with this

procedure to derive an NPI-B sample of size m = 3. There are
(
n+m
m

)
=
(
6
3

)
= 20

orderings of 3 future observations among the 3 data observations, which are shown

in Table 2.1. For example, (1, 0, 2, 0) means there is 1 future observation from I1, 0

from I2, 2 from I3 and 0 from I4. All orderings have equal probability 1/20 = 0.05.

We sampled 200 NPI-B samples to record the number of frequencies of each ordering

and put the results of the simulation in Table 2.1. It is clear from this table that

the probability of each ordering is close to 0.05 in most cases.

In Banks’ bootstrap we use the same method but do not add the new value to the

data set. Table 2.2 shows the orderings and probability of each one using multinomial

distribution, and the observed proportions of each ordering using simulation with

200 Banks’ bootstrap samples. For a standard bootstrap sample, the value is drawn

just from the data values. This sample can be, for example, (2, 4, 6) or (2, 2, 6) or

(4, 2, 4) etc. There are 10 orderings that can appear here, as shown in Table 2.3. This

table contains the probability of the ordering using a multinomial distribution with

n data observations, and the actual probabilities of 200 standard bootstrap samples.

The theoretical probabilities and those from the simulation study are similar in most

cases of the three kinds of bootstrap methods. Figure 2.1 illustrates the variance
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standard-B

Orderings Theoretical Probabilities Frequency Observed Proportions

(3,0,0) 0.04 10 0.05

(2,1,0) 0.11 19 0.10

(2,0,1) 0.11 17 0.09

(1,2,0) 0.11 24 0.12

(1,1,1) 0.22 45 0.23

(1,0,2) 0.11 30 0.15

(0,3,0) 0.04 2 0.01

(0,2,1) 0.11 27 0.14

(0,1,2) 0.11 20 0.10

(0,0,3) 0.04 6 0.03

Table 2.3: Orderings of Standard-B

values of NPI-B samples, standard-B samples and Banks’ bootstrap samples to

measure how far observations are spread out, and to give a general insight into the

NPI-B samples that have a large variance. That is due to the method of sampling

as discussed earlier. These values of variances come from the simulation experiment

in this example and are plotted in Figure 2.1. There are some NPI-B samples which

have small values of variance,and some of them are close to 0, as shown in Figure 2.1.

This is possible with NPI-B samples but happens rarely. This can appear because

the sample size is small.

2.3 NPI Bootstrap for Finite Intervals

The proposed nonparametric predictive inference bootstrap method (NPI-B) is based

on the repeated application of assumption A(n). First it is done with the n observed

data which create n+1 intervals, leading to one further observation. This is followed

by adding a further observation to the data and applying A(n+1) in order to draw

the second further observation, and so on. This is continued until there are m fur-

ther observations, which then together (and without the original n observed data)

form one NPI-B sample. In this section we restrict attention to NPI-B applied to

observations on a finite interval, because it simplifies the approach in the intervals

I1 and In+1. If NPI-B is applied on the full real-line, these two intervals require

different procedures for sampling a value within them. This will be presented in the

following sections. The NPI-B algorithm for one-dimensional real-valued data on a

finite interval is shown in Section 2.2.
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Figure 2.1: Variance of three types of bootstrap methods
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The crucial difference from the standard bootstrap (’standard-B’) is that an NPI-

B sample does not consist of the observations from the original sample but of points

from the whole possible data range, because the sampling here is from the interval

in between the data values and also outside the data range. This procedure leads to

greater variation in the NPI-B samples than in the standard-B samples, as discussed

in Section 2.2. Furthermore with NPI-B it is possible to estimate P (Y > c) for dif-

ferent values of c, especially if c is greater than the maximum value of the original

sample. This provides a method for estimating this probability, but the uniformity

assumption within the intervals will affect the estimate and hence it would be dif-

ficult to arrive at the exact statistical properties for such an estimate, hence the

results presented mainly serve as an illustration of our method. It should be men-

tioned that the NPI-B procedure is close in nature to Banks’ proposal of a smoothed

bootstrap [8], where sampling also takes place uniformly in intervals between the

actual data, but Banks’ only uses the actual n + 1 intervals from step 1 above for

the sampling of all values in the bootstrap sample, so a sampled value is not added

to the data. This leads to a smaller variation in Banks’ approach than in NPI-B.

To study the NPI bootstrap performance, we have carried out a simulation exper-

iment using R code. The considered methods in this part are: standard bootstrap,

Banks’ bootstrap (smoothed Efron’s bootstrap) and NPI bootstrap. We have per-

formed simulation studies, using the software R, for the performance of the NPI-B

as the estimation approach. For each method, we generated B = 1000 bootstrap

samples and calculated the variance which is the square of equation (1.6), bias from

equation (1.9), absolute error |T ∗n − T on |. T on here is the observed value of statis-

tic which is calculated from the original sample. We found the absolute error for

every value of statistics in bootstrap samples and then took the average of these

values, and the mean square error (MSE) of the statistics from equation (1.12). It

is important to mention the reason for choosing these measures. The variance of

statistics is used to show the difference between the three methods of bootstrap or

to show which method has a close variance to the original observations. We will see

that the NPI-B has the largest variance of statistics but it is the closest one to the
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n Uniform (0,1) Beta (1,2) Beta (0.5,1)

20 0.0800 0.0551 0.0729

50 0.0815 0.0444 0.0738

100 0.0857 0.0523 0.0799

200 0.0853 0.0492 0.0825

500 0.0842 0.0523 0.0859

1000 0.0841 0.0521 0.0834

Table 2.4: Variances of original samples from specific distributions with a variety of

sample sizes

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of mean 0.004 0.002 0.001 0.0005 0.0002 0.0001

bias 0.003 -0.0001 -0.001 -0.001 0.0002 0.0001

absolute error 0.049 0.032 0.024 0.017 0.010 0.007

MSE 0.004 0.002 0.001 0.0005 0.0001 0.0001

Banks variance of mean 0.004 0.002 0.001 0.0004 0.0001 0.001

bias -0.007 0.001 0.0003 0.001 -0.0001 -0.0001

absolute error 0.052 0.032 0.023 0.017 0.010 0.007

MSE 0.004 0.002 0.001 0.0004 0.0002 0.0001

NPI variance of mean 0.008 0.003 0.002 0.001 0.0003 0.0002

bias -0.009 0.002 0.001 0.001 -0.0002 0.00001

absolute error 0.070 0.046 0.033 0.024 0.015 0.010

MSE 0.008 0.003 0.002 0.001 0.0003 0.0002

Table 2.5: The sample mean when the original sample was from U (0,1)

variance of the original sample. Regarding bias, MSE and absolute error, they are

the most commonly used measures of statistical accuracy of estimators as discussed

in Section 1.3.1. We repeated this experiment for n = 20, 50, 100, 200, 500, 1000 and

for statistics: mean, variance and upper quartile (q75), to present location, variation

and position parameters, respectively, and for different distributions such as Uni-

form (0,1), Beta (α, β), with (α = 0.5, β = 1) and (α = 1, β = 2), as examples of

symmetric and skewed distributions. Note that, in these cases, the size of bootstrap

samples is m = n. Table 2.4 shows the observed variance of these original samples

with various sample sizes.

Tables 2.5, 2.6, 2.7, of Uniform (0,1) show that when comparing the absolute

value of bias, the NPI bootstrap has the smallest bias of variance parameter in all

cases, but for the mean and q75 it has the smallest value only if n is very large (500 or

1000). Mostly, for three parameters, the MSE and absolute error of Banks’ bootstrap

and standard bootstrap are very close but they are less than NPI bootstrap’s values

of MSE and absolute error. The variance of three parameters using NPI-B is larger

than the others methods. This property of NPI-B is considered a good point because
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of variance 0.0003 0.0001 0.0001 0.00003 0.00001 0.00001

bias -0.005 -0.002 -0.001 -0.0005 -0.0001 -0.0001

absolute error 0.015 0.009 0.006 0.004 0.003 0.002

MSE 0.0003 0.0001 0.0001 0.00003 0.00001 0.00001

Banks variance of variance 0.0004 0.0001 0.0001 0.00003 0.00001 0.00001

bias 0.005 0.002 0.001 0.0004 0.0002 0.00004

absolute error 0.016 0.009 0.007 0.004 0.003 0.002

MSE 0.0004 0.0001 0.0001 0.00003 0.00001 0.00001

NPI variance of variance 0.001 0.0002 0.0001 0.0001 0.00003 0.00001

bias 0.001 0.0002 -0.0001 -0.00002 0.00002 -0.0001

absolute error 0.021 0.012 0.009 0.006 0.004 0.003

MSE 0.001 0.0002 0.0001 0.0001 0.00003 0.00001

Table 2.6: The sample variance when the original sample was from U (0,1)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of q75 0.004 0.003 0.001 0.001 0.0003 0.0002

bias -0.006 -0.014 -0.006 -0.004 0.0005 0.001

absolute error 0.039 0.040 0.020 0.024 0.014 0.009

MSE 0.004 0.003 0.001 0.001 0.0003 0.0002

Banks variance of q75 0.004 0.002 0.001 0.001 0.0003 0.0002

bias 0.001 -0.007 -0.003 -0.000 0.001 0.001

absolute error 0.044 0.037 0.018 0.023 0.015 0.009

MSE 0.004 0.002 0.001 0.001 0.0003 0.0002

NPI variance of q75 0.008 0.005 0.001 0.001 0.001 0.0004

bias -0.009 -0.012 -0.004 -0.002 0.0002 0.001

absolute error 0.064 0.053 0.028 0.030 0.020 0.014

MSE 0.008 0.005 0.001 0.001 0.001 0.0004

Table 2.7: The sample upper quartile q75 when the original sample was from U (0,1)



2.3. NPI Bootstrap for Finite Intervals 33

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of mean 0.003 0.001 0.001 0.0003 0.0001 0.0001

bias 0.001 -0.0005 -0.002 0.0002 0.0002 0.0003

absolute error 0.041 0.024 0.019 0.013 0.008 0.006

MSE 0.003 0.001 0.001 0.0003 0.0001 0.0001

Banks variance of mean 0.006 0.002 0.001 0.0003 0.0001 0.0001

bias 0.078 0.035 0.018 0.009 0.003 0.002

absolute error 0.089 0.041 0.024 0.015 0.009 0.006

MSE 0.012 0.003 0.001 0.0004 0.0001 0.0001

NPI variance of mean 0.011 0.003 0.001 0.001 0.0002 0.0001

bias 0.076 0.036 0.018 0.009 0.003 0.002

absolute error 0.099 0.050 0.031 0.020 0.012 0.008

MSE 0.017 0.004 0.002 0.001 0.0002 0.0001

Table 2.8: The sample mean when the original sample was from Beta (1,2)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of variance 0.0002 0.0001 0.0001 0.00002 0.00001 0.000004

bias -0.003 -0.001 -0.001 -0.0003 -0.0002 0.0001

absolute error 0.013 0.008 0.005 0.004 0.002 0.002

MSE 0.0003 0.0001 0.0001 0.00002 0.00001 0.000004

Banks variance of variance 0.005 0.001 0.0003 0.0001 0.00002 0.00001

bias 0.068 0.033 0.016 0.008 0.003 0.001

absolute error 0.073 0.035 0.017 0.009 0.004 0.002

MSE 0.010 0.002 0.001 0.0002 0.00003 0.00001

NPI variance of variance 0.009 0.002 0.001 0.0002 0.00004 0.00001

bias 0.062 0.032 0.015 0.008 0.003 0.001

absolute error 0.072 0.036 0.018 0.010 0.005 0.003

MSE 0.013 0.003 0.001 0.0002 0.0001 0.00002

Table 2.9: The sample variance when the original sample was from Beta (1,2)

it makes the variance of parameters using NPI-B the closest one to the variance of

the original sample, and supports the discussion in Section 2.2. In the tables of

results in this chapter the values were approximated to three decimal digits to make

them easy to read, but with some values we use additional digits to be informative

and to avoid putting zero’s ”0.000” in the results. It is apparent from results of Beta

(1,2) in Tables 2.8, 2.9, 2.10 that for all parameters here the bias of standard-B is

the smallest one, unlike the other two methods, but sometimes there is no large

difference between the bias of NPI-B and the bias of Banks’ bootstrap method.

Here, for the mean and q75, note that the absolute error and MSE have the same

status of Uniform (0,1), but for variance, the absolute error of Banks’ bootstrap and

NPI bootstrap are similar and greater than the standard bootstrap.

The results of Beta (0.5,1) are presented in Tables 2.11,2.12,2.13 and show that

when we estimate the variance, the NPI bootstrap method has the smallest bias

in most cases, but for the mean and q75 it does not perform better than other
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of q75 0.007 0.003 0.001 0.001 0.0004 0.0002

bias 0.013 -0.010 -0.004 0.002 -0.0003 0.002

absolute error 0.067 0.047 0.029 0.021 0.017 0.012

MSE 0.007 0.003 0.001 0.001 0.0004 0.0002

Banks variance of q75 0.016 0.003 0.001 0.001 0.0005 0.0002

bias 0.082 0.015 0.010 0.009 0.002 0.002

absolute error 0.109 0.048 0.029 0.023 0.018 0.012

MSE 0.022 0.003 0.001 0.001 0.0005 0.0002

NPI variance of q75 0.028 0.007 0.003 0.002 0.001 0.0004

bias 0.088 0.015 0.009 0.009 0.001 0.002

absolute error 0.132 0.065 0.040 0.032 0.024 0.016

MSE 0.036 0.007 0.003 0.002 0.001 0.0004

Table 2.10: The sample upper quartile q75 when the original sample was from Beta

(1,2)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of mean 0.003 0.001 0.001 0.0004 0.0002 0.0001

bias -0.003 -0.001 0.0005 -0.00003 -0.0002 0.0001

absolute error 0.047 0.029 0.022 0.002 0.011 0.007

MSE 0.003 0.001 0.001 0.0004 0.0002 0.0001

Banks variance of mean 0.004 0.002 0.001 0.0004 0.0002 0.0001

bias 0.030 0.012 0.006 0.003 0.001 0.001

absolute error 0.054 0.033 0.023 0.017 0.010 0.007

MSE 0.005 0.002 0.001 0.0004 0.0002 0.0001

NPI variance of mean 0.007 0.003 0.002 0.001 0.0003 0.0002

bias 0.030 0.011 0.006 0.003 0.001 0.001

absolute error 0.071 0.044 0.032 0.023 0.015 0.010

MSE 0.008 0.003 0.002 0.001 0.0003 0.0002

Table 2.11: The sample mean when the original sample was from Beta (0.5,1)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of variance 0.0004 0.0002 0.0001 0.0001 0.00002 0.00001

bias -0.004 -0.002 -0.001 -0.001 -0.0002 -0.0001

absolute error 0.016 0.011 0.009 0.006 0.004 0.002

MSE 0.0004 0.0002 0.0001 0.0001 0.00002 0.00001

Banks variance of variance 0.0004 0.0002 0.0001 0.00004 0.00002 0.00001

bias -0.002 0.001 0.001 0.001 0.0002 0.00003

absolute error 0.016 0.011 0.009 0.005 0.003 0.002

MSE 0.0004 0.0002 0.0001 0.00004 0.00002 0.00001

NPI variance of variance 0.001 0.0004 0.0002 0.0001 0.00004 0.00002

bias -0.005 -0.0003 -0.0002 0.0002 0.00002 -0.0001

absolute error 0.021 0.015 0.012 0.007 0.005 0.003

MSE 0.001 0.0004 0.0002 0.0001 0.00004 0.00002

Table 2.12: The sample variance when the original sample was from Beta (0.5,1)
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance of q75 0.006 0.006 0.002 0.003 0.001 0.0004

bias -0.038 0.018 0.007 0.012 0.011 0.001

absolute error 0.064 0.056 0.029 0.040 0.028 0.016

MSE 0.007 0.006 0.002 0.003 0.001 0.0004

Banks variance of q75 0.006 0.005 0.003 0.002 0.001 0.0004

bias -0.017 0.037 0.017 0.018 0.013 0.003

absolute error 0.059 0.060 0.033 0.038 0.027 0.016

MSE 0.006 0.007 0.003 0.003 0.001 0.0004

NPI variance of q75 0.015 0.011 0.007 0.004 0.002 0.001

bias -0.021 0.030 0.021 0.021 0.015 0.003

absolute error 0.088 0.082 0.055 0.052 0.036 0.022

MSE 0.015 0.012 0.007 0.005 0.002 0.001

Table 2.13: The sample upper quartile q75 when the original sample was from Beta

(0.5,1)

methods in bias. Sometimes the bias of the NPI bootstrap and the bias of the

Banks’ bootstrap are close, for the mean parameter, whereas for variance the bias of

the standard bootstrap and Banks’ bootstrap are similar. As we mentioned before,

the values of MSE and absolute error are close and less than these measures in

the NPI bootstrap. In this section, we studied the NPI bootstrap performance

with data from distributions, which have restricted intervals, such as Uniform (0,1),

Beta (0.5,1) and Beta (1,2) and the simulation results showed that NPI-B gives

the smallest bias when estimating the variance parameter, just with Uniform (0,1),

unlike other distributions studied here. Furthermore, the variance of statistics using

NPI-B is the greatest and closest to the variance of the original sample which is

described in Table 2.4. This is considered a good point of NPI-B because it has a

variance that is close to the variance of the underlying distribution. For example,

with Uniform(0,1) the variance of mean using NPI-B and n = 20 is 0.008, is the

largest one and the closest to the variance of the original sample=0.08, and that

appears to all distributions in this section.

2.4 NPI Bootstrap on Real Line

Now we want to generalize our method to observations on the real line (−∞,+∞)

or [0,∞). These cases require some assumptions. Our method depends on dividing

the observations into intervals, and then sampling the observations uniformly from
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these intervals. If we have real line data we can not do that with all the intervals,

and we can not sample uniformly from (−∞, x1) and (xn,+∞). Instead we sample

observations from (−∞, x1) and (xn,+∞) by assuming the tails of a normal distri-

bution are these intervals. To estimate the parameters of Normal distribution µ and

σ, we take

µ =
x1 + xn

2
(2.1)

We know that P (Y > xn) = 1
n+1

, and by using the properties of normal cumulative

function with this probability we can estimate σ

P (Y > xn) = 1− Φ

(
xn − µ
σ

)
=

1

n+ 1
(2.2)

σ =
xn − µ

Φ−1( n
n+1

)
(2.3)

To draw NPI-B samples here we follow the algorithm in Section 2.3, but use

a different act with intervals (−∞, x1) and (xn,+∞). If the chosen interval is

(−∞, x1) or (xn,+∞), we draw the future value from Normal distribution with

parameters (µ, σ2), which are defined in equations (2.1) and (2.3), and we accept

this future value if it is larger than xn (for (xn,+∞)), and if it is smaller than x1

(for (−∞, x1)). Here we are sampling from the conditional tail distribution. It is of

course possible to assume a different distribution for the tails, or to use a different

method to fit the Normal distribution, but for most inferences this is unlikely to

make much difference while the implementation should also be straightforward.

In this section the simulation study considered NPI-B and standard-B without

Banks’ bootstrap because we could not make assumptions for the end intervals

for it. We compare the standard bootstrap method and NPI bootstrap method

using the Student’s t-distribution and the Normal distribution. For each one we

generated B = 1000 bootstrap samples from the original sample of different sizes

n = 20, 50, 100, 200, 500, 1000 from a Student’s t-distribution with degrees of freedom

4. To compare, we calculated the bias, MSE and absolute error as we did before.

Where T on is not the observed value of a statistic which is calculated from the original

sample, here it is the value of parameters from the underlying population. These
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.096 0.035 0.018 0.009 0.004 0.002

bias 0.641 0.218 0.137 0.157 0.086 0.009

absolute error 0.643 0.240 0.156 0.160 0.091 0.037

MSE 0.507 0.083 0.037 0.033 0.011 0.002

NPI variance 0.272 0.085 0.038 0.019 0.008 0.004

bias 0.661 0.244 0.145 0.157 0.080 0.007

absolute error 0.704 0.302 0.195 0.174 0.099 0.053

MSE 0.709 0.144 0.059 0.044 0.015 0.004

Table 2.14: The sample mean when the original sample was from Student’s t4

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.773 0.221 0.086 0.049 0.062 0.040

bias -0.161 -0.378 -0.279 -0.315 -0.020 0.071

absolute error 0.741 0.505 0.337 0.333 0.197 0.168

MSE 0.799 0.364 0.164 0.148 0.062 0.045

NPI variance 4.427 1.217 0.389 0.160 0.192 0.109

bias 0.842 0.183 -0.011 -0.160 0.134 0.175

absolute error 1.529 0.799 0.464 0.353 0.330 0.276

MSE 5.136 1.250 0.389 0.186 0.210 0.140

Table 2.15: The sample variance when the original sample was from Student’s t4

values have a specific formula depending on the distribution of the population. We

will start with Student’s t-distribution with degrees of freedom υ = 4 with mean

µ = 0 and variance σ2 = υ/(υ − 2) (if υ > 2). Note that, in these cases, the size

of bootstrap samples is m = n, and the considered statistics here are mean and

variance.

From Table 2.14, we can see that the absolute value of bias in the NPI bootstrap

samples is larger than the same measure in standard bootstrap samples except for

n = 500, 1000. The MSE and absolute error for the mean in NPI bootstrap method

are the largest. This status of MSE and absolute error accrues also for variance in

Table 2.15, and the bias in our method is the largest only in cases n = 50, 100, 200.

By comparing the values of variance of statistics in two methods, the NPI bootstrap

method has the largest variance and is closer to the variance of underlying distri-

bution Students’t(4) = 2. This is a positive point of the NPI-B method and occurs

when we study it in restricted intervals such as Uniform distribution.

Note that in our NPI bootstrap samples there is a possibility for the occurrence of

some values larger than xn in the original sample, because we choose our sample from

the observations and from the intervals between observations (−∞, x1), (x1, x2), ...,

(xn,+∞). But in the standard bootstrap we sample values only from the observa-
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.153 0.060 0.029 0.016 0.007 0.003

bias -0.659 -0.281 -0.058 -0.022 -0.045 -0.053

absolute error 0.678 0.315 0.144 0.102 0.074 0.065

MSE 0.587 0.139 0.033 0.016 0.009 0.006

NPI variance 0.402 0.141 0.065 0.036 0.014 0.007

bias -0.626 -0.266 -0.059 -0.016 -0.045 -0.053

absolute error 0.743 0.373 0.209 0.152 0.103 0.081

MSE 0.794 0.212 0.069 0.036 0.016 0.010

Table 2.16: The sample mean when the original sample was from Normal (28,4)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.878 0.402 0.174 0.095 0.050 0.027

bias -1.115 -1.048 -1.031 -0.544 -0.387 -0.318

absolute error 1.252 1.083 1.036 0.554 0.395 0.322

MSE 2.122 1.499 1.238 0.391 0.199 0.128

NPI variance 4.732 1.458 0.513 0.228 0.118 0.062

bias 0.004 -0.527 -0.801 -0.408 -0.299 -0.261

absolute error 1.627 1.079 0.925 0.523 0.382 0.304

MSE 4.732 1.735 1.155 0.394 0.207 0.130

Table 2.17: The sample variance when the original sample was from Normal (28,4)

tions. The NPI bootstrap method for all parameters studied here has the largest

variance which is closer to the variance of underlying distribution.

Now we repeat the experiment with the same assumptions but with the original sam-

ple from Normal distribution with parameters mean µ = 28 and variance σ2 = 4,

and the statistics which we want to study are: mean and variance.

Tables 2.16 and 2.17 show that, when we estimate the mean, the NPI bootstrap

method has the smallest bias in most cases. For the variance it works very well

for all cases in bias, and the absolute error has the smallest value for all cases, ex-

cept in n = 20. But for the mean it does not perform better than the standard

bootstrap method. The values of MSE in the standard bootstrap method are the

smallest. Note that, for all cases and all events which we studied in Normal (28, 4),

the variance of statistics in our method is greater than the variance in the standard

bootstrap and closer to the variance of normal distribution which is 4, as we men-

tioned before, when we discussed NPI bootstrap with Students’t-distribution.

In the case of the data on [0,∞), for example lifetime data, we need to define a

specific distribution for sampling from (xn,+∞). We use the tail of an Exponential
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.031 0.009 0.004 0.002 0.001 0.0004

bias 0.052 0.044 0.013 -0.066 -0.050 -0.029

absolute error 0.146 0.085 0.053 0.069 0.051 0.030

MSE 0.034 0.011 0.004 0.006 0.003 0.001

NPI variance 0.143 0.030 0.011 0.004 0.002 0.001

bias 0.164 0.086 0.031 -0.057 -0.048 -0.027

absolute error 0.288 0.142 0.087 0.072 0.053 0.032

MSE 0.170 0.037 0.012 0.007 0.004 0.001

Table 2.18: The sample mean when the original sample was from Weibull (1.5,1)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.114 0.023 0.008 0.003 0.001 0.0004

bias 0.266 0.139 0.100 0.025 -0.002 -0.018

absolute error 0.334 0.163 0.110 0.049 0.025 0.023

MSE 0.185 0.043 0.018 0.004 0.001 0.001

NPI variance 3.442 0.497 0.053 0.020 0.004 0.001

bias 0.908 0.354 0.186 0.070 0.015 -0.010

absolute error 0.986 0.393 0.202 0.101 0.045 0.029

MSE 4.267 0.623 0.088 0.025 0.004 0.001

Table 2.19: The sample variance when the original sample was from Weibull (1.5,1)

distribution for this. In this case the intervals will be (0, x1), (x1, x2), ..., (xn,+∞).

If the chosen interval is (xn,+∞) we select the observation randomly from Ex-

ponential distribution. Otherwise we draw the observation uniformly from other

intervals. To estimate the parameters of Exponential distribution λ, we use the cu-

mulative function P (Y < y) = 1−e−λy. We know that P (Y > xn) = 1
n+1

, so we get

λ =
ln(n+ 1)

xn
(2.4)

A different distribution, or a different way to fit the Exponential distribution, could

be assumed for this tail, we have not investigated this further but expect that it

would not make much difference for most inferences. To sample NPI-B samples in

this case we use the algorithm in Section 2.2, but if the chosen interval is (xn,+∞),

we draw the future value from Exponential distribution with parameters λ in equa-

tion (2.4) and we accept this future value if it is larger than xn, we sample here from

the conditional tail distribution.

To study this case we started with the original sample from Weibull distribution

with parameters shape α and scale β, α = 1.5, β = 1 and considered bootstrap for

the mean and variance.
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method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.109 0.210 0.105 0.048 0.016 0.007

bias -1.066 -0.303 0.068 0.183 0.100 0.055

absolute error 1.066 0.454 0.261 0.231 0.133 0.082

MSE 1.245 0.302 0.110 0.081 0.026 0.010

NPI variance 0.379 0.695 0.262 0.106 0.034 0.016

bias -0.962 -0.077 0.171 0.237 0.122 0.067

absolute error 1.019 0.649 0.409 0.323 0.175 0.115

MSE 1.304 0.701 0.291 0.163 0.048 0.021

Table 2.20: The sample mean when the original sample was from Gamma (2,2)

method measures n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

standard variance 0.377 30.167 9.311 2.836 0.663 0.275

bias -5.724 2.571 2.321 1.657 0.358 -0.105

absolute error 5.724 4.738 2.983 1.911 0.704 0.429

MSE 33.141 36.778 14.699 5.583 0.791 0.286

NPI variance 15.594 373.136 70.245 19.307 2.560 0.815

bias -4.411 9.791 5.518 3.094 0.911 0.176

absolute error 5.183 11.902 6.334 3.504 1.328 0.701

MSE 35.055 468.998 100.696 28.881 3.390 0.845

Table 2.21: The sample variance when the original sample was from Gamma (2,2)

It is clear from Tables 2.18 and 2.19 that the bias of the NPI bootstrap method

is not the smallest unless when n ≥ 200 for the mean and when n = 1000 for the

variance. For mean and variance, note that the absolute error and MSE of the NPI

bootstrap method are greater than the same measures of the standard bootstrap

method. Note that the variance of statistics using NPI-B has the largest value as

the case of Normal and Students’t-distributions.

Tables 2.20 and 2.21 show the experiment with the original sample from the Gamma

distribution with parameters shape α and scale β, α = 2, β = 2 and statistics: mean

and variance.

The bias of the NPI bootstrap method, for the mean, is the smallest when

n = 20, 50 and for the variance when n = 20. Otherwise the values of the bias in

our method are larger than the bias of the standard bootstrap. The absolute error of

the NPI bootstrap method, for mean and variance, is very large except when n = 20

and then it has small values. The variance of all the statistics in the NPI bootstrap

method is the largest and the closest to the variance of Gamma (2, 2) which is 8,

but for the variance parameter the variance is sometimes overestimated.
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Student’t(4)

m = n = 20 50 100 200 500 1000

no. of min 477 500 487 496 518 529

no. of max 496 530 513 482 470 490

no. of between 18183 48000 98025 198000 498043 997996

Normal(28,4)

m = n = 20 50 100 200 500 1000

no. of min 492 484 478 495 504 487

no. of max 526 486 489 511 518 533

no. of between 18007 48053 98075 197966 497924 997919

Weibull(1.5,1)

m = n = 20 50 100 200 500 1000

no. of min 491 517 488 512 483 497

no. of max 496 488 528 497 517 500

no. of between 18057 48060 98008 197983 497911 997951

Gamma(2,2)

m = n = 20 50 100 200 500 1000

no. of min 496 530 525 483 507 466

no. of max 487 492 504 507 507 533

no. of between 18096 48049 97901 198026 497914 998009

Table 2.22: Number of observations within data set

In general the NPI-B samples have more variations than those in the standard

and Banks’ bootstrap samples. On the other hand they have less bias than the other

two bootstrap methods, in some cases, when the variance parameter is estimated.

Table 2.22 shows how many NPI bootstrap samples have the future minimum

value Yn+1 smaller than a minimum value of the original sample x1 (no. of min),

and how many samples have the future maximum value Yn+m larger than original

maximum value xn (no. of max). The third row contains the number of observations

of NBI-B samples between minimum and maximum values x1, xn, for Normal, Stu-

dents’t, Gamma and Weibull distribution. For example, in Students’t-distribution

with degrees of freedom 4 when n = 20 and B = 1000 there are 477 NPI-B sam-

ples from 1000 that have a minimum value smaller than the original minimum value.

As we mentioned before, NPI is a statistical method based on Hill’s assumption

An:

P (Yj < Yn+1 < Yj+1) =
1

n+ 1
, j = 0, 1, ..., n (2.5)

This means that the probability that a future value lies in the interval (Yj, Yj+1)

is 1/(n + 1). So the probability that the NPI bootstrap sample has all values
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smaller than the original maximum is 1/2. If we have m future values Yn+1, ..., Yn+m

then the probability that these m values are smaller than the original maximum

is: n
n+1

.n+1
n+2

.n+2
n+3

...n+m−1
n+m

, that is equal to P (Yn+1 < Xn)×P (Yn+2 < Xn|Yn+1 < Xn)×

P (Yn+3 < Xn|Yn+1, Yn+2 < Xn) × ... × P (Yn+m < Xn|Yn+1, Yn+2...Yn+m−1 < Xn).

And if m = n, then the probability will be : n
n+1

.n+1
n+2

.n+2
n+3

...2n−1
2n

= n
2n

= 1
2
. We can

see this result in Table 2.22. For example, for samples from Student’t-distribution

when n = 20 the probability is equal to 477
1000

= 0.477. It is very close to 0.5 and in

some cases it is equal to 0.5. Similarly, we know that

P (Yj < Yn+1 < Yj+k) =
k

n+ 1
, k = 1, ..., n− j + 1 (2.6)

This is the probability that the future value lies between Yj and Yj+k which con-

tains k intervals. The probabability for the event that every observation in one

NPI bootstrap sample is between the original minimum and original maximum

k
n+1

. k+1
n+2

. k+2
n+3

...k+m−1
n+m

and k = n−1. So we can write the probability as n−1
n+1

. n
n+2

.n+1
n+3

...

n+m−2
n+m

and if m = n the last probability will be n−1
n+1

. n
n+2

.n+1
n+3

...2n−2
2n

= n(n−1)
2n(2n−1) =

1
2
n−1
2n−1 which is close to 0.25. This occurred, for example, for sample from Student’t-

distribution when n = 20 there are 17 observations between the original mini-

mum and maximum of one bootstrap sample from 1000 samples. This is equal

to: 19
21
.20
22
.21
23
...34

36
.35
37

= 0.28, which is not equal to 0.25 but close to it.

From Table 2.22 we can see that approximately 2000 values were either less than

X1 or greater than Xn, for example when n = 20, 20000 − 18183 = 1817. Let Zi

be a random quantity that is 1 if the i − th NPI-Bootstrap observation is outside

(X1, ..., Xn) and 0 otherwise, Zi’s are independent

Zi =

 1 with probability 2
n+1

0 otherwise
(2.7)

the number of observations outside (X1, ..., Xn) in the jth NPI-bootstrap sample

is wj =
∑n

i=1 Zi, E(w) = E(
∑n

i=1 Zi) =
∑n

i=1E(Zi) = n. 2
n+1

. And the number

of observations in B NPI-bootstrap samples and outside (X1, ..., Xn) is
∑B

j=1wj,

E(
∑B

j=1wj) =
∑B

j=1E(wj) = 2.B. n
n+1
≈ 2000, because B = 1000 and n

n+1
≈ 1.
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2.5 Comparison With Other Methods

This section considers the comparison between standard-B and NPI-B using confi-

dence intervals and prediction intervals, in order to investigate their performance in

estimation and prediction inference.

2.5.1 Confidence Intervals

A comparison between NPI-B and standard-B using bias, MSE and absolute error

is not easy because there are different values and different conclusions every time we

run the program. So the difficulty of point estimates make us think about using the

confidence intervals to compare different kinds of bootstrap methods in estimation

matter. We showed some details about bootstrap confidence intervals in Section

1.3.4, and will choose BCa interval in equation (1.23) to compare methods because

it has two advantages: a high order of accuracy and transformation respecting, [38].

We could not use the ready code in R, so we wrote a new program to do this task.

In this study we use Uniform (0,1), Normal (28,4) and Gamma (2,1) with a different

original sample size n and a bootstrap sample size m, m = n = 20, 50, 100, 200, 500,

for α = 0.01, 0.05. To illustrate the performance of (1 − 2α)th BCa interval we

construct 1000 intervals of each kind and resample B = 1000 bootstrap samples

each time.

For Uniform (0,1), in Table 2.23, we constructed BCa intervals for mean, variance

and q75. We notice that, when α = 0.05 and 1 − 2α = 0.90, the results of NPI-B

show some undercoverage for three parameters and for all cases of n. Undercoverage

also occurs for the standard-B for the mean when n = 20 but it is better than

NPI-B in other cases, because it has the presumed coverage probability 0.90 with

n = 20, 50, 100. Otherwise, the standard-B show some undercoverage results for

variance and q75 when n = 20, 50, 200. When α = 0.01 and 1 − 2α = 0.98, for the

mean and q75, the standard-B performs better than NPI-B because it has a higher

coverage proportion.

For Gamma (2,1) in Table 2.24, when α = 0.05, 1 − 2α = 0.90, the standard-B

has more high coverage proportion than NPI-B, for mean, variance and q75, but
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mean

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 0.96 0.96 0.95 0.96 0.69 0.71 0.69 0.70 0.73

standard-B 0.98 0.98 0.98 0.97 0.98 0.90 0.90 0.90 0.87 0.91

variance

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.98 0.96 0.97 0.96 0.73 0.74 0.70 0.68 0.69

standard-B 0.95 0.98 0.98 0.98 0.97 0.88 0.89 0.90 0.89 0.90

q75

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 0.97 0.96 0.95 0.96 0.74 0.72 0.70 0.71 0.74

standard-B 0.97 0.97 0.98 0.98 0.98 0.88 0.89 0.90 0.89 0.91

Table 2.23: Coverage of (1− 2α) confidence interval of properties of Uniform (0,1)

mean

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.93 0.95 0.94 0.95 0.96 0.62 0.64 0.66 0.64 0.66

standard-B 0.95 0.97 0.97 0.98 0.98 0.87 0.89 0.89 0.89 0.89

variance

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.94 0.91 0.92 0.93 0.92 0.62 0.60 0.62 0.58 0.58

standard-B 0.84 0.91 0.95 0.95 0.96 0.76 0.83 0.83 0.86 0.88

q75

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 0.97 0.95 0.96 0.96 0.72 0.72 0.74 0.70 0.72

standard-B 0.97 0.98 0.98 0.98 0.97 0.89 0.90 0.89 0.89 0.89

Table 2.24: Coverage of (1− 2α) confidence interval of properties of Gamma (2,1)
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mean

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.98 0.97 0.95 0.95 0.69 0.70 0.70 0.68 0.70

standard-B 0.97 0.98 0.98 0.97 0.99 0.87 0.90 0.90 0.89 0.91

variance

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.92 0.90 0.93 0.92 0.95 0.59 0.55 0.56 0.58 0.62

standard-B 0.91 0.96 0.97 0.98 0.98 0.83 0.87 0.88 0.90 0.91

q75

α = 0.01 α = 0.05

m = n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.97 0.97 0.96 0.96 0.73 0.71 0.71 0.69 0.71

standard-B 0.97 0.98 0.98 0.98 0.98 0.89 0.87 0.90 0.90 0.92

Table 2.25: Coverage of (1− 2α) confidence interval of properties of Normal (28,4)

they show undercoverage results in most cases. When α = 0.01, 1− 2α = 0.98, the

standard-B for the mean performs better than NPI-B, but sometimes the results of

standard-B show undercoverage. Standard-B has the nominal coverage probability

0.98 when n = 200, 500 for the mean. For q75,the standard-B performs better than

NPI-B in all cases, and the nominal coverage probability appears in standard-B

when n = 50, 100, 200. For variance the NPI-B has the smallest values of coverage

proportions in most cases.

Table 2.25 shows the result of Normal (28,4) and α = 0.05, 1− 2α = 0.90. The

NPI-B shows undercoverage results for three parameters and also the standard-B for

variance and mean when n = 20, 200. For q75, undercoverage occurs in most cases

with standard-B except when n = 100, 200, 500. When α− 0.01, 1− 2α = 0.98, the

NPI-B shows undercoverage for variance but it works well for the mean and q75, the

standard-B is better for the mean and q75.

From the above we see that the NPI-B does not perform well in confidence

intervals and that means it is not a good method for estimation. As discussed earlier

the NPI-B samples have a larger variance so we expect that the NPI-B intervals will

be wider than the standard-B intervals. So why do they have worse coverage?

The reason is that the variation of midpoints in NPI-B intervals is greater than in

standard-B intervals. For example with Normal (28,4) and α = 0.05, n = 20, the

coverage probability of q75 using NPI-B is 0.63, but when using standard-B it is 0.85.
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When studying the midpoints of each kind of interval we found that the variance of

midpoints of NPI-B intervals is 0.68, while for standard-B intervals it is 0.35. For

the variance, the coverage of NPI-B is 0.60 and of standard-B it is 0.78, and the

variance of midpoints of NPI-B intervals is 33.26 and of standard-B it is 3.18. But

for the mean, the variance of midpoints of intervals of two types of bootstrap is

similar. It is 0.26, while the coverage of NPI-B is 0.60 and of standard-B it is 0.83.

2.5.2 Prediction Intervals

The NPI-B method is considered as a prediction approach because it depends on

assumption A(n) for prediction, so next we discuss this aspect. There are some

illustrations in Section 1.3.4 which show prediction intervals for observations and

for parameters. Those intervals show how to test the prediction performance of

NPI-B. We start with the percentile interval to predict m future observations and

consider the NPI-B sample as the future observations as done in [55], but without

bootstrap calibration. We follow the steps:

1. Draw c (say c=100) original samples of size n + m from specific distribu-

tion x1, x2, ..., xn, xn+1, ..., xn+m to consider x1, x2, ..., xn is the past sample and

xn+1, ..., xn+m is the future sample.

2. Find the observed mean of m future observations xn+1, ..., xn+m , x̄m.

3. From each original sample draw B = 1000 NPI bootstrap samples of size m

from x1, x2, ..., xn and calculate the mean of these values, x̄∗m. Now we have

a list of B items of x̄∗m. Then construct 1 − α prediction interval for the

mean of future values: The lower bound is the B.α
2
th value in the ordered

list of x̄∗m in NPI bootstrap samples and the upper bound is the B.(1 − α
2
)th

value. Determine if this interval contains the mean of future observations in

the original sample x̄m. If B.α
2

or B.(1 − α
2
) are not integer, use the nearest

integer.

4. After finishing this process for all the original samples we find the proportion

of intervals which contain x̄m.
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m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 1 1 0.99 1 0.93 0.94 0.90 0.94 0.99

standard-B 0.93 0.96 0.95 0.90 0.93 0.78 0.79 0.82 0.80 0.85

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.97 0.97 1 1 0.90 0.94 0.97 0.96 0.97

standard-B 0.96 0.95 0.97 0.99 1 0.79 0.91 0.95 0.96 0.95

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 0.98 0.99 0.96 0.94 0.96 0.94 0.94

standard-B 0.99 0.99 1 0.98 0.99 0.93 0.93 0.95 0.94 0.93

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.98 1 0.99 0.99 0.96 0.95 0.94 0.96 0.98

standard-B 0.85 0.96 0.99 0.99 0.99 0.91 0.93 0.93 0.97 0.97

Table 2.26: Coverage of (1 − α) prediction interval of some m observations from

Uniform (0,1)

Repeat these steps with standard bootstrap samples and compare their performance.

We constructed the prediction intervals of m future observations m = n, 10, 3, 1 by

standard-B and NPI-B methods, as shown in the steps above. We study three dis-

tributions: Gamma (2,2), Uniform (0,1) and Normal (28,4) for various values of

n = 20, 50, 100, 200, 500 and α = 0.01, 0.05.

When α = 0.05, m = n and with Uniform (0,1), in Table 2.26, NPI-B has the

largest coverage proportion, and the same results appear when α = 0.01, but in

this case the coverage proportion is closer to the nominal one. When α = 0.05

and m = 10, both methods overcoverage when n ≥ 200, but still the results of the

NPI-B are higher than the standard-B. When α = 0.05, there is no big difference

between the two methods if n ≥ 100, but when n ≤ 50 the coverage proportion

of NPI-B is larger than standard-B. If m = 3, the NPI-B and standard-B have

closed results. However when α = 0.05 the NPI-B has the largest results. When

α = 0.05 and m = 1, we can see that our method has a larger coverage proportion

than the standard-B method, but sometimes overcoverage. When α = 0.01, the two

bootstrap methods achieve similar results when n ≥ 100, but when n = 20, 50 the

NPI-B achieves the best results.
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m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.98 1 0.99 0.98 0.98 0.94 0.98 0.97

standard-B 0.90 0.92 0.89 0.97 0.94 0.82 0.77 0.80 0.85 0.81

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 1 1 0.95 0.96 0.96 0.97 0.97

standard-B 0.95 0.98 0.97 0.98 1 0.85 0.87 0.95 0.96 0.97

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.97 0.98 0.99 0.99 0.92 0.95 0.97 0.97 0.98

standard-B 0.96 0.96 0.98 0.98 0.99 0.88 0.93 0.94 0.96 0.98

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 0.99 1 0.95 0.88 0.91 0.99 0.99

standard-B 0.98 0.97 1 0.99 0.99 0.91 0.85 0.91 0.98 0.99

Table 2.27: Coverage of (1 − α) prediction interval of some m observations from

Gamma (2,2)

With Gamma (2,2), in Table 2.27, and α = 0.01, 0.05 and m = n the coverage

proportion of NPI-B is the largest, but when α = 0.05 NPI-B shows overcoverage.

Moreover the same occurred with m = 10. Note that we can use (1−2α) intervals as

we did before with confidence intervals, but we need to change the lower and upper

bounds to be B.αth and B(1−α)th values in the ordered list of x̄∗m, respectively. For

the case m = 3 the overcoverage of NPI-B occurs when n ≥ 100 and α = 0.05, but

it works well when n = 20, 50. When α = 0.01, our method has a bigger coverage

proportion than standard-B when n = 20, 50. Otherwise the two methods have

similar results. For m = 1, we can see that the NPI-B is better than standard-B

when n = 20, 50 if α = 0.01, 0.05. In the other cases they are equivalent. The

overcoverage of NPI-B appears when α = 0.05 and n ≥ 100.

Table 2.28, when m = n and α = 0.01, 0.05, shows that the NPI-B has good

results because its coverage proportion is closer to the nominal coverage probability

than standard-B. The two methods have similar results when α = 0.01 and m = 10,

except when n is small and the NPI-B works better than the standard-B. If α =

0.05 and m = 10, our method has the largest coverage proportion, but sometimes

overcoverage. The same status is shown in the next tables when m = 3, 1 for different

values of α.
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m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.99 0.98 0.99 0.95 0.96 0.92 0.91 0.97

standard-B 0.85 0.95 0.94 0.94 0.95 0.80 0.82 0.78 0.82 0.84

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 0.99 0.98 1 0.95 0.97 0.97 0.98 0.93

standard-B 0.95 0.99 0.99 0.98 0.99 0.83 0.93 0.95 0.98 0.92

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.99 1 0.99 1 0.95 0.96 0.98 0.96 0.96

standard-B 0.95 0.98 0.97 0.99 0.99 0.86 0.90 0.97 0.95 0.96

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.99 0.99 0.99 1 0.97 0.96 0.95 0.95 0.97

standard-B 0.89 0.94 0.98 0.99 1 0.94 0.93 0.92 0.95 0.98

Table 2.28: Coverage of (1 − α) prediction interval of some m observations from

Normal (28,4)

Now, we want to repeat the process, but with a small difference. Here we will

draw the past and the future samples seperately. If we draw the original sample of

size n from the specific distribution x1, ..., xn and then draw the future sample of

size m from the same distribution y1, ..., ym as happened in [60], we will refer to this

by “alternative prediction interval” in order to distinguish between this method and

the last method. We will compare the prediction intervals and the parameters of

distribution of future samples. For example, if we have Normal (28,4) we will see if

the prediction interval of the mean contains µ = 28.

Table 2.29 shows that when m = n and α = 0.01, 0.05 the NPI-B has a bet-

ter coverage than standard-B and it is closer to the proposed coverage probability

(0.95 or 0.99). When α = 0.05 and m = 10, the NPI-B has the largest coverage

proportion but is still sometimes less than the nominal level 0.95 as appeared with

n = 20, 50 or overcoverage when n ≥ 100. Nevertheless, with α = 0.01, the NPI-B

and standard-B have similar coverage and close to nominal coverage probability.

When m = 3 and α = 0.05, the NPI-B has the largest coverage proportion, but is

still sometimes less than the nominal level 0.95 as appeared with n = 50, 200, 500

or overcoverage when n = 20, 100. When α = 0.01, the NPI-B and standard-B have

similar coverage and close to nominal coverage probability except when n = 20,
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m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.99 0.98 0.99 1 0.93 0.95 0.96 0.95 0.93

standard-B 0.83 0.94 0.90 0.96 0.94 0.80 0.82 0.82 0.84 0.85

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.98 0.99 1 0.98 0.90 0.94 0.97 0.96 0.97

standard-B 0.98 0.99 0.98 1 0.98 0.79 0.91 0.95 0.96 0.95

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 1 0.99 1 0.97 0.96 0.94 0.96 0.94 0.94

standard-B 0.93 1 0.99 1 0.98 0.93 0.93 0.95 0.94 0.93

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.99 1 1 0.99 0.94 0.93 0.96 0.94 0.96

standard-B 0.87 0.97 1 0.99 0.99 0.87 0.91 0.94 0.94 0.94

Table 2.29: Coverage of (1−α) alternative prediction interval of some m observations

from Uniform (0,1)

NPI-B gets the largest value. Table 2.29 shows how, when m = 1 and α = 0.05,

the coverage of standard-B is less than NPI-B but is sometimes close to the nominal

coverage probability as NPI-B. But if α = 0.01, both methods have the nominal cov-

erage except if n = 20, 50. In that situation the NPI-B is better than standard-B.

In Table 2.30 with m = n, the NPI-B works well because it has the largest coverage

proportions in all cases. The similar situation appears with m = 10. The NPI-B and

standard-B for the case m = 3 have equivalent results in most cases. For m = 1 and

α = 0.05, the NPI-B has overcoverage proportion in most cases, but for α = 0.01 it

has better coverage than standard-B.

NPI-B with Normal (28,4) and m = n, α = 0.01, 0.05, in Table 2.31, is the

best because it has the highest coverage which is closer to the nominal coverage

probability than standard-B. When α = 0.05 and m = 10, the coverage of standard-

B is close to the nominal coverage probability, whereas NPI-B overcoverage except

when n = 20, 50. On the other hand, NPI-B is the best when α = 0.01. When

m = 3 and α = 0.05 the Table 2.31 showed the overcoverage of NPI-B except when

n = 20, whereas with α = 0.01, it is desired the nominal coverage probability. When

predicting a future observation from Normal (28,4), with m = 1, we can see that

the NPI-B is the best when α = 0.01, 0.05.
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m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 0.99 0.99 0.96 0.97 0.96 0.95 0.94

standard-B 0.90 0.91 0.97 0.90 0.92 0.71 0.84 0.78 0.82 0.83

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.98 0.99 0.99 0.98 0.96 0.92 0.93 0.94 0.97

standard-B 0.95 0.97 0.97 0.99 0.98 0.88 0.86 0.89 0.90 0.98

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 1 0.99 0.94 0.96 0.95 0.96 0.95

standard-B 0.96 0.99 0.99 1 0.99 0.88 0.93 0.94 0.95 0.94

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.98 0.98 1 0.99 0.98 0.96 0.97 0.98 0.97

standard-B 0.88 0.95 0.96 0.99 0.98 0.94 0.93 0.93 0.98 0.97

Table 2.30: Coverage of (1−α) alternative prediction interval of some m observations

from Gamma (2,2)

m = n

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.98 0.99 0.99 0.99 0.94 0.94 0.96 0.95 0.95

standard-B 0.88 0.89 0.94 0.93 0.95 0.81 0.84 0.85 0.83 0.85

m = 10

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.99 1 0.99 1 0.92 0.95 0.97 0.97 0.98

standard-B 0.92 0.97 0.99 0.98 1 0.87 0.91 0.94 0.94 0.97

m = 3

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 1 0.98 1 1 0.95 0.98 0.94 0.97 0.99

standard-B 0.92 0.98 0.95 1 1 0.93 0.96 0.93 0.96 0.99

m = 1

α = 0.01 α = 0.05

n = 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.97 0.98 1 0.96 0.91 0.92 0.94 0.95

standard-B 0.90 0.93 0.97 0.97 1 0.91 0.88 0.93 0.92 0.94

Table 2.31: Coverage of (1−α) alternative prediction interval of some m observations

from Normal (28,4)
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The summary of the above results, when α = 0.01 and m = n, shows that the

NPI-B is the best in most cases. If m = 10, 3, 1 we have two cases: if n is small, the

NPI-B is the best and if n is large the two methods are equivalent. When α = 0.05,

if m = n the NPI-B works better than standard-B. Additionally if m = 10, 3, 1 and

n is small, but if n is large, the two methods are similar and overcoverage.

Mojirsheibani [60] and Mohirsheibani and Tibshirani [61] displayed different

types of bootstrap prediction intervals to estimate the parameter θ: bootstrap-t,

percentile and BCa prediction intervals, as discussed in detail in Section 1.3.4. These

intervals are transformation respecting and range preserving. The range preserving

property means that the procedure produced intervals that fall in the range of pa-

rameter. To construct the percentile prediction interval of a statistic as in [60, 61],

we use this method by Mojirsheibani and Tibshirani, which we will refer to as the

MT method:

1. Draw c original samples from any distribution, x1, x2, ..., xn to be the past

sample and then draw y1, y2, ..., ym to be the future sample. X and Y are iid.

2. From each original sample find the statistic of the future sample, Tm, and

then sample B = 1000 NPI-B samples (future samples) from x1, x2, ..., xn and

find the statistic from each bootstrap samples T ∗m to get a list of T ∗mj where

j = 1, ..., B.

3. Construct the (1− 2α) percentile prediction interval of Tm:

lower bound: F̂−1m [Φ(z(α)(1 + m
n

)
1
2 )] = F̂−1m [α1] is the B.α1th value of the

ordered list of T ∗mj.

upper bound: F̂−1m [Φ(z(1−α)(1 + m
n

)
1
2 )] = F̂−1m [α1] is the B.α2th value of the

ordered list of T ∗mj. If B.α1 or B.α2 are not integer, use the largest integer.

4. Determine if this interval contains the statistic Tm and find the proportion

of these intervals. For example, if the future sample is Normal (28,4) we

will determine if the prediction interval of the mean contains the mean of

Normal=28.
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Lu and Chang [55] use the bootstrap method to construct prediction intervals

for observations from the Birnbaum-Saunders distribution, which turned out to have

good coverage results. They applied the bootstrap percentile method which we also

apply below. We call it the classical method:

1. Draw an actual sample of size n from a specific distribution, giving x1, ..., xn.

Then draw a second sample of size m from the same distribution, giving

y1, ..., ym with mean value ȳ. This will be used as the future sample to check

the performance of the bootstrap prediction intervals.

2. Use the actual sample to draw B NPI-B samples of size m as described above.

Calculate the mean of each NPI-B sample, giving mj for j = 1, . . . , B.

3. Construct an 100(1 − 2α)% prediction interval for the mean by defining the

lower bound to be the α×B-th value in the ordered list of the values mj and

the upper bound to be the (1 − α) × B-th value in this list (use the largest

integer if these values or not integer).

4. Check if the prediction interval from step 3 contains the mean ȳ of the future

sample from the underlying distribution as resulted from step 1.

This procedure is applied repeatedly to derive an indication of the coverage of these

intervals, that is the proportion of such intervals which indeed contain the mean

value of the future sample from the underlying distribution. For perfect coverage

the probability of the 100(1 − 2α)% interval containing that mean value should of

course be 100(1 − 2α)%. This same procedure has also been used in the following

section for the standard-B method, of course changing step 2 accordingly.

The Tables from 2.32 to 2.49 described how NPI-B has the largest values of

coverage proportions but it overcoverage in most cases with MT method. The

NPI-B performs well when the classical method is used, it is closer to the nominal

coverage than the classical method.
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 1 1 0.94 0.97 0.96 0.99 0.99

standard-B 0.94 0.94 0.95 1 0.99 0.85 0.87 0.86 0.95 0.92

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 0.99 0.99 0.98 0.96 0.99 0.95 0.96

standard-B 0.93 0.96 0.98 0.97 0.96 0.85 0.88 0.85 0.88 0.89

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 1 1 0.98 0.98 0.99 0.99 0.99

standard-B 0.92 0.93 0.99 0.99 0.99 0.82 0.84 0.87 0.95 0.90

Table 2.32: Uniform (0,1), m = n, α = 0.01, 0.98 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 1 0.99 0.99 0.95 0.92 0.93 0.95 0.91

standard-B 0.93 0.93 0.94 0.94 0.92 0.73 0.68 0.80 0.80 0.77

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.96 0.98 0.98 0.96 0.96 0.92 0.89 0.95 0.88

standard-B 0.88 0.91 0.88 0.94 0.85 0.82 0.70 0.78 0.80 0.69

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.98 1 0.99 0.93 0.88 0.92 0.92 0.89

standard-B 0.93 0.85 0.92 0.91 0.89 0.82 0.74 0.78 0.77 0.78

Table 2.33: Uniform (0,1), m = n, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 1 0.98 0.98 0.99 0.98 1 0.98

standard-B 0.96 0.98 0.97 0.99 0.98 0.89 0.96 0.97 0.99 0.98

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 1 1 0.99 0.99 0.99 1 0.99 0.99 0.99

standard-B 0.97 0.99 1 0.97 0.99 0.93 0.98 0.98 0.97 0.99

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.98 0.99 0.99 0.97 0.97 0.98 0.99 0.99

standard-B 0.97 0.95 0.97 0.98 0.98 0.91 0.95 0.96 0.98 0.97

Table 2.34: Uniform (0,1), m = 10, α = 0.01, 0.98 prediction interval
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.92 0.90 0.88 0.91 0.88 0.89 0.89 0.86 0.91 0.88

standard-B 0.86 0.89 0.87 0.92 0.87 0.80 0.87 0.83 0.90 0.87

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.95 0.96 0.91 0.93 0.93 0.92 0.93 0.91 0.92 0.93

standard-B 0.88 0.93 0.93 0.90 0.88 0.82 0.86 0.90 0.90 0.88

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.95 0.95 0.91 0.89 0.87 0.90 0.93 0.91 0.88 0.87

standard-B 0.88 0.93 0.87 0.88 0.88 0.83 0.87 0.85 0.88 0.88

Table 2.35: Uniform (0,1), m = 10, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.92 0.91 0.90 0.91 0.89 0.90 0.90 0.89 0.91 0.89

standard-B 0.89 0.90 0.90 0.93 0.88 0.87 0.90 0.89 0.92 0.88

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.93 0.96 0.91 0.93 0.93 0.91 0.96 0.91 0.93 0.93

standard-B 0.99 0.95 0.90 0.92 0.93 0.88 0.93 0.88 0.92 0.93

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.89 0.92 0.95 0.92 0.90 0.89 0.91 0.95 0.92 0.90

standard-B 0.86 0.90 0.95 0.93 0.90 0.85 0.90 0.94 0.92 0.90

Table 2.36: Uniform (0,1), m = 3, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.98 0.97 1 0.99 0.98 0.98 0.97 1

standard-B 0.97 0.99 0.95 0.97 1 0.95 0.98 0.95 0.97 1

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 1 0.97 0.99 0.96 0.99 1 0.97 0.99 0.96

standard-B 0.98 1 0.97 0.99 0.96 0.96 1 0.97 0.99 0.96

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.97 0.98

standard-B 0.95 0.98 0.97 0.98 0.99 0.94 0.97 0.96 0.98 0.99

Table 2.37: Uniform (0,1), m = 3, α = 0.01, 0.98 prediction interval
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.94 0.98 0.98 0.93 0.87 0.82 0.91 0.92

standard-B 0.90 0.84 0.80 0.88 0.94 0.77 0.70 0.68 0.75 0.80

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.96 0.98 0.97 0.97 0.92 0.90 0.90 0.90 0.87

standard-B 0.87 0.88 0.86 0.91 0.85 0.75 0.66 0.68 0.71 0.69

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.95 0.98 0.98 0.97 0.94 0.89 0.86 0.90 0.85

standard-B 0.87 0.85 0.85 0.90 0.85 0.80 0.71 0.70 0.77 0.74

Table 2.38: Normal (28,4), m = n, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 1 1 1 1 0.95 0.97 0.99 0.99

standard-B 0.96 0.94 0.96 0.98 0.98 0.92 0.88 0.89 0.93 0.93

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 1 1 0.98 1 0.99 0.99 1

standard-B 0.92 0.94 0.93 0.98 0.98 0.78 0.89 0.91 0.90 0.88

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 1 1 1 0.95 0.99 0.98 0.99

standard-B 1 0.95 0.97 0.99 0.99 0.94 0.83 0.87 0.90 0.92

Table 2.39: Normal (28,4), m = n, α = 0.01, 0.98 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.94 0.97 0.95 0.94 0.89 0.89 0.92 0.94 0.94 0.89

standard-B 0.86 0.90 0.94 0.93 0.88 0.80 0.87 0.92 0.92 0.86

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.94 0.91 0.92 0.85 0.92 0.91 0.89 0.92 0.85

standard-B 0.87 0.84 0.87 0.89 0.83 0.74 0.79 0.86 0.89 0.83

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.95 0.93 0.93 0.90 0.88 0.93 0.93 0.92 0.90 0.88

standard-B 0.88 0.91 0.91 0.89 0.87 0.76 0.90 0.90 0.88 0.87

Table 2.40: Normal (28,4), m = 10, α = 0.05, 0.90 prediction interval
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.93 0.92 0.94 0.89 0.86 0.93 0.91 0.94 0.87 0.86

standard-B 0.90 0.90 0.93 0.88 0.89 0.87 0.89 0.93 0.87 0.89

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 0.92 0.93 0.87 0.89 0.96 0.88 0.93 0.86 0.89

standard-B 0.94 0.84 0.90 0.83 0.90 0.88 0.84 0.90 0.83 0.90

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 0.89 0.93 0.90 0.89 0.95 0.87 0.92 0.90 0.89

standard-B 0.90 0.88 0.92 0.87 0.88 0.85 0.87 0.90 0.87 0.88

Table 2.41: Normal (28,4), m = 3, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.99 0.98 0.96 0.96 0.98 0.99 0.98 0.96

standard-B 0.95 0.98 0.96 0.99 0.97 0.91 0.98 0.96 0.99 0.96

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 1 0.99 0.97 0.98 0.96 0.98 0.98 0.96 0.98

standard-B 0.90 0.94 0.97 0.96 0.98 0.84 0.93 0.96 0.95 0.98

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 1 1 0.99 0.99 0.97 0.99 0.99 0.99 0.98

standard-B 0.95 0.99 1 0.98 0.98 0.91 0.97 0.98 0.98 0.98

Table 2.42: Normal (28,4), m = 10, α = 0.01, 0.98 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.95 0.98 0.98 0.98 0.98 0.94 0.98 0.98 0.98

standard-B 0.96 0.92 0.96 0.98 0.97 0.95 0.92 0.96 0.98 0.97

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.98 0.98 1 0.99 0.97 0.98 0.98 1 0.99

standard-B 0.94 0.97 0.97 1 0.98 0.94 0.97 0.97 1 0.98

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.98 0.98 0.98 0.99 0.98 0.97 0.97 0.98 0.99

standard-B 0.94 0.93 0.97 0.98 0.97 0.92 0.92 0.97 0.98 0.97

Table 2.43: Normal (28,4), m = 3, α = 0.01, 0.98 prediction interval
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 1 1 0.99 0.98 1 0.98 0.99

standard-B 0.95 0.97 0.97 0.96 0.99 0.86 0.89 0.92 0.91 0.94

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 1 1 0.99 1 0.97 1 0.99 0.98

standard-B 0.89 0.90 0.94 0.98 0.96 0.80 0.86 0.85 0.90 0.92

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 1 1 0.99 0.99 0.98 0.97 0.99

standard-B 0.96 0.97 0.97 0.97 0.99 0.89 0.91 0.87 0.91 0.91

Table 2.44: Gamma (5,2), m = n, α = 0.01, 0.98 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 0.99 0.97 0.97 1 1 0.99 0.97 0.97

standard-B 0.96 0.98 0.99 0.96 0.98 0.90 0.97 0.99 0.96 0.98

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 0.97 1 0.98 1 0.99 0.97 1 0.98

standard-B 0.89 0.96 0.92 0.98 0.98 0.84 0.93 0.90 0.98 0.98

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 1 1 0.97 0.98 0.99 0.98 1 0.96 0.98

standard-B 0.96 0.99 0.97 0.97 0.99 0.93 0.98 0.96 0.96 0.99

Table 2.45: Gamma (5,2), m = 10, α = 0.01, 0.98 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.97 0.97

standard-B 0.97 0.99 0.98 0.92 0.99 0.96 0.99 0.98 0.92 0.99

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 1 0.99 0.98 0.99 0.99 1 0.99 0.98 0.99 0.98

standard-B 0.95 0.98 0.98 0.98 0.97 0.94 0.98 0.98 0.98 0.97

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.98 0.99 0.99 0.96 0.99 0.98 0.99 0.98 0.96

standard-B 0.95 0.98 0.97 0.97 0.96 0.94 0.98 0.97 0.95 0.96

Table 2.46: Gamma (5,2), m = 3, α = 0.01, 0.98 prediction interval
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MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.96 0.91 0.90 0.96 0.88 0.93 0.90 0.90 0.96 0.88

standard-B 0.85 0.89 0.88 0.96 0.88 0.82 0.89 0.88 0.96 0.88

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.93 0.91 0.92 0.91 0.92 0.93 0.91 0.90 0.91 0.92

standard-B 0.84 0.88 0.89 0.90 0.89 0.81 0.88 0.89 0.89 0.89

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.95 0.90 0.90 0.94 0.88 0.93 0.88 0.89 0.94 0.88

standard-B 0.87 0.85 0.89 0.93 0.88 0.82 0.85 0.87 0.93 0.88

Table 2.47: Gamma (5,2), m = 3, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.95 0.93 0.97 0.87 0.93 0.94 0.91 0.96 0.86

standard-B 0.91 0.89 0.89 0.95 0.85 0.81 0.87 0.88 0.94 0.85

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.91 0.95 0.96 0.92 0.94 0.89 0.93 0.96 0.92

standard-B 0.78 0.79 0.91 0.92 0.90 0.72 0.78 0.89 0.90 0.90

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.92 0.90 0.94 0.86 0.95 0.91 0.89 0.94 0.86

standard-B 0.90 0.91 0.88 0.92 0.85 0.83 0.87 0.85 0.92 0.85

Table 2.48: Gamma (5,2), m = 10, α = 0.05, 0.90 prediction interval

MT method classical method

mean

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.98 0.99 0.99 0.96 0.93 0.92 0.93 0.93 0.79 0.84

standard-B 0.85 0.91 0.86 0.78 0.83 0.76 0.82 0.81 0.65 0.72

variance

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.99 0.99 0.96 1 0.95 0.94 0.94 0.93 0.89 0.85

standard-B 0.79 0.88 0.86 0.83 0.88 0.64 0.71 0.74 0.70 0.73

q75

n=m 20 50 100 200 500 20 50 100 200 500

NPI-B 0.97 1 0.98 0.98 0.97 0.91 0.92 0.91 0.91 0.89

standard-B 0.89 0.91 0.91 0.92 0.86 0.83 0.79 0.74 0.76 0.71

Table 2.49: Gamma (5,2), m = n, α = 0.05, 0.90 prediction interval
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2.6 NPI-B for Order Statistics

We studied the performance of the NPI-B method using confidence intervals the

prediction intervals. Now we want to discuss the performance of the NPI-B method

with order statistics. In [23] NPI for order statistics of m future observations and the

way it was used to compare two groups was presented. Let X(1), X(2), ..., X(m) be the

ordered statistics of m future observations and X(r), r = 1, ...,m, be the r-th ordered

future observation. Coolen and Maturi [23] derived the following probability:

P (X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1
(2.8)

to find the probability that r-th ordered future statistic X(r) belongs to interval Ij,

where is j = 1, ..., n+ 1 and r = 1, ...,m. They also consider the limit results of this

probability if m goes to infinity. To compare the two groups X and Y based on the

r-th future order statistics of these groups they considered the event X(r) < Y(r) and

found its NPI lower and upper probabilities. As discussed before, the NPI method

is based on the same A(n) assumption as the NPI-B approach, so we show a small

example to discuss how NPI-B achieves the formula (2.8). If the original sample

X = (0.294, 0.801, 0.971, 0.987) is drawn from Uniform (0,1), then we sample 1000

NPI-B samples of size m = n = 4 from X and study the ordered statistics X(2) and

X(4). Tables 2.50 and 2.51 show the probabilities of each order statistic belonging

to the indicated interval.

X(2)

Probabilities results from results from

formula (2.8) simulation

P (X(2) ∈ I1) 0.20 0.22

P (X(2) ∈ I2) 0.27 0.28

P (X(2) ∈ I3) 0.26 0.24

P (X(2) ∈ I4) 0.22 0.20

P (X(2) ∈ I5) 0.05 0.07

Table 2.50: NPI-B with X(2) order statistics, n = m = 4



2.6. NPI-B for Order Statistics 61

X(4)

Probabilities results from results from

formula (2.8) simulation

P (X(4) ∈ I1) 0.01 0.02

P (X(4) ∈ I2) 0.05 0.05

P (X(4) ∈ I3) 0.17 0.15

P (X(4) ∈ I4) 0.28 0.30

P (X(4) ∈ I5) 0.49 0.49

Table 2.51: NPI-B with X(4) order statistics, n = m = 4

X(2)

Probabilities results from results from Probabilities results from results from

formula (2.8) simulation formula (2.8) simulation

P (X(2) ∈ I1) 0.24 0.23 P (X(2) ∈ I12) 4× 10−4 1× 10−3

P (X(2) ∈ I2) 0.26 0.27 P (X(2) ∈ I13) 1× 10−4 0

P (X(2) ∈ I3) 0.20 0.21 P (X(2) ∈ I14) 4× 10−5 0

P (X(2) ∈ I4) 0.13 0.13 P (X(2) ∈ I15) 1× 10−5 0

P (X(2) ∈ I5) 0.08 0.07 P (X(2) ∈ I16) 3× 10−6 0

P (X(2) ∈ I6) 0.05 0.05 P (X(2) ∈ I17) 9× 10−7 0

P (X(2) ∈ I7) 0.02 0.02 P (X(2) ∈ I18) 1× 10−7 0

P (X(2) ∈ I8) 0.01 0.01 P (X(2) ∈ I19) 2× 10−8 0

P (X(2) ∈ I9) 0.01 0.01 P (X(2) ∈ I20) 2× 10−9 0

P (X(2) ∈ I10) 2× 10−3 4× 10−3 P (X(2) ∈ I21) 1× 10−10 0

P (X(2) ∈ I11) 1× 10−3 0

Table 2.52: NPI-B with X(2) order statistics, n = m = 20

The first column in each table shows the probabilities using the formula (2.8),

and the second shows these probabilities using simulated NPI-B samples from X.

For example to find P (X(2) ∈ I1), count the NPI-B samples which have X(2) in the

first interval. Note that I1 = (0, 0.294), I2 = (0.294, 0.801),..., and In+1 = (0.987, 1).

By exploring the values of two probabilities in Tables 2.50 and 2.51, we see that these

values are close in most cases, and that means the NPI-B method works in line with

the formula. When we consider the same idea but with a larger sample size, we use

the original sample from Uniform (0,1) and n = m = 20 and study the same order

statistics. The results are explored in Tables 2.52 and 2.53. The larger sample size

does not improve the agreement between the threoretical and actual probabilities of

X(2) as much, but with X(4) the situation is different, and the agreement is clearly

improves.
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X(4)

Probabilities results from results from Probabilities results from results from

formula (2.8) simulation formula (2.8) simulation

P (X(4) ∈ I1) 0.05 0.06 P (X(4) ∈ I12) 0.01 0.01

P (X(4) ∈ I2) 0.12 0.11 P (X(4) ∈ I13) 2× 10−3 0

P (X(4) ∈ I3) 0.16 0.17 P (X(4) ∈ I14) 9× 10−4 2× 10−3

P (X(4) ∈ I4) 0.17 0.16 P (X(4) ∈ I15) 3× 10−4 1× 10−3

P (X(4) ∈ I5) 0.15 0.15 P (X(4) ∈ I16) 1× 10−4 0

P (X(4) ∈ I6) 0.12 0.12 P (X(4) ∈ I17) 3× 10−5 0

P (X(4) ∈ I7) 0.09 0.09 P (X(4) ∈ I18) 8× 10−6 0

P (X(4) ∈ I8) 0.06 0.06 P (X(4) ∈ I19) 1× 10−6 0

P (X(4) ∈ I9) 0.04 0.04 P (X(4) ∈ I20) 1× 10−7 0

P (X(4) ∈ I10) 0.02 0.03 P (X(4) ∈ I21) 1× 10−8 0

P (X(4) ∈ I11) 0.01 0.01

Table 2.53: NPI-B with X(4) order statistics, n = m = 20

2.7 Concluding Remarks

In this chapter the NPI-B method has been presented for distributions with finite

and infinite intervals. First, we studied the performance of NPI-B by calculating

the variance of statistics, bias, absolute error and MSE. It can be seen that all these

methods have underestimate variance, but the NPI bootstrap does best because the

variance of statistics in the NPI bootstrap is closer to the variance of the original

sample than other methods. So we avoid underestimating the variance in the stan-

dard bootstrap because in our method we have more variations due to adding the

observations to the data. Also, the NPI-B method goes outside the range of values

in the standard bootstrap. The data show the values of MSE in the NPI bootstrap

method are large, even in cases which have a small bias, because the NPI bootstrap

method has a larger variance than other methods. This is natural, because it re-

samples the observations from the original sample and from the intervals between

them, but the standard bootstrap resamples from the original sample only. We can

see that the NPI bootstrap method performs better than other methods, for bias,

in estimating variance.

When we looked into the NPI bootstrap method in other situations (real line quan-

tities and non negative observations), with different distributions such as Gamma,

Weibull, Normal and Students’t-distribution, and by comparing standard and NPI

bootstrap, we noted that the bias of NPI bootstrap was in most cases smaller than

the bias of standard bootstrap, but MSE and absolute error were the largest, except
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in few cases. The results showed that the two methods have underestimate variance

of statistics, but NPI bootstrap had variances closer to the variance of the underly-

ing population. That is one of the benefit of our method. There was one case had

overestimate variance of statistic in NPI bootstrap, when we estimated the variance

parameter from Gamma (2,2). Here we showed what the original distribution was,

in order to explain the performance of the NPI-B method with various shapes of

distributions.

When some difficulties appeared with measurements of point estimation, we de-

cided to work with confidence intervals and prediction intervals. We found that

NPI-B did not work well in estimation with confidence intervals. It worked well

when we used different prediction intervals, because it has the best coverage prob-

ability in most cases in our study. The simulation in this chapter shows that it is

a promising alternative to the standard bootstrap for prediction. The variability in

the predictions reflects the variability in the underlying population, which is taken

into account in the simulation study by the fact that the future sample was taken

from the same underlying population as the actual data.

Finally, we considered the NPI-B method with order statistics, using results

from the literature that provided a probability of r-th order statistic using the NPI

aspect, and found that NPI-B samples were consistent with those results. That can

be natural because NPI and NPI-B depend on the same assumption A(n). When we

used a larger sample size, this consistency developed with different levels of order

statistics. However this is a small study which gives a picture of the use of order

statistics with NPI-B.



Chapter 3

NPI for Reproducibility of Basic

Tests

3.1 Introduction

In this Chapter the NPI approach is presented for reproducibility probability (RP)

for some basic nonparametric tests. The RP for a test is the probability for the event

that, if the test is repeated based on an experiment performed in the same way as the

original experiment, the test outcome, that is either the rejection or non rejection of

the null hypothesis, will be the same. The importance of the RP of tests and some

definitions of it were discussed in [43, 44, 59, 64]. It is used in cases where evidence

in clinical trials is often strongly in favour of a new treatment [9, 65]. Also,the

estimated RP is used to define tests, which provides an interesting alternative to

tests based mainly on chosen significance tests [32–34]. The review of the literature

on this topic was presented in Section 1.4.

In Section 3.2 we briefly review some basic nonparametric tests. The use of the

NPI approach to RP with those tests is considered in Sections 3.3, 3.4, 3.5 and 3.6.

This chapter finishes with some concluding remarks in Section 3.7.

64
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3.2 Overview of Some Basic Tests

In this section we illustrate an overview of some nonparametric tests: one sample

Sign test, one sample signed rank test and two sample rank sum test. These tests

will be used in this Chapter and in Chapter 4 to explore the NPI and NPI-B methods

with reproducibility probability.

3.2.1 One Sample Sign Test

Perhaps the most basic nonparametric test is the sign test [49, 52, 67]. Suppose

we have n real valued random quantities X1, X2, ..., Xn, which are traditionally as-

sumed to be mutually independent and identically distributed with median m0, so

P (Xi < m0) = P (Xi > m0) = 1/2 for i = 1, ..., n. Generally, we test the hypotheses

H0 : θ = m0 versus H1 : θ 6= m0, > m0, < m0 (3.1)

This test assumes that the data is iid from a continuous distribution with a positive

density. The test statistic K is the number of these Xi that are positive, so

K =
n∑
i=1

I{Xi > 0} (3.2)

with indicator function I{A} = 1 if A is true and I{A} = 0 if A is not true, and

ignoring the observations which are equal m0. For the one sided upper tail test

with the level of significance α, H1 : θ > m0, we reject H0 if K ≥ bα,1/2 with bα,1/2

the upper α percentile point for the Binomial distribution with sample size n and

success probability p = 1/2, while reject H0 if K ≤ n − bα,1/2 for one sided lower

tail test H1 : θ < m0, and for two sided test H1 : θ 6= m0 reject H0 if K ≥ bα/2,1/2 or

K ≤ n−bα/2,1/2. Where bα,1/2, bα/2,1/2 are given in some literature tables to make the

type 1 error probability equal to α. If n→∞ we use standard normal distribution

as an approximation with µK = n
2

and σ2
K = n

4
, the standardized version of K is K∗

is:

K∗ =
K − µK
σK

=
(K + 0.5)− 0.5 ∗ n

√
n
2

(3.3)
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We reject H0 if K∗ ≥ zα for a one sided upper tail test and if K∗ ≤ −zα for a lower

tail test and reject H0 if |K∗| ≥ zα/2 for a two sided test.

3.2.2 One Sample Signed Rank Test

The one sample Wilcoxon Signed Rank test (WRS) [49, 52, 67, 69] is an improve-

ment to the sign test if the population is symmetric about the median m0. It is a

popular nonparametric location test which takes more information from the sample

into account than the sign test. Details about the history of the signed rank test

and the corresponding standard frequentist theory, together with tables for critical

values for the test statistic and approximations for large samples, can be found in

many statistics textbooks, e.g. [41,49]. Let X1, X2, ..., Xn is an independent sample

from an absolutely continuous, symmetric distribution, then the test statistic used

in this test is:

W =
∑

Xi>m0

rank(|Xi −m0|) (3.4)

where rank (|Xi−m0|) is the rank of |Xi−m0|, so the test statistic is the sum of ranks

of such absolute differences for observations that are greater than the median. The

assumption of an absolutely continuous underlying distribution is for convenience,

as it reduces the requirement for dealing with ties. If there are ties in the absolute

differences in the data these can be dealt with [41]. For the one sided upper tail test

H0 : θ = m0 versus H1 : θ > 0, we reject H0 if W ≥ Wα, where Wα is the critical

value for the test statistic for significance level α, and reject H0 if W ≤ n(n+1)
2
−Wα

if we have a one sided lower tail test with H1 : θ < m0. If we use the two sided

test H1 : θ 6= m0, we reject H0 if W ≥ Wα/2 or W ≤ n(n+1)
2
−Wα/2. If n → ∞,

use W ∗ = W−µw
σw

is N(0, 1) where µw = n(n+1)
4

and σw =
√

n(n+1)(2n+1)
24

. Reject

H0 if W ∗ ≥ zα for the upper tail test, if W ∗ ≤ −zα for the lower tail test and if

|W ∗| ≥ zα/2 for the two sided test.

For ease of presentation we will assume in this thesis that there are no ties in

the data. Adapting the NPI-RP approach, which is shown in the next section, for

such possible ties is relatively easy, e.g. by breaking the ties in all possible ways and
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taking the most conservative corresponding lower and upper probabilities. However,

this is not of major practical relevance and is not discussed further here.

3.2.3 Two Sample Rank Sum Test

The comparison of two samples is one of the most common applications of statis-

tical methods, with the two sample rank sum test, also known as the Wilcoxon

Mann Whitney test (WMT) the most popular non parametric test for such scenar-

ios [41,49]. For this test, data X1, X2, ..., Xn1 are assumed to be an independent and

identically distributed sample from a population with the cumulative probability

distribution F , and data Y1, Y2, ..., Yn2 an independent and identically distributed

sample from a population with cumulative probability distribution G, where also

the X and Y observations are mutually independent. The two sample rank sum

test considers null hypothesis

H0 : F (t) = G(t), for all real valued t (3.5)

The null hypothesis asserts that the X variable and Y variable have the same prob-

ability distribution, but the common distribution is not specified. The alternative

hypothesis specified that Y is larger (or smaller) than X. The model which describes

the alternative is called the location shift model

H1 : G(t) = F (t− δ), for all t (3.6)

This means that the population 2 is the same as population 1 except that it is shifted

by the amount δ. It can be written as

Y =d X + δ (3.7)

and the null hypothesis can be written as

H0 : δ = 0 (3.8)

and the usual alternative hypotheses are either two sided, that is δ 6= 0 or one

sided, so either δ > 0 or δ < 0. In this thesis we restrict attention to the one sided
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upper tail alternative H1 : δ > 0. The two sided test involves more complicated

combinatorics and is left as a possible topic for future research. As throughout this

thesis, we assume that there are no ties in the data set in order to avoid making

the presentation more complicated than needed to get the main point of this work

across, namely the possibility of using NPI for inference on reproducibility of tests.

If the mean of population 1 is E(X) and the mean of population 2 is E(Y ) , then

δ = E(Y )− E(X) (3.9)

To compute the Wilcoxon two sample rank sum test statistic Z, we order the com-

bined sample of X and Y from small to large values. Let S1 be the rank of Y1, S2 is

the rank of Y2 ... and Sn is the rank of Yn2 . Let Vj be the rank assigned to Yj and

define the rank sum

Z =

n2∑
j=1

Vj (3.10)

The one upper sided test is

H0 : δ = 0 versus H1 : δ > 0 (3.11)

reject H0 if Z ≥ Zα, with the critical value Zα such that under the null hypothesis,

P (Z ≥ Zα) for the chosen level of significance α, it is use the sum of ranks of the

smaller sample size. The values of Zα are typically provided in tables [41,49].

H0 : δ = 0 versus H1 : δ < 0 (3.12)

and reject H0 if Z ≤ n2(n1 + n2 + 1)− Zα.

The two sided test is

H0 : δ = 0 versus H1 : δ 6= 0 (3.13)

and we reject H0 if Z ≥ wα
2

or Z ≤ n2(n1 +n2 +1)−Zα
2
. Note that the R code gives

the U statistic instead of the Z statistic,which is called Mann Whitney U statistic

U =

n1∑
i=1

n2∑
j=1

φ(Xi, Yj) (3.14)
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and φ(Xi, Yj) = 1 if Xi < Yj and 0 otherwise

Z = U +
n2(n2 + 1)

2
(3.15)

that means that tests based on U are equivalent to tests based on Z. If n is large,

we use the standard normal distribution as approximation

Z∗ =
Z − µz
σz

(3.16)

where is µz = n1(n1+n2+1)
2

and σz =
√

n1n2(n1+n2+1)
12

.

3.3 NPI for the Reproducibility Probability

The reproducibility of a test is an important characteristic of the practical relevance

of test outcomes. Recently there has been substantial interest in the reproducibility

probability (RP), where not only its estimation but also it is the actual definition

and interpretation are not uniquely determined in the classical frequentist statistics

framework. NPI is a frequentist statistics approach that makes few assumptions,

enabled by the use of lower and upper probabilities to quantify uncertainty, and

which explicitly focuses on future observations. The explicitly predictive nature of

NPI provides a natural formulation of inferences on RP.

In the Sections 3.4, 3.5 and 3.6, we introduce the use of the NPI approach to RP

(NPI-RP) for some basic nonparametric tests [20]. Applying NPI, for either real-

valued or Bernoulli data, enables inference by deriving lower and upper probabilities

for the event that a future test, of similar size and under similar circumstances as

the first test, will lead to the same conclusion as the first test, that is rejection or

non-rejection of the null-hypothesis. Generally, we will use the acronym NPI-RP for

such inferences. It is important to emphasize that we focus on the conclusion of the

future test with regard to the null-hypothesis, given the actual data of the first test;

so we do not consider an exact repetition in terms of the same value for the test

statistic of interest or even for the actual observations, nor do we opt to just use the

information from the first test that the null-hypothesis was rejected or not. As the
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strength of the first test’s conclusion depends on the actual data, it seems logical

and important to use those data to infer on the reproducibility of the test result,

while such prediction for the test result in a future test is more naturally reflected

by the corresponding final conclusion, so rejection or not of the null-hypothesis. In

Section 3.7 we briefly comment on the possibility, within the NPI framework, to only

use the test’s conclusion from the first test, but we consider this of less importance

than the approach followed throughout this chapter.

As is clear from the brief comments on the literature on RP in Section 1.4, there

have been several different formulations of the RP problem within the classical

theory of frequentist statistics, where typically properties of an assumed underlying

population are estimated. However, the very nature of RP seems to be predictive;

given the data from the first test, one would like to predict the overall test conclusion

for a second test, if such a further test would have the same sample size(s) and would

be performed under similar circumstances. Hence the NPI approach is attractive, as

it is a framework of frequentist statistics that explicitly considers future observations

which are exchangeable with the available data observations. We should point out

that the NPI framework does not require that the sample size(s) in the actual (first)

and future (second) tests are the same, but this seems a natural assumption in order

to reflect reproducibility, and we will restrict attention to this situation in this thesis.

We present NPI-RP for any possible results of the first test, so both in case

that it leads to rejection and non-rejection of the null-hypothesis. As will be clear

from the discussion in Section 1.4, in practice one is often particularly interested

in reproducibility of tests that led to rejection of the null-hypothesis, as this tends

to be the practically most important scenario, e.g. leading to new medication being

introduced. However, for a complete view we believe that the reproducibility of tests

that did not reveal a significant effect is also important, so while our discussions

(including in the examples in this thesis) will mostly focus on the reproducibility

of tests in cases where the null-hypothesis is rejected, we also consider RP in cases

of non-rejection of the null-hypothesis. The NPI for Bernoulli observations is used

for the NPI approach to reproducibility for the sign test, presented in Section 3.4.

The NPI for multiple real-valued observations is used for the NPI approach to the
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reproducibility of the one-sample signed-rank test and the two-sample rank sum

test, presented in Sections 3.5 and 3.6.

Before we consider NPI-RP for the sign test, which is perhaps the most basic

nonparametric statistical test, we need to comment briefly on assumptions under-

lying statistical tests. Generally, when a statistical test is applied there are some

modelling assumptions which, ideally, should be checked. For example, Wilcoxon’s

one-sample signed-rank test, which we consider in Section 3.5, assumes that the

population from which the sample is drawn is symmetric about the median. This

assumption is important for the distribution of the test statistic under the null-

hypothesis and ideally should be checked whenever the test is applied.

In the NPI-RP approach, given the n data observations from the first test, we

consider all possible different orderings of n future observations and the n data

observations for this test, and then calculate lower and upper probabilities for the

event that the test statistic based on such n future observations will lead to rejection

or non-rejection of the null-hypothesis. When doing so, one could argue that we

should consider, for each of the
(
2n
n

)
possible orderings of the n future observations

among the n data observations, whether or not it is reasonable to assume that the

n future observations could have come from a population that is symmetric about

its median. While this could be done, e.g. by using an appropriate pre-test, we do

not do this for three reasons.

First, we will typically consider quite small data sets (although the approach

can be applied for all sample sizes), in which case for only few test results such an

underlying assumption would be rejected when formulated as null-hypothesis for a

pre-test. Secondly, implementing such a pre-test for the predicted future samples

would severely complicate both computation and analytic derivation of the results

presented in this chapter. Thirdly, and most importantly, while testing such as-

sumptions, or at least good awareness of such assumptions, it is indeed important

for the actual (first) test, the further tests as performed on all the predictive, and

hence hypothetical, future data sets are mainly done to get an insight in the cor-

responding values of the test statistic and the corresponding test conclusions; as

we do not base the practically important overall conclusion on a single test out of
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these predictive tests, whether or not the predicted data actually would support the

underlying assumption is of less relevance. So, generally, we do not consider such

underlying assumptions in this chapter, but we will assume that the method is only

applied where such assumptions seem reasonable for the actual data from the first

test, as is common when such tests are applied.

3.4 NPI-RP for the One Sample Sign Test

The NPI-RP approach for this scenario is as follows. Suppose that Y = y, then this

test immediately leads to H0 being rejected or not. We then consider NPI for the

random number of positive observations out of n future Bernoulli observations [16],

which we denote by Yf (used for simplicity instead of the notation Y 2n
n+1 which would

be in line with notation used in Section 1.2; we only consider the situation with fu-

ture number of observations equal to the number of data observations, so m = n,

henceforth in this thesis), we discuss this briefly in Section 3.7, given the y positive

observations out of n in the original test. So here we use equations (1.4) and (1.5).

We derive the NPI lower and upper probabilities for the event that, for these n

future observations, the test’s conclusion will be the same as the original conclusion

based on the observation y. This provides the NPI lower and upper reproducibility

probabilities, which we denote by RP (y) and RP (y), respectively, where it is im-

portant to emphasize that these depend on y.

We first consider the one-sided test with H1 : θ > 0, for which H0 is rejected

if and only if Y ≥ bα. The NPI lower and upper probabilities for reproducibility

of this test involve consideration of the event Yf ≥ bα, given data Y = y from the

original test. The NPI lower and upper probabilities for this event are derived from

(1.4) and (1.5), which are based on the assumption A(n) and the model presented
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by Coolen [16], and are equal to

P (Yf ≥ bα|y) =

1−
(

2n

n

)−1
×

[(
2n− y
n− y

)
+

bα−1∑
l=1

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}]
P (Yf ≥ bα|y) =(

2n

n

)−1
×

[(
y + bα
y

)(
2n− y − bα

n− y

)
+

n∑
l=bα+1

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}]

The NPI lower and upper reproducibility probabilities in this case are as follows.

For y ≥ bα, so in case the original test led to rejection of H0, RP (y) = P (Yf ≥ bα|y)

and RP (y) = P (Yf ≥ bα|y), while for y < bα, which led to H0 not being rejected in

the original test, RP (y) = P (Yf < bα|y) = 1− P (Yf ≥ bα|y) and RP (y) = P (Yf <

bα|y) = 1− P (Yf ≥ bα|y).

For the one-sided test with H1 : θ < 0, for which H0 is rejected if and only if

Y ≤ n− bα = blα, the relevant NPI lower and upper probabilities, given Y = y, are

also easily derived from (1.4) and (1.5) and are equal to

P (Yf ≤ blα|y) = 1−
(

2n

n

)−1
×(y + blα + 1

y

)(
2n− y − blα − 1

n− y

)
+

n∑
l=blα+2

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}
P (Yf ≤ blα|y) =

(
2n

n

)−1
×

(2n− y
n− y

)
+

blα∑
l=1

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}
The NPI lower and upper reproducibility probabilities in this case are as follows.

For y ≤ blα, so in case the original test led to rejection of H0, RP (y) = P (Yf ≤ blα|y)

and RP (y) = P (Yf ≤ blα|y), while for y > bα, which led to H0 not being rejected in

the original test, RP (y) = P (Yf > blα|y) = 1− P (Yf ≤ blα|y) and RP (y) = P (Yf >

blα|y) = 1− P (Yf ≤ blα|y).

For this one-sided sign test with H1 : θ > 0, the minimum value that can occur

for the NPI lower reproducibility probability is equal to RP (bα) = P (Yf ≥ bα|y =

bα) = 0.5, while with H1 : θ < 0 also the minimum value that can occur for the NPI

lower reproducibility probability is equal to RP (blα) = P (Yf ≤ blα|y = blα) = 0.5 (the
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justification for these values is given in Proof of minimum value for lower RP in this

section). As these NPI lower reproducibility probabilities RP (y) are increasing in

y, this minimum possible value of 0.5 links nicely to the discussions in the literature

about reproducibility probability of 0.5 as a worst-case scenario. Note that in the

NPI approach, this worst-case scenario is reflected through the lower probability,

the corresponding NPI upper probability RP (bα) is greater than 0.5 and depends

on n, in fact it is a decreasing function of n with limiting value 0.5 for n→∞ (this

is easily proven but is left to the interested reader, it is of little further relevance in

this thesis).

The maximum value that can occur for the NPI upper reproducibility probability

for these tests is equal to 1, which occurs if all observations in the original test sample

are positive, or if all are negative. In both these cases, these data observations are

maximally supportive of either the null-hypothesis or the alternative hypothesis.

These NPI upper probabilities reflect that, if all observations are positive (negative)

then the data do not provide evidence against the possibility that negative (positive)

observations would never occur.

For the two-sided test with H1 : θ 6= 0, for which H0 is rejected if and only if

Y ≥ bα/2 or Y ≤ n − bα/2 = blα/2, the relevant NPI lower and upper probabilities,

given Y = y, are also easily derived from (1.4) and (1.5) and are equal to

P (Yf ∈ {blα/2 + 1, . . . , bα/2 − 1}|y) =

1−
(

2n

n

)−1
×

(2n− y
n− y

)
+

bl
α/2∑
l=1

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}

+

{(
y + bα/2

y

)
−
(
y + blα/2

y

)}
×
(

2n− y − bα/2
n− y

)

+
n∑

l=bα/2+1

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}
P (Yf ∈ {blα/2 + 1, . . . , bα/2 − 1}|y) =(

2n

n

)−1
×
[(
y + blα/2 + 1

y

)(
2n− y − blα/2 − 1

n− y

)

+

bα/2−1∑
l=bl

α/2
+2

{(
y + l − 1

y − 1

)(
2n− y − l
n− y

)}
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The NPI lower and upper reproducibility probabilities, in this case are as follows.

For y ≤ blα/2 or y ≥ bα/2, so in case the original test led to rejection of H0, we have

RP (y) = P (Yf ≤ blα/2 ∨ Yf ≥ bα/2|y) = 1 − P (Yf ∈ {blα/2 + 1, . . . , bα/2 − 1}|y) and

RP (y) = P (Yf ≤ blα/2 ∨ Yf ≥ bα/2|y) = 1 − P (Yf ∈ {blα/2 + 1, . . . , bα/2 − 1}|y).

For y ∈ {blα/2 + 1, . . . , bα/2 − 1}, which led to H0 not being rejected in the original

test, we have RP (y) = P (Yf ∈ {blα/2 + 1, . . . , bα/2 − 1}|y) and RP (y) = P (Yf ∈

{blα/2 + 1, . . . , bα/2 − 1}|y).

These results for NPI-RP for the one-sample sign test are illustrated and dis-

cussed in the Example 3.1.

Now we prove that the minimum value of the NPI lower reproducibility proba-

bility is equal to 0.5.

Proof of minimum value for lower RP

The NPI upper and lower probabilities for Bernoulli random quantities, as given in

Equations (1.4) and (1.5), were derived by [16] through direct counting arguments.

A nice alternative counting argument to derive these results is as follows (for more

details we refer to [1, Section 2.2]). In the latent variable representation of Bernoulli

data using real-valued outcomes of an experiment, with data consisting of n obser-

vations and interest in m future observations, the
(
n+m
n

)
different orderings of these

observations, when not distinguishing between the n observed values nor between

the m future observations, are all equally likely. For each such ordering, the success-

failure threshold can be in any of the n+m+ 1 intervals of the partition of the real

line created by the n+m values of the latent variables, leading to n+m+1 possible

combinations (s, r), with s successes in the n tests and r successes in the m future

observations. For such an ordering, these possible pairs (s, r) can be represented as

a path on the rectangular lattice from (0, 0) to (n,m) with steps going either one to

the right or one upwards.

The
(
n+m
n

)
different orderings, which are all equally likely, correspond to the(

n+m
n

)
different right-upwards paths from (0, 0) to (n,m), and hence the NPI upper

and lower probabilities (1.4) and (1.5) can also be derived by counting paths. To

derive the NPI lower probability P (Y n+m
n+1 ∈ Rt|Y n

1 = s), one counts all such paths
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which for given s must go only through points (s, r) with r ∈ Rt, so they do not go

through (s, l) for any l ∈ Rc
t . The corresponding NPI upper probability P (Y n+m

n+1 ∈

Rt|Y n
1 = s) is derived by counting all such paths that go through at least one (s, r)

with r ∈ Rt.

In Section 3.4 the following NPI lower probabilities are used, when considering

m = n future observations based on n data observations

P (Y 2n
n+1 ≤ y|Y n

1 = y) = 0.5 for y ∈ {0, 1, . . . , n− 1} (3.17)

P (Y 2n
n+1 ≥ y|Y n

1 = y) = 0.5 for y ∈ {1, 2, . . . , n} (3.18)

These lower probabilities follow from symmetry arguments as follows. The lower

probability (3.17) is derived by counting all paths which go through (y, r) with

r ≤ y but do not go through (y, y + 1), which then implies that they also do not

go through (y, t) for any t ≥ y + 1. To ensure that the paths are not counted more

than once, one can count the paths going through (y, u) and (y+ 1, u), for a specific

u ∈ {0, 1, . . . , y}, and sum all these paths for these values of u. By symmetry, these

are precisely half of all the
(
2n
n

)
different right-upwards paths from (0, 0) to (n, n),

which follows by considering the paths that go through a pair (v, y) and (v, y+1) for

any v ∈ {0, 1, . . . , y}, these are precisely the paths that are not counted in deriving

the lower probability (3.17). Every right-upwards path from (0, 0) to (n, n) goes

either through (y, u) and (y+ 1, u), for a specific u ∈ {0, 1, . . . , y}, or through (v, y)

and (v, y + 1) for a specific v ∈ {0, 1, . . . , y}. By symmetry it follows that there are

exactly the same number of paths going through (y, u) and (y + 1, u) for a specific

u ∈ {0, 1, . . . , y} as paths through (u, y) and (u, y + 1) for the same specific value

u ∈ {0, 1, . . . , y} (this can be seen by replacing every upwards step by a right step

and vice versa). This proves the result (3.17).

The derivation of the lower probability (3.18) is, interestingly, almost given by

the previous counting argument, as we have seen that precisely half of all paths go

through (v, y) and (v, y + 1) for a specific v ∈ {0, 1, . . . , y}. To determine (3.18),

we need to count all right-upwards paths from (0, 0) to (n, n) that go through (y, r)

with r ≥ y but not through (y, y−1), which implies that they also do not go through

(y, t) for any t ≤ y− 1. These paths are identical to all the paths which go through
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(v, y) and (v, y + 1) for a specific v ∈ {0, 1, . . . , y}, but with one exception, namely

we have to exclude the paths that go through (y, y − 1) and (y, y) and (y, y + 1).

However, we must include in this counting argument the paths that go through

(y− 1, y) and (y, y) and (y+ 1, y), and again by symmetry this means that we have

to include the same number of paths as we just had to exclude. Hence, half of all

such paths from (0, 0) to (n, n) are included in the count to derive (3.18), which

concludes the proof of this result.

Example 3.1

We consider NPI-RP for the one-sample sign test with either n = 20 or n = 30

observations and with either α = 0.05 or α = 0.01. First, we consider the one-

sided test with H1 : θ > 0 (we do not illustrate cases with H1 : θ < 0, these

follow by symmetry and therefore have similar behaviour), thereafter we consider

the two-sided test with H1 : θ 6= 0.

Table 3.1 presents the NPI lower and upper reproducibility probabilities, RP (y)

and RP (y), for the one-sided test with H1 : θ > 0 and with n = 20 observations

in the first test, of which y were positive. In Table 3.1 the level of significance is

α = 0.05, which leads to the null-hypothesis being rejected if and only if y ≥ 15.

The results for the corresponding test but with α = 0.01 are presented in Table 3.2,

in this case the null-hypothesis is rejected if and only if y ≥ 16. In all tables in this

thesis the entries are rounded to three decimals, but fewer decimals are given if the

values are exact. The NPI upper probability for RP is equal to 1 in case y = 0 or

y = 20, as discussed previously this reflects that such data do not provide evidence

against the possible situation that there would never be any positive values (for

y = 0), which would certainly lead to reproducibility of non-rejection of the null-

hypothesis, or that there would never be any negative values (for y = 20), which

would certainly lead to reproducibility of rejection of the null-hypothesis. The NPI

lower probabilities for RP are exactly equal to 0.5 for y = 14 and y = 15 in Table

3.1 and for y = 15 and y = 16 in Table 3.2, this was also discussed previously and

is proven in Proof of minimum value for lower RP . Of course, for α = 0.01 the NPI

lower and upper reproducibility probabilities, for y such that the null-hypothesis is
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.000 1 7 0.988 0.995 14 0.5 0.634

1 1.000 1.000 8 0.973 0.988 15 0.5 0.642

2 1.000 1.000 9 0.947 0.973 16 0.642 0.775

3 1.000 1.000 10 0.905 0.947 17 0.775 0.882

4 0.999 1.000 11 0.840 0.905 18 0.882 0.954

5 0.998 0.999 12 0.750 0.840 19 0.954 0.990

6 0.995 0.998 13 0.634 0.750 20 0.990 1

Table 3.1: NPI-RP for Sign test with H1 : θ > 0, n = 20, α = 0.05

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.000 1 7 0.995 0.998 14 0.642 0.760

1 1.000 1.000 8 0.989 0.995 15 0.5 0.642

2 1.000 1.000 9 0.976 0.989 16 0.5 0.653

3 1.000 1.000 10 0.952 0.976 17 0.653 0.796

4 1.000 1.000 11 0.912 0.952 18 0.796 0.909

5 0.999 1.000 12 0.850 0.912 19 0.909 0.976

6 0.998 0.999 13 0.760 0.850 20 0.976 1

Table 3.2: NPI-RP for Sign test with H1 : θ > 0, n = 20, α = 0.01

not rejected, are greater than for α = 0.05, while for y such that the null-hypothesis

is rejected the reverse holds; these properties follow directly from the fact that the

null-hypothesis is rejected for fewer values for y if α is smaller. As discussed in

Section 1.4, there has been some confusion between RP and significance levels. It is

clear from these tables that they are very different concepts without a direct relation,

while it is also clearly important to take the actual test data from the first test (here

the value y) into account as the RP inferences depend strongly on the actual test

data, which is fully in line with intuition.

Tables 3.3 and 3.4 present the NPI-RP results for the same situations as in Tables

3.1 and 3.2, but with n = 30 instead of n = 20. In both these tables, entries for

small positive values of y with RP (y) = 1.000 and RP (y) = 1.000 are not included

in the tables. For α = 0.05 in Table 3.3, the null-hypothesis is rejected if and only if

y ≥ 20, while for α = 0.01 in Table 3.4, the null-hypothesis is rejected if and only if

y ≥ 22. Of course, these tables illustrate the same aspects of the NPI-RP approach

as discussed above, and the comparison with Tables 3.1 and 3.2 also shows that the

imprecision, the difference between corresponding upper and lower probabilities, is

somewhat smaller with n = 30 than with n = 20, which is in line with the general

behaviour of statistical inferences in NPI [19].

Tables 3.5-3.7 present the NPI-RP results for the one-sample sign test with the
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.000 1 15 0.853 0.904 23 0.801 0.874

7 0.999 1.000 16 0.785 0.853 24 0.874 0.928

8 0.998 0.999 17 0.702 0.785 25 0.928 0.964

9 0.995 0.998 18 0.605 0.702 26 0.964 0.985

10 0.990 0.995 19 0.5 0.605 27 0.985 0.995

11 0.981 0.990 20 0.5 0.608 28 0.995 0.999

12 0.965 0.981 21 0.608 0.710 29 0.999 1.000

13 0.941 0.965 22 0.710 0.801 30 1.000 1

14 0.904 0.941

Table 3.3: NPI-RP for Sign test with H1 : θ > 0, n = 30, α = 0.05

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.000 1 16 0.910 0.945 24 0.724 0.820

9 0.999 1.000 17 0.861 0.910 25 0.820 0.895

10 0.998 0.999 18 0.794 0.861 26 0.895 0.948

11 0.996 0.998 19 0.710 0.794 27 0.948 0.979

12 0.991 0.996 20 0.611 0.710 28 0.979 0.994

13 0.982 0.991 21 0.5 0.611 29 0.994 0.999

14 0.968 0.982 22 0.5 0.614 30 0.999 1

15 0.945 0.968 23 0.614 0.724

Table 3.4: NPI-RP for Sign test with H1 : θ > 0, n = 30, α = 0.01

two-sided alternative hypothesis H1 : θ 6= 0, for cases that correspond to those in

Tables 3.1-3.4, but with the case n = 30 only presented once, in Table 3.7, for

α = 0.01. In Table 3.7, the values are not included for y ≥ 17, these are equal to

the values for 30− y in the same table as follows from symmetry (and as illustrated

by the entries for y = 16 and y = 14).

In the case of Table 3.5, with n = 20 and α = 0.05, the null-hypothesis is rejected

if and only if y ≤ 5 or y ≥ 15. At these values the lower and upper reproducibility

probabilities are minimal, which is of course logical, and it is important to notice

that these lower probabilities are now not exactly equal to 0.5, this is simply because

of the two rejection areas for the null-hypothesis, that is for both small and large

values of y, hence the events of interest here are not similar to those discussed in

Proof of minimum value for lower RP . Indeed, compared to those events in Proof

of minimum value for lower RP (and those that led to lower probabilities 0.5 in

Tables 3.1-3.4), the minimal value for RP (y) for y which leads to rejection of the

null-hypothesis, namely 0.501 at y = 5 and y = 15, is greater than 0.5. This is

due to the small but possible case that a future test might lead to rejection of the

null-hypothesis for what could be considered as ‘opposite reasons’, namely where the
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first test is rejected with small value of y but the future test with a large value of

Yf , and vice versa. This small possibility of getting future observations at the ‘other

end’ leading to rejection of the null-hypothesis is also the reason for the minimal

for RP (y) for y which leads to non-rejection of the null-hypothesis, namely 0.495 at

y = 6 and y = 14, to be less than 0.5. In Sections 3.5 and 3.6 we will encounter more

situations with the NPI lower reproducibility probability being less than 0.5, in some

cases substantially so; this feature of the NPI approach to RP will be discussed in

the examples in these sections.

Table 3.5 also clearly illustrates the symmetry in these inferences about y =

n/2 = 10. Notice further that these NPI lower and upper reproducibility probabili-

ties for values of y for which the null-hypothesis is not rejected, are maximally equal

to 0.809 and 0.895, respectively, so quite substantially less than 1− α, which again

emphasizes that the RP and significance level are different concepts which one must

be careful not to interpret wrongly. The NPI upper probabilities in Tables 3.5-3.7

are exactly equal to 1 for y = 0 and y = n, which here both imply rejection of

the null-hypothesis and hence that such data do not provide evidence against the

possibility that the observations will always be either all negative or all positive.

For the case in Table 3.6, with n = 20 and α = 0.01, the null-hypothesis is

rejected if and only if y ≤ 3 or y ≥ 17, and compared to Table 3.5, the NPI

lower and upper reproducibility probabilities are now again larger for values of y

for which the null-hypothesis is not rejected and smaller for values of y for which

the null-hypothesis is rejected. This is logical and in line with the same feature

as discussed for the one-sided tests above. Finally, for the case in Table 3.7, with

n = 30 and α = 0.01, the null-hypothesis is rejected if and only if y ≤ 7 or y ≥ 23,

and the entries in this table, when compared to those in Table 3.6, show again less

imprecision as a result of having more data observations, as was also discussed for

the one-sided tests.

The NPI-RP approach is strongly based on the test data, and as such repro-

ducibility tends to increase with larger sample size, reflected in larger values of

the NPI lower and upper reproducibility probabilities. The comparable cases with

n = 20 and n = 30 in this example illustrate this. However, direct comparison is
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 0.990 1 7 0.622 0.745 14 0.495 0.633

1 0.954 0.990 8 0.723 0.827 15 0.501 0.644

2 0.882 0.954 9 0.787 0.878 16 0.642 0.775

3 0.775 0.883 10 0.809 0.895 17 0.775 0.883

4 0.642 0.775 11 0.787 0.878 18 0.882 0.954

5 0.501 0.644 12 0.723 0.827 19 0.954 0.990

6 0.495 0.633 13 0.622 0.745 20 0.990 1

Table 3.5: NPI-RP for Sign test with H1 : θ 6= 0, n = 20, α = 0.05

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 0.947 1 7 0.862 0.922 14 0.774 0.863

1 0.829 0.947 8 0.918 0.957 15 0.652 0.775

2 0.669 0.829 9 0.949 0.976 16 0.500 0.653

3 0.500 0.669 10 0.959 0.981 17 0.500 0.669

4 0.500 0.653 11 0.949 0.976 18 0.669 0.829

5 0.652 0.775 12 0.918 0.957 19 0.829 0.947

6 0.774 0.863 13 0.862 0.922 20 0.947 1

Table 3.6: NPI-RP for Sign test with H1 : θ 6= 0, n = 20, α = 0.01

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 0.998 1 6 0.619 0.734 12 0.862 0.913

1 0.987 0.998 7 0.500 0.620 13 0.906 0.944

2 0.960 0.987 8 0.500 0.614 14 0.932 0.962

3 0.910 0.960 9 0.614 0.716 15 0.940 0.967

4 0.833 0.910 10 0.715 0.800 16 0.932 0.962

5 0.734 0.833 11 0.800 0.866

Table 3.7: NPI-RP for Sign test with H1 : θ 6= 0, n = 30 and α = 0.01.
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slightly difficult because with increasing n one has, of course, a larger range of y

values to consider. One might compare similar ratios y/n, but care must be taken

when close to the threshold for rejection of the null-hypothesis as the test results

for similar ratios y/n, but with different values of n, might be different.

3.5 NPI-RP for the One Sample Signed Rank Test

The NPI-RP approach for this one-sided signed-rank test is as follows. Given n

ordered data observations x(1) < ... < x(n), we use NPI for n future observations

Xn+1, ..., X2n. As described in the previous sections and presented in detail by [5],

there are
(
2n
n

)
possible orderings of these n future observations among the n data

observations, and all these orderings are equally likely to occur. The idea of these

orderings is explained in Example 2.1 in Chapter 2. For each of these orderings

we are interested in the test statistic W f of the signed-rank test for the n future

observations. As these future observations are not precise but only their number

in each of the intervals of the partition created by the n data observations (from

the first test) are known for a given ordering, we cannot calculate a single precise

value of W f related to an ordering, but we can deduce the minimum and maximum

possible values; we denote these by W f and W
f
, respectively. Doing this for each

of the
(
2n
n

)
different orderings then leads to NPI lower and upper reproducibility

probabilities for this test.

For reproducibility in case the original experiment led to rejection of the null-

hypothesis H0 : θ = 0, the test statistic W f has to be greater than or equal to the

critical value Wα. To find the NPI lower reproducibility probability in this case,

we count all of the
(
2n
n

)
orderings for which W f ≥ Wα must certainly hold, so for

which W f ≥ Wα. In this same case, the corresponding NPI upper reproducibility

probability is found by counting the orderings for which W f ≥ Wα can possibly

hold, so for which W
f ≥ Wα. If the first experiment does not lead to rejection of

H0, then the test result is reproduced if W f < Wα and the corresponding NPI lower

and upper reproducibility probabilities are derived as above but with the obvious

change of inequality signs.
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We next explain how the minimum and maximum values of W f , W f and W
f
,

for a specific ordering can be calculated, detailed justification of this is presented

in Proof of equation 3.19. The original ordered test data x(1) < ... < x(n), together

with definitions x(0) = −∞ and x(n+1) = ∞ define n + 1 intervals (x(j−1), x(j)) for

j = 1, . . . , n + 1. A specific ordering of these n data observations together with n

future observations is specified by the numbers of these future observations in each

of these intervals. Let Sj be the number of the n future observations in interval

(x(j−1), x(j)) for j = 1, . . . , n + 1. Of course, Sj ≥ 0 and
∑n+1

j=1 Sj = n, and the

assumptions A(n), . . . , A(2n−1) underlying NPI for n future real-valued data [5] imply

that all the different combinations of such values Sj, for j = 1, . . . , n+1, are equally

likely. We consider now one specific ordering, which is therefore specified by the

values (S1, . . . , Sn+1).

The minimum possible value W f of the test statistic for testing H0 : θ = 0,

for n future observations corresponding to this specific ordering (S1, . . . , Sn+1), is

easily seen to be achieved if all future observations are put at the left end-points

of their respective intervals. As these are open intervals, it would be just a small

positive value to the right of these left end-points, also to avoid ties we would

seperate multiple values at the same point with a small positive value; while this is

required for mathematical correctness, it would complicate the presentation while

not affecting the results, so we will just use the expression ‘at x(j−1)’ for all future

observations in (x(j−1), x(j)) that we wish to locate as far to the left as possible; and

similar for the case where we want to put future observations as far to the right as

possible when calculating the corresponding NPI-RP upper probability. Hence, for

this specific ordering, Sj future observations are put at x(j−1) in order to get the

minimum possible value W f for the test statistic.

To proceed, we introduce further notation in order to distinguish between positive

and negative values for the future observations which are put at these left end-points

of the intervals. First, the absolute values of x(0) < x(1) < . . . < x(n) are ordered,

with ranks j = 1, . . . , n+ 1, and we introduce the notation x|j| for this j-th ordered

value if it is positive and x−|j| if it is negative (we neglect the possibility of an original

observation being exactly equal to 0 as this is of little practical interest and would
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complicate the presentation). Note that x−|n+1| = −∞. For j = 1, . . . , n+ 1, let Tj

be the number of future observations, in the specific ordering considered, that are

put at x|j|, and T−j the number of such future observations that are put at x−|j|.

This means that Tj = Sl with x(l−1) = x|j| > 0 and T−j = Sl with x(l−1) = x−|j| < 0.

This leads to the minimum possible value for the test statistic W f , that is possible

corresponding to a specific ordering (S1, . . . , Sn+1), being equal to

W f =
∑
j>0

Tj

Tj + 1

2
+
∑
|i|<j

Ti

 (3.19)

where the range of values for j in the summations is restricted to 1, . . . , n, and this is

the range of i, but i can be negative or positive and can be from −(n− 1) to (n− 1)

in order to have its absolute value less than j with j ranging from 1 to n. The

justification of Equation (3.19) is given in the next Proof. It should be emphasized

that this value W f corresponds to a single specific ordering (S1, . . . , Sn+1), and that

in total
(
2n
n

)
such orderings have to be considered. If these

(
2n
n

)
values W f have been

calculated, the proportion of these that are greater than or equal to Wα is equal to

the NPI lower reproducibility probability in this case where the original test led to

rejection of H0.

The above results can be quite easily implemented in an algorithm, as we have

done in order to illustrate this NPI-RP method in Example 3.2, but if n is not

small the total computational effort soon becomes very substantial. Of course, one

does not need to use Equation (3.19), but then one would need to order the future

observations, still assuming them to be ‘at’ the left end-points of the intervals, and

calculate the sum of signed-ranks, so using (3.19) simplifies this as it leaves out the

need to order each one of the
(
2n
n

)
future samples involved. There are several possible

ways to deal with this, for example one can make the algorithm more efficient by

using logical monotonicity relationships between the orderings and the corresponding

values W f , this would lead to some combinatorial challenges but seems feasible. We

will not pursue this further in this thesis, as the intention is to introduce NPI-RP

and we restrict to illustrations involving small numbers of data. In Chapter 4 we

are developing an alternative approach for such reproducibility inferences for the

signed-rank test (and other tests), which is based on bootstrapping from a NPI
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perspective.

To calculate the NPI upper reproducibility probability for the signed-rank test

in this scenario, with the null-hypothesis rejected on the basis of the data observed

in the first test, we follow the same steps as above except now all Sj future observa-

tions in the interval (x(j−1), x(j)) are put at x(j), for j = 1, . . . , n+ 1, leading to the

maximum possible value W
f

for the test statistic corresponding to the specific order-

ing (S1, . . . , Sn+1). This value is derived similarly to the derivation of W f presented

above, with just the changes due to the use of the right end-points instead of the left

end-points of the intervals. Now, the absolute values of x(1) < x(2) < . . . < x(n+1) are

ordered, with ranks j = 1, . . . , n+ 1, and we introduce the notation x̃|j| for this j-th

ordered value if it is positive and x̃−|j| if it is negative. Note that x̃|n+1| = ∞. For

j = 1, . . . , n+1, let T̃j be the number of future observations, in the specific ordering

considered, that are put at x̃|j|, and T̃−j the number of such future observations that

are put at x̃−|j|. This means that T̃j = Sl with x(l) = x̃|j| > 0 and T̃−j = Sl with

x(l) = x̃−|j| < 0. This leads to the maximum possible value for the test statistic W f ,

that is possible corresponding to a specific ordering (S1, . . . , Sn+1), being equal to

W
f

=
∑
j>0

T̃j

 T̃j + 1

2
+
∑
|i|<j

T̃i

 (3.20)

where the range of values for j in the summations is restricted to 1, . . . , n + 1, and

this is the range of i, but i can be negative or positive and can be from −(n − 1)

to (n − 1) in order to have its absolute value less than j with j ranging from 1 to

n. It is clear that, apart from the differences in the definitions of the values T̃j and

Tj, (3.20) is equal to (3.19); its derivation follows exactly the same steps as that of

(3.19), which is given in Proof of equation 3.19.

The NPI lower and upper reproducibility probabilities for this test, in case the

original data did not lead to rejection of H0, can be derived similarly. It is easier

to just calculate the NPI lower and upper probabilities for the event W f ≥ Wα

as presented above, and then to use the conjugacy property (1.5) to derive the

NPI lower and upper probabilities for the event W f < Wα, which corresponds to

reproducing the original test result in this case.

While an analytic investigation of properties of this NPI-RP approach is very
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difficult due to the absence of closed-form expressions for the lower and upper prob-

abilities, one property is easy to derive: if α is very small, such that H0 is only

rejected if all observations are positive, and if the original test data indeed led to

such rejection, then the NPI lower reproducibility probability is equal to 0.5 and the

corresponding upper reproducibility probability is equal to 1, for all sample sizes n.

This is based on the fact that exactly half of the possible orderings have one or more

future observations smaller than X1. Calculations of the lower NPI reproducibility

probability assume such values to be negative. Example 3.2 illustrates the NPI-RP

method for the signed-rank test as presented in this section.

Proof of Equation 3.19

We provide a justification for the minimum value of the test statistic for future data

in case of the Wilcoxon one-sample rank-sum test, as given by Equation (3.19) in

Section 3.5. The justification for the corresponding maximum value (3.20) follows

precisely the same steps.

With the defined notation, for a specific ordering (S1, . . . , Sn+1) there are Tj

future observations at x|j| and T−j future observations at x−|j|. We must sum the

ranks of the positive observations, so the ranks of the Tj future observations at x|j|

for the values j ∈ {1, . . . , n + 1} which are such that they appear as index |j| in

these x|j|. The ranks of the Tj future observations at x|j| are equal to∑
|i|<j

Ti + 1, . . . ,
∑
|i|<j

Ti + Tj

which sum up to

Tj ×
∑
|i|<j

Ti +

Tj∑
k=1

k = Tj ×
∑
|i|<j

Ti +
Tj(Tj + 1)

2

Summing these values for all Tj, so corresponding to all the intervals between con-

secutive original data observations with positive left end-points, gives the minimum

value of the rank sum corresponding to this specific ordering, hence indeed

W f =
∑
j>0

Tj(Tj + 1)

2
+
∑
j>0

∑
|i|<j

TjTi (3.21)

which leads to Equation (3.19).
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Example 3.2

We illustrate the reproducibility of the one-sample signed-rank test with H0 : θ = 0

and H1 : θ > 0. We consider a variety of samples, each of size n = 6, and level of

significance α = 0.05. For this test, the null-hypothesis is rejected if W ≥ 19. In

the NPI approach, there are
(
12
6

)
= 924 orderings of 6 future observations among

the 6 data observations to consider, and all are assumed to be equally likely by the

assumptions underlying the method presented in this section. Table 3.8 presents the

NPI lower and upper reproducibility probabilities for a variety of data represented

by signed ranks. These cover many cases that can occur in practice, where of course

aspects of the actual data values beyond their signed ranks are irrelevant. The first

three cases represent the only possible data sets for which H0 is rejected, for all the

other cases H0 is not rejected, which of course affects how reproducibility is defined.

If all six data observations are positive then RP = 0.5 and RP = 1. The

latter is intuitively logical, as these data do not provide strong evidence against the

possibility that the data in the process considered will never be negative. This NPI

lower probability being equal to 0.5 results from the fact that, for any ordering with

(at least) one observation smaller than the smallest data observation, that future

observation is not restricted in its value, in the sense that for the configuration

related to this lower probability we effectively put such an observation at −∞,

hence it will have signed rank −6. This means that in this case, for each ordering

with one or more future observations smaller than the smallest data observation,

the minimal signed-rank sum for the future observations will be at most 15. Half of

the 924 orderings have at least one such smaller future observation, which is in line

with intuition, because with the data set and a future sample of the same size n,

the probability for the event that the future sample contains the smallest of all 2n

values, is equal to 0.5. It is further interesting to note that RP is substantially less

than 0.5 for several of the possible cases. This implies that such data, typically with

test statistics close to the critical value W0.05 = 19, do not provide strong evidence

in favour of the reproducibility of the test result. Of course, this is based on the fact

that the lower RP corresponds to the situation where, for each of the 924 possible

orderings, positive future values are assumed to be as small as possible within the
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sign-ranked data W RP RP

1,2,3,4,5,6 21 0.5 1

-1,2,3,4,5,6 20 0.364 0.773

-2,1,3,4,5,6 19 0.326 0.712

-3,1,2,4,5,6 18 0.364 0.718

-2,-1,3,4,5,6 18 0.5 0.788

-4,1,2,3,5,6 17 0.429 0.750

-3,-1,2,4,5,6 17 0.538 0.810

-5,1,2,3,4,6 16 0.472 0.767

-3,-2,1,4,5,6 16 0.576 0.831

-4,-1,2,3,5,6 16 0.581 0.831

-6,1,2,3,4,5 15 0.494 0.773

-3,-2,-1,4,5,6 15 0.728 0.902

-6,-3,-1,2,4,5 11 0.805 0.935

-4,-3,-2,-1,5,6 11 0.879 0.966

-6,-5,-4,-3,1,2 3 0.957 0.992

-6,-5,-4,-2,-1,3 3 0.973 0.997

-6,-5,-4,-3,-2,-1 0 0.992 1

Table 3.8: NPI-RP for signed-rank test with H1 : θ > 0, n = 6, α = 0.05, W0.05 = 19.

interval to which they belong according to the specific ordering, and this also holds

for the negative future values, hence the negative values tend to get larger absolute

ranks.

The entries in Table 3.8 show another interesting feature, namely that RP and

RP are not monotone as functions of the difference between the actual data test

statistic W and Wα. For each specific value W < 19, RP and RP are minimal

for the actual data with the smallest number of negative values. If one restricts

attention to data sets with the same number of negative signed ranks, then the

monotonicity holds. So the NPI-RP method takes both the actual signed ranks and

the number of negative values into account, which seems a particularly nice feature

of the method.

We have performed the same calculations for more orderings with n = 6, and

similarly for n = 4, 5, 7. For the latter case, there are already
(
14
7

)
= 3432 orderings.

The NPI-RP results for all these cases were similar as presented and discussed here

for n = 6. Slightly larger values of n are also possible using our method, but as we

calculate W f and W
f

for each ordering, and e.g. for n = 10 there are
(
20
10

)
= 184, 756

orderings, the computational effort soon becomes too large. Nevertheless, the RP

approach presented here shows some interesting properties and is, in principle, ap-

plicable for all data sets.
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sign-ranked data W RP RP

1,2,3,4,5,6 21 0.5 1

-1,2,3,4,5,6 20 0.5 0.773

-2,1,3,4,5,6 19 0.5 0.773

-3,1,2,4,5,6 18 0.5 0.773

-2,-1,3,4,5,6 18 0.773 0.909

-4,1,2,3,5,6 17 0.5 0.773

-3,-1,2,4,5,6 17 0.773 0.909

-5,1,2,3,4,6 16 0.5 0.773

-3,-2,1,4,5,6 16 0.773 0.909

-4,-1,2,3,5,6 16 0.773 0.909

-6,1,2,3,4,5 15 0.5 0.773

-3,-2,-1,4,5,6 15 0.910 0.970

-6,-3,-1,2,4,5 11 0.910 0.970

-4,-3,-2,-1,5,6 11 0.970 0.992

-6,-5,-4,-3,1,2 3 0.970 0.992

-6,-5,-4,-2,-1,3 3 0.992 0.999

-6,-5,-4,-3,-2,-1 0 0.999 1

Table 3.9: NPI-RP for signed-rank test with H1 : θ > 0, n = 6, α = 0.016,

W0.016 = 21.

sign-ranked data W RP RP

1,2,3,4 10 0.786 1

-1,2,3,4 9 0.586 0.929

-2,1,3,4 8 0.543 0.871

-3,1,2,4 7 0.514 0.829

-2,-1,3,4 7 0.371 0.757

-4,1,2,3 6 0.5 0.800

-3,-1,2,4 6 0.329 0.700

-4,-1,2,3 5 0.357 0.714

-3,-2,1,4 5 0.371 0.714

-4,-2,1,3 4 0.414 0.743

-3,-2,-1,4 4 0.5 0.843

-4,-3,1,2 3 0.457 0.757

-4,-2,-1,3 3 0.557 0.886

-4,-3,-1,2 2 0.614 0.914

-4,-3,-2,1 1 0.671 0.929

-4,-3,-2,-1 0 0.786 1

Table 3.10: NPI-RP for signed-rank test with H1 : θ > 0, n = 4, α = 0.438,

W0.438 = 6.
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sign-ranked data W RP RP

1,2,3,4 10 0.5 1

-1,2,3,4 9 0.5 0.786

-2,1,3,4 8 0.5 0.786

-3,1,2,4 7 0.5 0.786

-2,-1,3,4 7 0.786 0.929

-4,1,2,3 6 0.5 0.786

-3,-1,2,4 6 0.786 0.929

-4,-1,2,3 5 0.786 0.929

-3,-2,1,4 5 0.786 0.929

-4,-2,1,3 4 0.786 0.929

-3,-2,-1,4 4 0.929 0.986

-4,-3,1,2 3 0.786 0.929

-4,-2,-1,3 3 0.929 0.986

-4,-3,-1,2 2 0.929 0.986

-4,-3,-2,1 1 0.929 0.986

-4,-3,-2,-1 0 0.986 1

Table 3.11: NPI-RP for signed-rank test with H1 : θ > 0, n = 4, α = 0.062,

W0.062 = 10.

sign-ranked data W RP RP

1,2,3,4,5,6,7 28 0.5 1

-1,2,3,4,5,6,7 27 0.439 0.904

-2,1,3,4,5,6,7 26 0.396 0.834

-3,1,2,4,5,6,7 25 0.358 0.773

-4,1,2,3,5,6,7 24 0.319 0.709

-3,-1,2,4,5,6,7 24 0.294 0.661

-5,1,2,3,4,6,7 23 0.359 0.721

-3,-2,1,4,5,6,7 23 0.402 0.741

-6,1,2,3,4,5,7 22 0.425 0.753

-3,-2,-1,4,5,6,7 22 0.5 0.794

-7,1,2,3,4,5,6 21 0.475 0.769

-4,-3,1,2,5,6,7 21 0.498 0.795

-4,-3,-2,-1,5,6,7 18 0.704 0.896

-7,-6,1,2,3,4,6 15 0.736 0.904

-5,-4,-3,-2,-1,6,7 13 0.857 0.961

-7,-6,-5,1,2,3,4 10 0.872 0.965

-6,-5,-4,-3,-2,-1,7 7 0.949 0.992

-7,-6,-5,-4,1,2,3 6 0.939 0.990

-7,-6,-5,-4,-3,-2,-1 0 0.990 1

Table 3.12: NPI-RP for signed-rank test with H1 : θ > 0, n = 7, α = 0.055,

W0.055 = 24.
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sign-ranked data W RP RP

1,2,3,4,5,6,7 28 0.5 1

-1,2,3,4,5,6,7 27 0.5 0.769

-2,-1,3,4,5,6,7 26 0.769 0.904

-3,1,2,4,5,6,7 25 0.5 0.769

-4,1,2,3,5,6,7 24 0.5 0.769

-3,-1,2,4,5,6,7 24 0.769 0.904

-5,1,2,3,4,6,7 23 0.5 0.769

-3,-2,1,4,5,6,7 23 0.769 0.904

-6,1,2,3,4,5,7 22 0.5 0.769

-3,-2,-1,4,5,6,7 22 0.904 0.965

-7,1,2,3,4,5,6 21 0.5 0.769

-4,-3,1,2,5,6,7 21 0.769 0.904

-4,-3,-2,-1,5,6,7 18 0.965 0.990

-7,-6,1,2,3,4,6 15 0.769 0.904

-5,-4,-3,-2,-1,6,7 13 0.990 0.998

-7,-6,-5,1,2,3,4 10 0.904 0.965

-6,-5,-4,-3,-2,-1,7 7 0.998 0.999

-7,-6,-5,-4,1,2,3 6 0.965 0.990

-7,-6,-5,-4,-3,-2,-1 0 0.999 1

Table 3.13: NPI-RP for signed-rank test with H1 : θ > 0, n = 7, α = 0.008,

W0.008 = 28.

The results are similar for n = 6 with α = 0.016, as shown in Table 3.9, in this

case H0 is rejected if W ≥ 21. In Table 3.9 we note that the values of RP and RP

are similar in some cases, for example in case 2, 3, 4, 6, 8, 11 the values RP = 0.5

and RP = 0.773 when we take a look at future values we can see that the test

statistic W of these cases are different but the number of negative values are similar.

With n = 4 and level of significance α = 0.438. For this case, there are
(
8
4

)
= 70

orderings of 4 future observations among the 4 data observations, and H0 is rejected

if W ≥ 6. Table 3.10 shows the NPI lower and upper reproducibility probabilities

for many cases, the null hypothesis is rejected only in the first seven cases. If all 4

data observations are positive, the RP = 1 but there is a different situation with

RP which is larger than 0.5, it is 0.786 and this appears if the difference between

the test statistic and the critical value is big (or α is large), in other ways, there are

79% of the 70 orderings have at least one observation smaller than the smallest data

values. As we discussed earlier, the monotonicity of bounds holds with the same

number of negative signed ranks, so the test statistic and the number of negative

values are important in this method. When α = 0.062 with n = 4 is used, the results

are shown in Table 3.11, the properties of monotonicity and similarity of lower and

upper values of RP which were discussed before show here. H0 is reject if W ≥ 10.
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For n = 7, there are already
(
14
7

)
= 3432 orderings. The NPI-RP results for all

these cases were similar as presented and discussed here for n = 6 and n = 4. Table

3.12 shows some of these cases with α = 0.055, H0 is rejected if and only if W ≥ 24.

Here, there are some cases that have RP less than 0.5 especially in cases that have

W close to the critical value. For α = 0.008, H0 is rejected if W ≥ 28 and the results

are shown in Table 3.13, these results illustrate the same pattern of bounds of RP .

NPI-RP can also be developed for the two-sided signed-rank test, with H0 :

θ = θ0 and alternative hypothesis H1 : θ 6= θ0, in which case the null-hypothesis

is rejected if the test statistic is either in the α/2 left or right tail of the null

distribution. However, in this case it will not be easy to derive the minimum and

maximum values forW f , for a specific ordering, as it is not clear which configurations

lead to these extremes; so it is not clear whether to put the Sj future observations

within interval (x(j−1), x(j)) all to one of the end-points or not. While some further

theoretical results might be achievable, we think that the NPI-RP approach using

bootstrapping, as we are developing in the next chapter, is more promising for such

two-sided tests. In addition, in most practical scenarios, the real interest when using

such a test is in providing an argument in favour of a specific one-sided alternative

hypothesis, e.g. related to a new medication performing better than an established

one, so development of the NPI-RP approach for the two-sided signed-rank test is

likely to be of less practical value than for the single-sided test.

3.6 NPI-RP for the Two Sample Rank Sum Test

The NPI approach to reproducibility of this one-sided upper-tail two-sample rank

sum test can be described as follows. The actual test with ordered data x(1) <

. . . < x(m) and y(1) < . . . < y(n) leads to the test statistic Z, and to rejection of

H0 if Z ≥ Zα and non-rejection of H0 if Z < Zα. As described in Section 1.4,

we can use NPI for m future observations Xm+1, . . . , X2m based on the information

from data x(1) < . . . < x(m), where all
(
2m
m

)
possible orderings of the m future X-

observations and the m real X-observations are equally likely. Similarly, we can



3.6. NPI-RP for the Two Sample Rank Sum Test 93

use NPI for n future observations Yn+1, . . . , Y2n based on the information from data

y(1) < . . . < y(n), with all
(
2n
n

)
possible orderings equally likely. We now consider

all
(
2m
m

)(
2n
n

)
possible combinations of these different orderings, which again are all

equally likely, based on the assumptions underlying NPI. For each combination,

without further assumptions about the exact location of future observations within

the intervals between consecutive real observations, the corresponding rank sum test

statistic, denoted by Zf , can take on one or more values. Suppose that the original

data led to rejection of H0, then this test result is certainly reproduced according to

each such combination for which Zf must be larger than or equal to Zα, while it could

possibly be reproduced according to all combinations for which Zf can be greater

than or equal to Zα. So, in this case the NPI lower reproducibility probability is

derived by counting the combinations for which Zf ≥ Zα must certainly hold, while

the corresponding NPI upper reproducibility probability is derived by counting the

combinations for which this event can hold. Of course, if the original test leads to

non-rejection of H0, so if Z < Zα, then these NPI lower and upper reproducibility

probabilities are derived by similar counting arguments but for the event Zf < Zα.

As for the one-sample signed-rank test, presented in Section 3.5, we can derive

the minimum and maximum values of Zf corresponding to a specific ordering of

the X and Y observations from the real test. This can be used to reduce the total

computational effort, which however remains very substantial due to the very large

number of combinations of such orderings that must be considered. We denote these

minimum and maximum values of Zf by Zf and Zf , respectively. The minimum

value Zf is derived as follows. Let a specific ordering of the m future X observations

among the corresponding m data observations be denoted by (SX1 , . . . , S
X
m+1), where

notation is in line with that introduced in Section 3.5, and let a specific ordering of

the n future Y observations among the corresponding n data observations be denoted

by (SY1 , . . . , S
Y
n+1). Furthermore, let j(l) = max{j : x(j) < y(l)} for l = 1, . . . , n + 1

and j = 0, 1, . . . ,m, so x(j(l)) < y(l) < x(j(l)+1) and the rank of y(l) in the combined

ordered data from both groups X and Y is l + j(l). The minimum value for the
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rank sum in this case is

Zf =
n+1∑
l=1

SYl


l−1∑
k=1

SYk +

j(l−1)−1∑
t=1

SXt +
SYl + 1

2

 (3.22)

the detailed justification for this result is presented in the next Proof. The corre-

sponding maximum value is

Z
f

=
n+1∑
l=1

SYl


l−1∑
k=1

SYk +

j(l)∑
t=1

SXt +
SYl + 1

2

 (3.23)

which is also justified in the next Proof . To derive the NPI lower reproducibility

probability for this scenario, all of the
(
2m
m

)(
2n
n

)
equally likely possible orderings for

which Zf ≥ Zα holds are counted and the total number is divided by
(
2m
m

)(
2n
n

)
, while

the corresponding NPI upper reproducibility probability is derived by counting all

of these possible orderings for which Z
f ≥ Zα holds, and also dividing the total

number by
(
2m
m

)(
2n
n

)
.

The NPI-RP approach for this test for the other scenarios of interest, with the

initial test not rejecting the null-hypothesis or different one-sided alternative hy-

pothesis, can be similarly derived, where NPI lower and upper reproducibility prob-

abilities in case the original data did not lead to rejection of the null-hypothesis can,

as in Section 3.5, be calculated using the results above and the conjugacy property

(1.5). For the two-sided test the situation is more complex as the configurations

leading to the minimum and maximum possible values of the test statistic, for given

orderings, are not easy to derive anymore; for this case we consider the bootstrap

based NPI approach, which we are developing and presenting in Chapter 4, more

promising, particularly also as it can be applied with any sample sizes without the

computational complexity of the method presented here. However, we do consider

the NPI-RP method presented in this chapter to be important because the results

are exact (the bootstrap-based method will only give approximate results and will

require further assumptions), and while computation can be very substantial for the

rank-based tests in this and the previous sections, for a given test result one only

has to perform the computation once and it is easy to implement, so the method

can be applied if one wishes to do so. As mentioned before, it will be possible to

substantially reduce the computational effort by counting the orderings for which,
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for example, Zf ≥ Zα holds, differently, using monotonicity properties of Zf as

function of the orderings (SX1 , . . . , S
X
m+1) and (SY1 , . . . , S

Y
n+1). We have not pursued

this further but it is an interesting topic for future research.

As for the test in Section 3.5, properties of the NPI-RP method for the two-

sample rank sum test are difficult to investigate analytically. However, if α is so

small that H0 is only rejected if all n Y observations are greater than all m X

observations, then RP = 0.25 and RP = 1. These values can be explained similarly

as for the corresponding special case in Section 3.5, where here the lower probability

corresponds to the case where all m future X observations are smaller than the

largest observed X observation, and all n future Y observations are greater than

the smallest observed Y observation. Both these events have probabilities 0.5 in

the NPI framework, with the independence between the two groups leading to lower

probability 0.5 × 0.5 = 0.25. This NPI-RP method for the two-sample rank sum

test is illustrated and discussed in Example 3.3.

Proof of Equations 3.22 and 3.23

The derivation of the minimum value Zf for the one-sided two-sample rank sum

test in Section 3.6 is as follows, using the notation introduced in that section. To

derive this minimum value, all SXj future X observations in the interval (x(j−1), x(j))

are put at x(j) and all SYl future Y observations in the interval (y(l−1), y(l)) are

put at y(l−1). The ranks of the SYl future Y observations that are put at Y(l−1),

in this configuration, are ranging from
∑l−1

k=1 S
Y
k +

∑j(l−1)−1
t=1 SXt + 1 to

∑l−1
k=1 S

Y
k +∑j(l−1)−1

t=1 SXt + SYl , so the contribution to the minimum total rank sum of these SYl

future observations is

SYl ×

 l−1∑
k=1

SYk +

j(l−1)−1∑
t=1

SXt

+
SYl (SYl + 1)

2

The minimum total rank sum Zf , as given in Equation (3.22), follows by summing

this for all l = 1, . . . , n+ 1.

The corresponding maximum value Z
f

is similarly derived, with all SXj future X

observations in the interval (x(j−1), x(j)) put at x(j−1) and all SYl future Y observa-

tions in the interval (y(l−1), y(l)) put at y(l). The ranks of the SYl future Y observations
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that are put at Y(l), in this configuration, are ranging from
∑l−1

k=1 S
Y
k +

∑j(l)
t=1 S

X
t + 1

to
∑l−1

k=1 S
Y
k +

∑j(l)
t=1 S

X
t + SYl , so the contribution to the maximum total rank sum

of these SYl future observations is

SYl ×

 l−1∑
k=1

SYk +

j(l)∑
t=1

SXt

+
SYl (SYl + 1)

2

and the maximum total rank sum Z
f
, as given in Equation (3.23), follows by sum-

ming this for all l = 1, . . . , n+ 1.

Example 3.3

We illustrate NPI-RP for the two-sample rank sum test with H1 : δ > 0, with m =

n = 5 data observations for both groups X and Y in several different rank orderings,

and with α = 0.05 which corresponds to critical value of the test statistic Z0.05 = 36,

so H0 is rejected if Z ≥ 36. The approach considers all
(
10
5

)2
= 63, 504 combinations

of 5 future X observations, ordered among the 5 data observations from the X

sample, and 5 future Y observations, ordered among the 5 data observations from

the Y sample. The results for several rank orders are presented in Table 3.14, where

the first four rows present cases where the original data lead to rejection of H0,

with all other cases leading to H0 not being rejected. The NPI lower reproducibility

probabilities RP are very small when Z is close to 36, substantially smaller than 0.5.

This is caused by the same reason as discussed, for a single sample, in Section 3.5, but

now the effect is amplified as future observations for both groups are placed at end-

points of their respective intervals such that the overall reproducibility probability is

minimized. As we effectively combine lower and upper probabilities for two groups,

the resulting combined NPI lower and upper reproducibility probabilities are very

imprecise, that is there are big differences between corresponding upper and lower

probabilities. When one has larger sample sizes, these differences tend to become

smaller, so it reflects the amount of information.

Table 3.14 shows, as in Example 3.2, that RP and RP are not monotonic in the

distance of Z to the critical value 36. In most cases where different ranks per sample

lead to the same value of Z, the values of RP and RP differ, so they depend on the

actual ranks per sample and not just on the value of the test statistic (the reported
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ranks X-sample ranks Y -sample Z RP RP

1,2,3,4,5 6,7,8,9,10 40 0.25 1

1,2,3,4,6 5,7,8,9,10 39 0.236 0.968

1,2,3,5,8 4,6,7,9,10 36 0.165 0.781

1,2,4,5,7 3,6,8,9,10 36 0.165 0.781

1,2,4,5,8 3,6,7,9,10 35 0.289 0.858

1,2,3,5,9 4,6,7,8,10 35 0.300 0.863

1,2,3,7,8 4,5,6,9,10 34 0.340 0.874

1,2,5,6,9 3,4,7,8,10 32 0.481 0.915

2,3,4,5,9 1,6,7,8,10 32 0.506 0.927

3,4,5,6,9 1,2,7,8,10 28 0.700 0.971

1,2,7,8,10 3,4,5,6,9 27 0.725 0.972

4,5,6,9,10 1,2,3,7,8 21 0.904 0.998

6,7,8,9,10 1,2,3,4,5 15 0.969 1

Table 3.14: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 5,

α = 0.05, Z0.05 = 36.

two cases with Z = 36 is an exception, which is just due to the same numbers of

combinations for which the test result happens to be repeated, it is not a general

property). Here it is less clear than in Example 3.2 which further aspects of the data

influence the values RP and RP , but it appears that the grouping of neighbouring

ranks in a sample influences these values. If α = 0.004, H0 is rejected if Z ≥ 40 and

the results are shown in Table 3.15. The minimum value of RP is 0.25 as presented

with α = 0.05 and the values of RP and RP depend only on ranks per sample, there

are two cases with the same test statistic Z = 32, but the bounds of reproducibility

probability are different. When X has the largest ranks, the RP values increase,

and if Y has this property, the RP values will increase, but if α is large the increases

in these values will be small.

With the same hypotheses and n = m = 4, α = 0.014 we consider
(
8
4

)2
orderings,

here the H0 is rejected if Z ≥ 26. The results of some of these orderings are

illustrated in Table 3.16, the importance of ranks in determining the values of RP

and RP appears here also. Although there are some cases that have equal values

of test statistic and equal values of RP and RP , but there are other cases that

contravene this, for example, if Z = 24 the lower and upper bounds of RP are equal,

but if Z = 16 these values are different. As for the latter case, the same properties

of NPI-RP method being with n = m = 4 and α = 0.057 which is presented in

Table 3.17, H0 is reject if Z ≥ 24.
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ranks X-sample ranks Y -sample Z RP RP

1,2,3,4,5 6,7,8,9,10 40 0.25 1

1,2,3,4,6 5,7,8,9,10 39 0.25 0.827

1,2,3,7,8 4,5,6,9,10 34 0.713 0.948

1,2,5,6,9 3,4,7,8,10 32 0.812 0.970

2,3,4,5,9 1,6,7,8,10 32 0.737 0.950

1,3,5,7,9 2,4,6,8,10 30 0.881 0.984

3,4,5,6,9 1,2,7,8,10 28 0.874 0.981

1,2,7,8,10 3,4,5,6,9 27 0.905 0.987

2,4,6,8,10 1,3,5,7,9 25 0.953 0.995

1,6,7,8,10 2,3,4,5,9 23 0.963 0.997

3,4,7,8,10 1,2,5,6,9 23 0.966 0.997

4,5,6,9,10 1,2,3,7,8 21 0.975 0.998

6,7,8,9,10 1,2,3,4,5 15 0.992 1

Table 3.15: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 5,

α = 0.004, Z0.004 = 40.

ranks X-sample ranks Y -sample Z RP RP

1,2,3,4 5,6,7,8 26 0.25 1

1,2,3,5 4,6,7,8 25 0.25 0.832

1,2,3,6 4,5,7,8 24 0.393 0.872

1,2,4,5 3,6,7,8 24 0.393 0.872

1,2,4,6 3,5,7,8 23 0.536 0.913

1,2,5,6 3,4,7,8 22 0.617 0.934

1,2,4,8 3,5,6,7 21 0.636 0.934

1,3,5,7 2,4,6,8 20 0.760 0.966

1,2,5,8 3,4,6,7 20 0.717 0.954

2,4,5,6 1,3,7,8 19 0.758 0.962

1,2,6,8 3,4,5,7 19 0.758 0.962

1,4,5,7 2,3,6,8 19 0.801 0.974

1,2,7,8 3,4,5,6 18 0.774 0.964

1,3,7,8 2,4,5,6 17 0.846 0.981

1,4,6,8 2,3,5,7 17 0.870 0.987

2,4,6,8 1,3,5,7 16 0.899 0.991

1,4,7,8 2,3,5,6 16 0.887 0.989

1,3,6,7 2,4,5,8 16 0.801 0.974

1,5,7,8 2,3,4,6 15 0.907 0.992

1,6,7,8 2,3,4,5 14 0.915 0.993

5,6,7,8 1,2,3,4 10 0.972 1

Table 3.16: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 4,

α = 0.014, Z0.014 = 26.
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ranks X-sample ranks Y -sample Z RP RP

1,2,3,4 5,6,7,8 26 0.25 1

1,2,3,5 4,6,7,8 25 0.213 0.913

1,2,3,6 4,5,7,8 24 0.172 0.803

1,2,4,5 3,6,7,8 24 0.172 0.803

1,2,4,6 3,5,7,8 23 0.295 0.862

1,2,5,6 3,4,7,8 22 0.389 0.891

1,2,4,8 3,5,6,7 21 0.494 0.914

1,3,5,7 2,4,6,8 20 0.563 0.939

1,2,5,8 3,4,6,7 20 0.568 0.935

2,4,5,6 1,3,7,8 19 0.640 0.953

1,2,6,8 3,4,5,7 19 0.640 0.953

1,4,5,7 2,3,6,8 19 0.632 0.955

1,2,7,8 3,4,5,6 18 0.703 0.964

1,3,7,8 2,4,5,6 17 0.750 0.975

1,4,6,8 2,3,5,7 17 0.750 0.977

2,4,6,8 1,3,5,7 16 0.798 0.985

1,4,7,8 2,3,5,6 16 0.795 0.984

1,3,6,7 2,4,5,8 16 0.632 0.955

1,5,7,8 2,3,4,6 15 0.835 0.990

1,6,7,8 2,3,4,5 14 0.866 0.993

5,6,7,8 1,2,3,4 10 0.952 1

Table 3.17: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 4,

α = 0.057, Z0.057 = 24.

We calculated further examples, with these values of m and n and also for other

sample size, those results showed similar are presented in Tables 3.18 and 3.19.

When we test the same hypotheses with n = m = 3 and α = 0.35, H0 is rejected

if Z ≥ 12. There are
(
6
3

)2
= 400 combinations, some of these combinations are

considered in Table 3.18, the first 7 rows show cases which reject H0 with original

data, and the other cases show non rejection of H0. The RP values are small when Z

is close to the critical value Z0.35 = 12, and the minimum value of it is 0.25 whereas

the maximum value of RP is 1. When Z has equal values, the RP and RP are

similar in some cases and different in others, that is because the RP and RP do not

depend on test statistic only but also on the ranks of the sample. With large ranks

of X, the RP values are large, and RP values are large if Y has large ranks. The

same cases of NPI-RP appear with n = m = 3 and α = 0.05, which are explored in

Table 3.19.

However, for larger sample sizes in this method, going through all combinations,

becomes quickly computationally infeasible. For example, for m = n = 7 the method

requires
(
14
7

)2
= 11, 778, 624 combinations to be computed to derive the values of

RP and RP corresponding to a single ordering of ranks. Such computations are
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ranks X-sample ranks Y -sample Z RP RP

1,2,3 4,5,6 15 0.55 1

1,2,4 3,5,6 14 0.438 0.960

1,2,5 3,4,6 13 0.355 0.900

1,3,4 2,5,6 13 0.355 0.900

1,2,6 3,4,5 12 0.310 0.840

1,3,5 2,4,6 12 0.265 0.828

2,3,4 1,5,6 12 0.310 0.840

1,3,6 2,4,6 11 0.247 0.787

1,4,5 2,3,6 11 0.250 0.797

2,3,5 1,4,6 11 0.247 0.787

1,4,6 2,3,5 10 0.330 0.852

2,3,6 1,4,5 10 0.332 0.840

2,4,5 1,3,6 10 0.330 0.852

1,5,6 2,3,4 9 0.400 0.885

2,4,6 1,3,5 9 0.422 0.910

3,4,5 1,2,6 9 0.5 0.945

3,4,6 1,2,5 8 0.5 0.945

2,5,6 1,3,4 8 0.5 0.945

3,5,6 1,2,4 7 0.580 0.982

4,5,6 1,2,3 6 0.64 1

Table 3.18: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 3,

α = 0.35, Z0.35 = 12.

ranks X-sample ranks Y -sample Z RP RP

1,2,3 4,5,6 15 0.25 1

1,2,4 3,5,6 14 0.25 0.840

1,2,5 3,4,6 13 0.400 0.885

1,3,4 2,5,6 13 0.400 0.885

1,2,6 3,4,5 12 0.475 0.900

1,3,5 2,4,6 12 0.550 0.930

2,3,4 1,5,6 12 0.475 0.900

1,3,6 2,4,6 11 0.625 0.945

1,4,5 2,3,6 11 0.640 0.953

2,3,5 1,4,6 11 0.625 0.945

1,4,6 2,3,5 10 0.715 0.968

2,3,6 1,4,5 10 0.700 0.960

2,4,5 1,3,6 10 0.715 0.968

1,5,6 2,3,4 9 0.760 0.975

2,4,6 1,3,5 9 0.790 0.983

3,4,5 1,2,6 9 0.760 0.975

3,4,6 1,2,5 8 0.835 0.990

2,5,6 1,3,4 8 0.835 0.990

3,5,6 1,2,4 7 0.880 0.998

4,5,6 1,2,3 6 0.902 1

Table 3.19: NPI-RP for two-sample rank sum test with H1 : δ > 0, m = n = 3,

α = 0.05, Z0.05 = 15.
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only required once for a specific case, but for practically interesting data clearly

other computational methods are required.

3.7 Concluding Remarks

The NPI approach to reproducibility of tests, as introduced in this chapter, can

be extended in several quite obvious ways. For example, one could consider future

sample sizes that differ from the data sample size, and one could also explore the use

of different levels of significance. Senn [64] discussed the importance of statistical

methods that can deal with real-world replications of tests, where circumstances and

sample sizes may vary among different tests. However, from the perspective of the

theoretical reproducibility of an actual test, and particularly within a frequentist

statistical framework, it seems logical to use the same sample sizes and significance

levels as in the actual test for which the data are available. It must be emphasized

that this use is purely in order to formulate predictive reproducibility in a frequentist

context, it does not restrict the applicability in a sense that multiple experiments

would have to be stochastically identical copies. While we considered three basic

nonparametric tests, the approach is applicable to a wide range of statistical tests,

further exploration would provide interesting topics for research where particularly

computational aspects may prove to be challenging. For example, it would be inter-

esting to investigate the NPI approach for reproducibility of goodness of fit tests for

assumed models, where we expect that a good model fit should lead to quite high

values for the NPI lower and upper reproducibility probabilities.

As this chapter has made clear, computational issues are likely to prevent this

exact approach, particularly for the rank-based tests in Sections 3.5 and 3.6, to be

implemented for practically relevant sample sizes. To resolve this, it is interesting to

explore several possibilities. First, there can be substantial benefits in counting more

cleverly: we simply went through all combinations, but there is some monotonicity

that could be used to reduce this counting effort. Initial investigations showed this

to be far from trivial, but nevertheless it provides an interesting topic for research.

Secondly, one might be able to find fast methods to derive suitable approximations.



3.7. Concluding Remarks 102

We have not explored this further, but also due to some monotonicity in the count-

ing problems this should be feasible. Thirdly, it is possible to apply a NPI-based

bootstrap method such that samples represent the future samples in the exact NPI

approach as presented here. This is the route we have taken, and the preliminary

results are promising in Chapter 4.

In modern applications of bio-statistics one typically tests many null-hypotheses

simultaneously. Reproducibility of such tests is a major challenge, it would be

of interest to explore if the NPI approach can make a meaningful contribution to

this field. As a further challenge for future research, it would be interesting to go

beyond the reproducibility of test results and consider the validation of the statistical

models in specific inferences, e.g. prognostic models in medical applications [3]. Such

validation is interpreted in terms of the satisfactory performance of the model for

future patients, which suggests that a predictive approach like the one presented in

this thesis for RP may be suitable.

One aspect that is only mentioned briefly in this thesis is the possibility that one

may want to infer on RP given only rejection or non-rejection of the null-hypothesis

in the first test. While it is clear that the actual data influence RP substantially,

it may be the case that these data are not available. In this situation, the NPI

results for set-valued data [18] can be used. For the one-sided one-sample sign test,

as presented in Section 3.4, this would lead to the NPI lower probability for the

reproducibility of the test conclusion to be equal to the minimum of the NPI lower

probabilities for such reproducibility over the possible observation values y which

lead to the same conclusion (so rejection or non-rejection), hence it would be equal to

0.5 as proven above. The corresponding NPI upper probability for the reproducibil-

ity of the test conclusion is equal to the maximum of the NPI upper probabilities for

such reproducibility over the possible observation values y which lead to the same

conclusion (so rejection or non-rejection), hence it would be equal to 1. It should

be emphasized that these equalities do not generally hold, for example for the cor-

responding two-sided test the NPI lower and upper probabilities for reproducibility,

if only the conclusion of the first test is given, it would need to be derived by a

counting argument for the paths in line with the above presentation, but for details
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we refer to [18] as we believe it to be only of marginal practical interest.

The NPI approach is strongly based on the data, but as such also dependent

on the quality of the data. If, for example, one has reason not to fully trust the

data, straightforward application of the methods presented in this thesis would not

be appropriate. In such cases, one could perform a sensitivity analysis to check

how changes to the data would affect the NPI results, or if one has substantial

background information and wishes to use this then a Bayesian approach may be

suitable [65]. This raises an interesting further research challenge, namely how

NPI methods can be generalized to deal with data that one may not fully trust.

It should be emphasized that the use of lower and upper probabilities may help

with this challenge, as robustness issues can often be dealt with by going through

different possible scenarios (e.g. varying the data in some meaningful way), deriving

lower and upper probabilities for each of these, and defining the overall lower and

upper probabilities for the inference of interest by taking the minimum of the lower

probabilities and the maximum of the upper probabilities corresponding to each of

the scenarios, respectively.

Finally, and returning to aspects discussed in the literature and mentioned in

Section 1.4, it is important to emphasize that, for the NPI methods presented in

this chapter, it is explicitly assumed that future observations are exchangeable with

past observations, in the sense of Hill’s assumption A(n) on which the NPI approach

is based. This assumption is, for example, likely to be violated if the original data

resulted from some preliminary selection process, which might occur due to pub-

lication bias or other features. This is an important issue which may also lead to

interesting further related research challenges, namely exploring whether or not the

NPI approach can be developed if the original data are known to have resulted from

a preliminary selection process.



Chapter 4

Reproducibility using

NPI-Bootstrap

4.1 Introduction

In Chapter 3, we introduced the NPI method for the reproducibility of some non-

parametric tests. The limitation of this method is that if the sample size is not very

small the computations become complex. To deal with this we use an alternative

method for finding the reproducibility probability (RP) of some tests in this chap-

ter, which uses NPI bootstrap method as introduced in Chapter 2. We show the

NPI bootstrap approach to finding RP values (NPI-B-RP) with the sign test, one

sample signed rank test, two samples rank sum test (these tests were described in

Chapter 3 in detail) and the Kolmogorov Smirnov test (KS test) which is shown here

in Section 4.5. Note that we did not use this test in Chapter 3 with the NPI-RP

method because it is not easy to derive the bounds of NPI-RP for this test. This

alternative method can be developed for a variety of tests. We discussed in Section

1.4 the definitions of RP and some different ways to estimate it [29,30,33]. Here we

consider the basic idea of RP, which is that the probability for the event that, if the

test is repeated based on an experiment performed in the same way as the original

experiment, the test outcome (reject H0 or not) will be the same. We consider RP

as prediction not estimation, in Chapter 2 we showed that NPI-B works well for

prediction, so for this concept we introduce NPI-B with RP.

104
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We begin this chapter with an explanation of the derivation of reproducibility

probability (RP) with NPI-B and nonparametric tests. We apply some nonparamet-

ric tests to derive RP using NPI-B in Sections 4.2, 4.3 and 4.4, for one sample sign

test, one sample signed rank test (WRS) and two sample rank sum test (WMT),

respectively. These tests were explored in Chapter 3 with NPI-RP. In Section 4.5

we present one further test which is the Kolmogorov Smirnov test (KS test) and

illustrate the NPI-B method with it. The justification of NPI-B with RP is given in

Section 4.6. Several conclusions are given in Section 4.7.

Using the NPI-RP approach to derive the lower and upper bounds of RP needs

many calculations and can sometimes be hard with a two sided test, such as the one

sample signed rank test and the two samples rank sum test. So we suggest another

method for finding the RP using NPI-B. This is based on repeating the experiment a

number of times with NPI-B and applying the test to find the proportion of times of

the null hypothesis is rejected, or dependent on the outcome of the first experiment.

It is the predicted value of RP, NPI-B-RP. We test the accuracy of these estimated

values by constructing the confidence intervals for these values. It is an attractive

approach because it avoids the complex calculations of the NPI-RP method. We

apply NPI-B to find the RP values with a sign test, one sample signed rank test and

two samples rank sum test, which are explored in Section 3.2.

4.2 NPI-B-RP for the One Sample Sign Test

One sample sign test (sign test) is one of the basic nonparametric tests and we

briefly reviewed it in Section 3.2.1, and used it to find the corresponding NPI-RP

in Section 3.4. In this section we want to apply NPI-B-RP to derive the results of

the one sample sign test as follows:

1. Draw the original sample X from the specific distribution, then apply the test

to find the test statistic K, and the decision of this test.

2. Draw the NPI-B sample from the original one and apply the same test to get

the results. Repeat this with 1000 NPI-B samples, then count the number of

cases of rejection and non rejection of H0.
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K frequency values of NPI-B-RP

3 1 0.845

4 4 0.690 , 0.730 , 0.750 , 0.753

5 6 0.526 , 0.541 , 0.544 , 0.570 , 0.573 ,0.619

6 4 0.593 , 0.605 , 0.616 , 0.667

7 4 0.711 , 0.726 , 0.743 , 0.776

8 4 0.825 , 0.870 , 0.877 , 0.880

9 4 0.930 , 0.957 , 0.957 , 0.967

10 3 0.984 , 0.987 , 0.996

Table 4.1: Sign test, H1 : θ > 2, n = 10, α = 0.377, K0.377 = 6

K frequency values of NPI-B-RP

2 4 0.864 , 0.882 , 0.887 , 0.894

3 5 0.698 , 0.730 , 0.739 , 0.750 , 0.778

4 4 0.534 , 0.537 , 0.577 , 0.645

5 4 0.546 , 0.566 , 0.573 , 0.597

6 4 0.713 , 0.723 , 0.756 , 0.760

7 3 0.851 , 0.863 , 0.878

8 5 0.922 , 0.923 , 0.926 , 0.931 , 0.966

9 1 0.973

Table 4.2: Sign test, H1 : θ < 0, n = 10, α = 0.377, K0.377 = 4

3. To find RP, if we reject H0 in the original experiment, RP is the ratio of the

times H0 is rejected in the 1000 times, or the ratio of the times of non rejection

H0 if we do not reject H0 in the original experiment.

4. Repeat the previous steps 30 times to record the results.

Table 4.1 shows the results of applying the sign test with the original sample

from Gamma (2,2). The hypothesis is H0 : θ = 2 versus H1 : θ > 2, and α = 0.377

with n = m = 10, reject H0 if K ≥ 6. The values of α here are typically tabulated

values. The parameter θ refers to the median. We can see that the RP values are

large with small values of test statistics, like K = 3 and K = 4 , and reduce down

with K = 5, 6. This means that the minimum value of RP appears when the test

statistic approaches the critical value, and then increases again. In Table 4.2, use the

sign test with the original sample from Normal (0,1) and test H0 : θ = 0, H1 : θ < 0

with α = 0.377 and n = m = 10. Here H0 is rejected if K ≤ 4. The RP values are

large with small values and large values of test statistics, and minimize if the test

statistic is close to the critical value.



4.2. NPI-B-RP for the One Sample Sign Test 107

To check if these results follow the same direction of those in Chapter 3, we ap-

ply the sign test with the original sample from Normal (0,1) and the same cases of

Example 3.1 and Table 3.3 in Section 3.4. However here we repeat the experiment

100 times and record if the NPI-B-RP values are within the corresponding lower and

upper NPI-RP results in Example 3.1. For the case H0 : θ = 0 versus H1 : θ > 0

and n = m = 30 with α = 0.05, we found 79% of NPI-B-RP values included in the

bounds of NPI-RP. With α = 0.01, 85% of these values are within the lower and

upper bounds of NPI-RP. For H0 : θ = 0 versus H1 : θ < 0, n = m = 20, α = 0.01

and α = 0.05, the ratios are 80% and 86%, respectively. We think that these ratios

can be considered as good values because they are representing the most values.

This example gives a good picture of NPI-B-RP values, most of these values are

located in the corresponding NPI-RP intervals. This leads us to conclude that the

results are in line with those in Chapter 3, as we expected. Figures 4.1, 4.2, 4.3

and 4.4 show the values of NPI-B-RP as points. The points which are outside the

NPI-RP intervals are presented as ×. What is clear from these figures is that these

values are few according to other points included in the intervals of NPI-RP.

We considered another illustration of the consistency of the results of the NPI-B-

RP of sign test with those in Chapter 3. We used the original sample from Normal

(0,1) and H0 : θ = 0, H1 : θ < 0 with n = 10, α = 0.377. H0 is rejected if K ≤ 4.

We found the NPI-B-RP values and repeated this process 10 times to have 10 values

of NPI-B-RP for each value of the test statistic. Then we derived the bounds of

NPI-RP for this case, to test if the values of NPI-B-RP are included in the bounds

of NPI-RP or not. The results are shown in Table 4.3. We did not show all the

values of NPI-B-RP. We simply used the minimum and maximum values. We found

that all the values of NPI-B-RP are included in the bounds of NPI-RP. In order

to check the performance of the predicted NPI-B-RP values, we consider that these

values have a Binomial distribution because they represent rejection or non rejection

of H0. So we use the predicted value NPI-B-RP as the predicted proportion p̂ and

construct the confidence interval of this value using the formula p̂±z1−α
2

√
1
n
p̂(1− p̂),

and then we explore this interval with the bounds of NPI-RP, [RP,RP ]. Here we
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Figure 4.1: Sign test, H1 : θ > 0, n = m = 30, α = 0.05
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Figure 4.2: Sign test, H1 : θ > 0, n = m = 30, α = 0.01
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Figure 4.3: Sign test, H1 : θ < 0, n = m = 20, α = 0.01
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Figure 4.4: Sign test, H1 : θ < 0, n = m = 20, α = 0.05
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K RP RP NPI-B-RP CI(min) CI(max)

2 0.825 0.930 0.862,0.899 (0.852,0.872) (0.891,0.907)

3 0.675 0.825 0.693,0.778 (0.680,0.706) (0.766,0.790)

4 0.5 0.675 0.518,0.645 (0.504,0.532) (0.632,0.658)

5 0.5 0.672 0.546,0.682 (0.532,0.560) (0.669,0.695)**

6 0.672 0.815 0.713,0.813 (0.700,0.726) (0.802,0.824)*

7 0.815 0.915 0.851,0.914 (0.841,0.861) (0.906,0.922)*

8 0.915 0.971 0.922,0.975 (0.915,0.929) (0.971,0.979)*

9 0.971 0.995 0.973,0.996 (0.968,0.978)* (0.994,0.998)**

Table 4.3: Sign test, H1 : θ < 0, n = 10, α = 0.377, K0.377 = 4

do not compare the confidence intervals of NPI-B-RP with the bounds of NPI-RP,

we just want to show that the values of NPI-B-RP will be included in the bounds

[RP,RP ] or will be close to them. In Table 4.3 we construct the confidence intervals

for the minimum and maximum values of NPI-B-RP (or p̂) . This table contains

the test statistic K, the bounds of NPI-RP [RP,RP ], the values of NPI-B-RP and

the confidence intervals of these two values (CI(min)),(CI(max)). The notation (*)

refers to the cases that have NPI-B-RP values included in the bounds of NPI-RP

and the CI’s overlap with these bounds. The notation (**) refers to cases that

have NPI-B-RP values that are not included in the bounds of NPI-RP but the CI’s

overlap with the bounds [RP,RP ]. If the CI’s are fully included in [RP,RP ] there

is no star. These notations will be used for the other tests in this chapter.

Table 4.3 shows that, whenK = 2, 3, 4, all of the values of NPI-B-RP are included

in [RP,RP ] and the CI’s are included in these bounds. When K = 5 the minimum

value of NPI-B-RP is located in the bounds of NPI-RP and the CI is included in

these bounds, but the maximum value does not belong to the bounds of NPI-RP

and the CI overlaps with the bounds of NPI-RP. For K = 9, the minimum value

of NPI-B-RP is included in these bounds and the CI overlaps with them, but the

maximum value does not belong within the bounds of NPI-RP and the CI overlaps

with them. When K = 6, 7, 8 the minimum values of NPI-B-RP are located in the

bounds and the CI’s are included in them. The maximum values also are located in

the bounds of NPI-RP but the CI’s overlap with these bounds. These results give

a good impression of NPI-B-RP because they show that these predicted values and

their confidence intervals are consistent with the bounds of NPI-RP which are shown

in Chapter 3. There are no cases where CI’s and [RP,RP ] are fully separated.
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W frequency values of NPI-B-RP W frequency values of NPI-B-RP

14 2 0.809 , 0.815 28 1 0.490

17 1 0.741 29 2 0.536 , 0.539

18 2 0.678 , 0.713 31 1 0.590

20 1 0.644 32 1 0.631

21 1 0.670 33 1 0.594

23 2 0.590 , 0.599 34 1 0.675

24 2 0.552 , 0.571 35 3 0.638 , 0.674 , 0.733

25 1 0.560 39 2 0.743 , 0.764

26 1 0.521 41 1 0.823

27 2 0.517 , 0.581 48 2 0.944 , 0.947

Table 4.4: WRS test, H1 : θ > 0, n = 10, α = 0.5, W0.5 = 28

4.3 NPI-B-RP for the One Sample Signed Rank

Test

In Chapter 3 we introduced the one sample signed rank test with an overview about

it in Section 3.2.2, and about using it with NPI-RP in Section 3.5. We follow the

same steps as in Section 4.2 to find NPI-B-RP but with WRS and Normal (0,1).

In Table 4.4 we test H0 : θ = 0 and H1 : θ > 0 with α = 0.5 and n = m = 10.

H0 is rejected if W ≥ 28. The value of RP is around 0.5 when the test statistic

W=27,28,29, and becomes larger when W goes to 14 and when goes to 48. To test

H0 : θ = 0 versus H1 : θ 6= 0 with Normal (0,1) and n = m = 10 we use α/2 = 0.278.

(The tables of Wilcoxon signed rank statistic give the upper bound of probability,

so we considered that α/2 = 0.278 and then α = 0.556 with critical values 21 and

34) and reject H0 if W ≥ 34 or W ≤ 21 with α = 0.556. The results show in Table

4.5, the RP values are small when the test statistic is close to the critical values and

become larger otherwise.

It is important to know if these results agree with those in Chapter 3. To check

this we use the data set (1, 2, 3, 4, 5, 6) of size n = 6 from Table 3.8. The test statistic

of this data set is W = 21 and the lower and upper bounds of NPI-RP are 0.5 and

1, respectively. We resample 1000 NPI-B samples to derive NPI-B-RP value and

then repeat this process 100 times to get 100 values of NPI-B-RP. Then we check

if these values are considered in the bounds of the NPI-RP approach. We reject H0

with data set (1, 2, 3, 4, 5, 6), so the NPI-B-RP value is the proportion of the times
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W frequency values of NPI-B-RP W frequency values of NPI-B-RP

4 1 0.917 30 1 0.382

14 1 0.746 32 1 0.358

16 1 0.726 33 1 0.336

17 1 0.688 34 1 0.666

18 2 0.678 , 0.705 35 2 0.334 , 0.341

19 1 0.676 36 1 0.688

20 1 0.651 37 1 0.686

21 2 0.648 , 0.692 40 1 0.748

22 1 0.352 41 1 0.772

25 2 0.353 46 1 0.868

26 1 0.350 50 1 0.919

28 2 0.346 , 0.363 51 1 0.917

29 1 0.342

Table 4.5: WRS test, H1 : θ 6= 0, n = 10, α = 0.556, W0.556 = 21, 34

H0 is rejected in the NPI-B samples. For this case we find all values of NPI-B-RP

are within the bounds of NPI-RP. For data set (−3,−2,−1, 4, 5, 6) of size n = 6

from Table 3.8, the test statistic is 15 and the lower bound of NPI-RP is 0.728 and

the upper bound is 0.902. With this data set we do not reject H0, so the NPI-B-RP

value is the proportion of the times H0 is not rejected. There are 100% of these

values are included in the bounds of NPI-RP.

When we use the data set (1, 2, 3, 4, 5, 6, 7) with n = 7 from Table 3.12 we

reject H0, the test statistic is 28, and we find that 100% of the NPI-B-RP values

are between the 0.5 and 1, which are the bounds of NPI-RP. If we use the data

(−7,−6,−5,−4, 1, 2, 3) from the same table, we do not reject H0 so the NPI-B-RP

is the ratio of cases of non rejection of H0. All these values are included in the

lower bound of NPI-RP 0.939 and the upper bound 0.990. With sample size n = 4,

we choose data set (−4, 1, 2, 3) which has test statistic W = 6 in Table 3.10, and

its lower and upper value of NPI- RP are 0.5 and 0.800. In this case we reject H0

and the NPI-B-RP value is based on the number of times of rejection of H0, 100%

of these values have been in the bounds of NPI-RP. For data set (−4,−3, 1, 2), we

do not reject H0, and the NPI-B-RP depends on the number of cases which do not

reject H0. There are 100% of the NPI-B-RP values are included in 0.457 and 0.757

which are the bounds of NPI-RP.

To consider the confidence intervals of the minimum and maximum values of

NPI-B-RP, as we did with the sign test, we use the data sets in Table 3.9. For each

set of data we estimate the values of NPI-B-RP and repeat this process 10 times to
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sign-ranked data W RP (y) RP (y) NPI-B-RP CI(min) CI(max)

1,2,3,4,5,6 21 0.5 1 0.532,0.574 (0.494,0.570) (0.536,0.612)

-1,2,3,4,5,6 20 0.5 0.773 0.603,0.639 (0.566,0.640) (0.602,0.676)

-2,1,3,4,5,6 19 0.5 0.773 0.691,0.743 (0.656,0.726) (0.710,0.776)*

-3,1,2,4,5,6 18 0.5 0.773 0.688,0.739 (0.653,0.723) (0.706,0.772)

-2,-1,3,4,5,6 18 0.773 0.909 0.805,0.839 (0.775,0.835) (0.811,0.867)

-4,1,2,3,5,6 17 0.5 0.773 0.704,0.757 (0.670,0.739) (0.724,0.790)*

-3,-1,2,4,5,6 17 0.773 0.909 0.807,0.852 (0.777,0.837) (0.825,0.879)

-5,1,2,3,4,6 16 0.5 0.773 0.702,0.767 (0.667,0.737) (0.735,0.799)*

-3,-2,1,4,5,6 16 0.773 0.909 0.848,0.884 (0.821,0.875) (0.860,0.908)

-4,-1,2,3,5,6 16 0.773 0.909 0.806,0.859 (0.776,0.836) (0.832,0.886)

-6,1,2,3,4,5 15 0.5 0.773 0.723,0.768 (0.689,0.757) (0.736,0.800)*

-3,-2,-1,4,5,6 15 0.910 0.970 0.917,0.941 (0.896,0.938)* (0.923,0.959)

-6,-3,-1,2,4,5 11 0.910 0.970 0.925,0.954 (0.905,0.945) (0.938,0.970)

-4,-3,-2,-1,5,6 11 0.970 0.992 0.970,0.983 (0.957,0.983)* (0.973,0.993)*

-6,-5,-4,-3,1,2 3 0.970 0.992 0.984,0.994 (0.974,0.994)* (0.988,0.999)**

-6,-5,-4,-2,-1,3 3 0.992 0.999 0.992,0.999 (0.985,0.999)* (0.997,1)*

-6,-5,-4,-3,-2,-1 0 0.999 1 0.998,0.999 (0.995,1)** (0.997,1)*

Table 4.6: WRS test, H1 : θ > 0, n = 6, α = 0.016, W0.016 = 21

check whether these values included in [RP,RP ] or not. We find that all the values

of NPI-B-RP are included in these bounds, except in the cases which do not belong

to the bounds of NPI-RP but the CI’s overlap with them (which have **). These

cases are shown with the results in Table 4.6. But to apply the NPI-B method with

these data sets we need to use the ranks here as the data, and assume that this

data are restricted to finite intervals from −(n + 1) to +(n + 1). That is to apply

the main idea of the NPI-B sample. For example, to draw the NPI-B sample from

(1, 2, 3, 4, 5, 6) we add (−7, 7) to be (−7, 1, 2, 3, 4, 5, 6, 7) and then resample from it.

Table 4.6 explores the CI’s of NPI-B-RP values that are included in [RP,RP ] or

overlap with them. This shows an agreement with the NPI-RP results in Chapter

3. The same positive picture appears in the data in Table 3.10. We use this data to

predict the NPI-B-RP and find their confidence intervals. The results are shown in

Table 4.7. If the data set is (−1, 2, 3, 4) we add (−5, 5) to be (−5,−1, 2, 3, 4, 5) and

draw the NPI-B sample to predict NPI-B-RP values.
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sign-ranked data W RP (y) RP (y) NPI-B-RP CI(min) CI(max)

1,2,3,4 10 0.786 1 0.873,0.903 (0.865,0.881) (0.896,0.901)

-1,2,3,4 9 0.586 0.929 0.753,0.806 (0.742,0.764) (0.796,0.816)

-2,1,3,4 8 0.543 0.871 0.695,0.713 (0.684,0.706) (0.702,0.724)

-3,1,2,4 7 0.514 0.829 0.642,0.672 (0.630,0.654) (0.660,0.684)

-2,-1,3,4 7 0.371 0.757 0.565,0.612 (0.553,0.577) (0.600,0.624)

-4,1,2,3 6 0.5 0.800 0.585,0.538 (0.573,0.597) (0.626,0.650)

-3,-1,2,4 6 0.329 0.700 0.507,0.542 (0.495,0.519) (0.530,0.554)

-4,-1,2,3 5 0.357 0.714 0.514,0.560 (0.502,0.526) (0.548,0.572)

-3,-2,1,4 5 0.371 0.714 0.522,0.579 (0.510,0.534) (0.567,0.591)

-4,-2,1,3 4 0.414 0.743 0.595,0.653 (0.583,0.607) (0.641,0.665)

-3,-2,-1,4 4 0.5 0.843 0.641,0.691 (0.629,0.653) (0.680,0.702)

-4,-3,1,2 3 0.457 0.757 0.648,0.683 (0.636,0.660) (0.672,0.694)

-4,-2,-1,3 3 0.557 0.886 0.704,0.756 (0.693,0.715) (0.745,0.767)

-4,-3,-1,2 2 0.614 0.914 0.752,0.784 (0.741,0.763) (0.774,0.794)

-4,-3,-2,1 1 0.671 0.929 0.815,0.853 (0.805,0.825) (0.844,0.862)

-4,-3,-2,-1 0 0.786 1 0.906,0.925 (0.899,0.913) (0.919,0.931)

Table 4.7: WRS test, H1 : θ > 0, n = 4, α = 0.438, W0.438 = 6

4.4 NPI-B-RP for the Two Sample Rank Sum

Test

To apply the two sample rank sum test (Wilcoxon and Mann Whitney test WMT),

which was discussed in Sections 3.2.3 and 3.6, and to estimate the RP values with

the NPI bootstrap sample we worked through the following steps:

1. Draw two original samples X and Y from any distribution, then apply the

WMT test between these samples to get the test statistic Z, and the decision

of this test.

2. Draw the NPI-B sample from each original one (X and Y ) and apply the

WMT test between them to obtain the results. Then repeat this with 1000

NPI-B samples, and then count how many times H0 is rejected, and how many

times H0 is not rejected.

3. To find NPI-B-RP, if we reject (not reject) H0 with the two original samples,

we need to know how many times H0 is rejected (is not rejected) in the 1000

NPI-B samples to be the value of RP.

4. Repeat the previous steps 60 times to record the results.

For Table 4.8 the hypothesis is H0 : δ = 0 , H1 : δ > 0 , α = 0.370 and

n1 = n2 = m = 10, so zα = 110 and we reject H0 if Z ≥ zα = 110, but here we have
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U frequency values of NPI-B-RP U frequency values of NPI-B-RP

25 1 0.917 54 2 0.526 , 0.533

27 1 0.917 55 1 0.473

28 1 0.867 56 1 0.531

29 1 0.884 57 2 0.537 , 0.558

33 1 0.853 58 1 0.557

35 1 0.812 59 3 0.553 , 0.570 , 0.600

37 1 0.798 60 3 0.538 , 0.573 , 0.610

40 1 0.787 61 3 0.585 , 0.608 , 0.627

41 1 0.763 63 2 0.642 , 0.656

42 3 0.684 , 0.712 , 0.719 64 1 0.637

43 1 0.677 65 1 0.643

44 1 0.718 66 1 0.683

45 2 0.652 , 0.687 67 1 0.744

47 1 0.659 69 2 0.741 , 0.756

48 1 0.645 70 1 0.750

49 2 0.581 , 0.582 73 3 0.787 , 0.791 , 0.837

50 3 0.529 , 0.550 , 0.638 75 1 0.821

51 2 0.534 , 0.605 77 1 0.814

52 1 0.580 79 1 0.867

53 1 0.555 81 2 0.882 , 0.897

Table 4.8: WMT test, H1 : δ > 0, n1 = n2 = 10, α = 0.370, Z0.370 = 110

the Mann Whitney U statistic, as explored in Section 3.2.3, and

Z = U +
n2(n2 + 1)

2
(4.1)

Then we reject H0 if U ≥ 55. We sample the first original sample from Gamma(3,1)

and the second one from Gamma(5,2). Here, the critical value is 55 and the RP

is 0.473. It is the minimum value of RP in this case and becomes larger with

U = 81, 25.

In Table 4.9, we test H0 : δ = 0 and H1 : δ < 0 with α = 0.289 and n1 = n2 =

m = 10. The two original samples are drawn from Uniform(0,1). We reject H0 if

Z ≤ n1(n2 + n1 + 1) − zα or if U ≤ 42. The value of U = 42 appears with the

RP value 0.438. It is the minimum value of RP. The maximum value appears with

U = 25 and with U = 83.

In Table 4.10 we have H0 : δ = 0 , H1 : δ > 0 and α = 0.370 , zα = 110. The

two original samples are drawn from Gamma (5,2). We reject H0 if Z ≥ zα = 110

or if U ≥ 55. When U = 55 the RP is close to 0.5 and becomes larger with extreme

values of test statistics.

In Table 4.11, the test is H0 : δ = 0 , H1 : δ < 0 , α = 0.289 and zα = 113.

We reject H0 if Z ≤ 97 or U ≤ 42. The sample size of the two sample is 10 and

the first original sample is drawn from Uniform(0,1) while the second one is from
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U frequency values of NPI-B-RP U frequency values of NPI-B-RP

18 1 0.896 49 2 0.617 , 0.659

25 1 0.796 50 2 0.614 , 0.648

29 1 0.680 52 2 0.702 , 0.723

31 1 0.718 55 1 0.751

32 3 0.617 , 0.646 , 0.668 56 1 0.760

34 2 0.626 , 0.635 57 3 0.773 , 0.786 , 0.799

35 1 0.601 59 1 0.768

36 1 0.577 60 1 0.796

37 1 0.563 61 1 0.875

38 4 0.519 , 0.538 , 0.541 , 0.541 63 1 0.856

39 2 0.521 , 0.527 64 2 0.850 , 0.882

40 2 0.515 , 0.552 65 1 0.868

41 3 0.494 , 0.496 , 0.528 66 1 0.893

42 1 0.438 68 2 0.906 , 0.916

43 2 0.506 , 0.565 73 2 0.944 , 0.949

44 2 0.563 , 0.583 78 1 0.965

45 1 0.591 82 1 0.976

46 3 0.604 , 0.605 , 0.632 83 1 0.982

47 2 0.618 , 0.658

Table 4.9: WMT test, H1 : δ < 0, n1 = n2 = 10, α = 0.289, Z0.289 = 97

Uniform(0.25,0.5). When U = 42 the RP has different values 0.477, 0.491, 0.527,

0.536.

To check if the NPI-B-RP values are in the intervals of NPI-RP, as we did with

the last two tests, we use data sets X = (1, 2, 3, 4, 5), Y = (6, 7, 8, 9, 10) and X =

(4, 5, 6, 9, 10), Y = (1, 2, 3, 7, 8) from Table 3.14, and X = (1, 2, 3, 6), Y = (4, 5, 7, 8)

and X = (1, 4, 7, 8), Y = (2, 3, 5, 6) from Table 3.17. In all these cases, 100% of the

NPI-B-RP values are located in the intervals of NPI-RP and that agrees with the

results of other tests. To construct the confidence intervals of the predicted values of

NPI-B-RP we use the data in Table 3.14. We use the ranks as the data and restrict

them in a finite intervals by adding 0 and (n1 +n2 + 1) for both X and Y . Then we

draw the NPI-B samples to estimate NPI-B-RP and repeat this process many times

to test that all these values are included in [RP,RP ]. We used the minimum and

maximum values to construct the confidence intervals as shown in Table 4.12. The

results in this table show once again the agreement between the NPI-B-RP values

and the results of Chapter 3. All the values of NPI-B-RP belong to the bounds of

NPI-RP and the CI’s of these values also belong to these bounds.
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U frequency values of NPI-B-RP U frequency values of NPI-B-RP

20 1 0.938 54 2 0.504 , 0.507

21 1 0.937 55 2 0.497 , 0.507

25 1 0.913 56 5 0.518 , 0.518 , 0.526 , 0.526 , 0.550

30 3 0.866 , 0.867 , 0.877 57 1 0.523

31 1 0.872 58 3 0.520 , 0.556 , 0.563

33 1 0.859 60 1 0.635

35 1 0.829 61 1 0.609

36 1 0.823 62 2 0.663 , 0.673

37 3 0.749 , 0.763 , 0.770 64 2 0.647 , 0.719

38 2 0.770 , 0.771 65 1 0.689

39 1 0.742 66 2 0.662 , 0.672

41 1 0.769 67 1 0.734

42 1 0.697 68 1 0.704

43 1 0.747 69 1 0.715

45 3 0.663 , 0.674 , 0.693 71 1 0.728

48 1 0.610 73 1 0.770

49 2 0.616 , 0.621 77 1 0.825

50 4 0.581 , 0.596 , 0.606 , 0.628 79 2 0.879 , 0.888

52 1 0.564

Table 4.10: WMT test, H1 : δ > 0, n1 = n2 = 10, α = 0.370, Z0.370 = 110

U frequency values of NPI-B-RP U frequency values of NPI-B-RP

27 3 0.711 , 0.751 , 0.811 54 1 0.705

32 2 0.655 , 0.697 56 1 0.731

33 2 0.652 , 0.676 58 2 0.749 , 0.797

36 1 0.607 60 1 0.797

37 1 0.576 61 1 0.779

38 2 0.539 , 0.590 66 1 0.880

40 6 0.523 , 0.530 , 0.534 , 0.555 , 0.560 , 0.590 68 1 0.903

41 5 0.445 , 0.466 , 0.509 , 0.511 , 0.532 69 3 0.879 , 0.900 , 0.917

42 4 0.477 , 0.491 , 0.527 , 0.536 70 1 0.892

43 2 0.512 , 0.540 72 1 0.905

44 1 0.566 73 1 0.929

45 2 0.536 , 0.543 74 1 0.931

47 1 0.589 78 2 0.960 , 0.976

49 1 0.630 80 2 0.961 , 0.965

50 1 0.593 81 1 0.979

51 1 0.718 86 1 0.981

52 1 0.706 89 1 0.995

53 1 0.681 96 1 1

Table 4.11: WMT test, H1 : δ < 0, n1 = n2 = 10, α = 0.289, Z0.289 = 79
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ranks X-sample ranks Y-sample Z RP (y) RP (y) NPI-B-RP CI(min) CI(max)

1,2,3,4,5 6,7,8,9,10 40 0.25 1 0.640,0.679 (0.610,0.670) (0.650,0.708)

1,2,3,4,6 5,7,8,9,10 39 0.236 0.968 0.558,0.621 (0.527,0.589) (0.591,0.651)

1,2,3,5,8 4,6,7,9,10 36 0.165 0.781 0.378,0.431 (0.348,0.408) (0.400,0.462)

1,2,4,5,7 3,6,8,9,10 36 0.165 0.781 0.384,0.433 (0.354,0.414) (0.402,0.464)

1,2,4,5,8 3,6,7,9,10 35 0.289 0.858 0.604,0.663 (0.574,0.634) (0.634,0.692)

1,2,3,5,9 4,6,7,8,10 35 0.300 0.863 0.623,0.663 (0.593,0.653) (0.634,0.692)

1,2,3,7,8 4,5,6,9,10 34 0.340 0.874 0.649,0.708 (0.619,0.679) (0.680,0.736)

1,2,5,6,9 3,4,7,8,10 32 0.481 0.915 0.740,0.789 (0.713,0.767) (0.764,0.814)

2,3,4,5,9 1,6,7,8,10 32 0.506 0.927 0.750,0.803 (0.723,0.777) (0.778,0.828)

3,4,5,6,9 1,2,7,8,10 28 0.700 0.971 0.875,0.907 (0.855,0.895) (0.889,0.925)

1,2,7,8,10 3,4,5,6,9 27 0.725 0.972 0.893,0.913 (0.874,0.912) (0.896,0.930)

4,5,6,9,10 1,2,3,7,8 21 0.904 0.998 0.969,0.984 (0.958,0.980) (0.976,0.992)

6,7,8,9,10 1,2,3,4,5 15 0.969 1 0.995,0.999 (0.991,0.999) (0.997,1)

Table 4.12: WMT test, H1 : δ > 0, n1 = n2 = 5, α = 0.05, Z0.05 = 36

4.5 NPI-B-RP for the Two Sample Kolmogorov

Smirnov Test

The two samples Kolmogorov Smirnov test (KS test) [49,52] is a nonparametric test

used to find out if two samples have the same distribution function. Suppose that

a first sample is X1, X2, ..., Xnx of size nx has a probability distribution Fx and a

second sample is Y1, Y2, ..., Yny of size ny has a probability distribution Fy. The two

samples are independent and from a continuous population, and the distributions

in each one of them are iid. We want to test if there any difference between Fx and

Fy, H0 : Fx(t) = Fy(t) for every t versus H1 : Fx(t) 6= Fy(t) for at least one t.

Let F̂x(t) and F̂y(t) be the empirical distribution functions for X and Y and d

be the greatest common divisor of nx and ny and set

J =
nxny
d

max |F̂x(t)− F̂y(t)| (4.2)

J is the two sided two samples Kolmogorov Smirnov statistic. To compute it let

H(1), H(2), ..., H(N) the N = (nx + ny) ordered values of the combined sample of

X1, X2, ..., Xnx and Y1, Y2, .., Yny . Now J will be

J =
nxny
d

max |F̂x(H(i))− F̂y(H(i))| (4.3)

At level of significance α reject H0 if J ≥ jα, jα will be given in tables. If

min(nx, ny)→∞ J is approximately normal [49].

In Table 4.13, we follow the same steps of the WMT test in Section 4.4 to find

NPI-B-RP, but with the KS test, to test H0 : Fx(t) = Fy(t) versus H1 : Fx(t) 6= Fy(t)
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J frequency values of NPI-B-RP

2 5 0.732 , 0.734 , 0.763 , 0.773 , 0.781

3 4 0.687 , 0.689 , 0.720 , 0.741

4 6 0.600 , 0.620 , 0.624 , 0.630 , 0.671 , 0.693

5 6 0.463 , 0.463 , 0.472 , 0.515 , 0.519 , 0.553

6 5 0.518 , 0.530 , 0.541 , 0.589 , 0.657

7 4 0.674 , 0.735 , 0.770 , 0.774

Table 4.13: KS test, H1 : F (t) 6= G(t), n1 = n2 = 10, α = 0.1678, J0.1678 = 5

J frequency values of NPI-B-RP

3 3 0.611 , 0.666 , 0.712

4 5 0.409 , 0.409 , 0.451 , 0.507 , 0.555

5 5 0.494 , 0.528 , 0.607 , 0.624 , 0.648

6 5 0.637 , 0.670 , 0.718 , 0.761 , 0.763

7 4 0.766 , 0.794 , 0.803 , 0.815

8 6 0.897 , 0.899 , 0.903 , 0.906 , 0.924 , 0.945

9 1 0.965

10 1 0.980

Table 4.14: KS test, n1 = n2 = 10, α = 0.1678, J0.1678 = 5

and α = 0.1678, n1 = n2 = m = 10 and resample the two original samples from

Normal (0,1). H0 is rejected if J ≥ 5. When the test statistic J is close to the

critical value, the RP values become small. When J = 2 the RP values are large

and become small with J = 5 and again become larger with J = 6, 7. The same

situation appears in Table 4.14 when the same hypothesis is tested but draws the

two original samples from Uniform (0,1) and Uniform (0.25,0.5), respectively. In

the first test we use the same distributions as for the original samples in order to

study the case which has the correct null hypothesis, and in the second one we use

a different distribution to test the case which has an incorrect null hypothesis. In

Table 4.15 we apply the KS test with α = 0.1678 and n1 = n2 = m = 10 with the

first original sample from Normal(0,1) and the second from Normal(0,2). In this

Table the values of NPI-B-RP become smaller when the test statistic is close to the

critical test statistic J = 5, and become large with other test statistics.

For all tests when the test statistics are repeated the values of NPI-B-RP are

very close. That means there is not a big difference between them. For example, in

Table 4.14 when J = 5 the values of RP are 0.494, 0.528, 0.607, 0.624, 0.648. These

small variations in the results are due to variations in the original samples and in

the NPI-B samples.
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J frequency values of NPI-B-RP

2 5 0.717,0.728,0.746,0.752,0.752

3 8 0.613,0.650,0.664,0.699,0.701,0.702,0.729,0.733

4 9 0.527,0.575,0.596,0.604,0.619,0.626,0.629,0.645,0.664

5 7 0.421,0.422,0.472,0.542,0.542,0.591,0.611

6 1 0.566

Table 4.15: KS test, n1 = n2 = 10, α = 0.1678, J0.1678 = 5

To develop more general insight into NPI-B-RP values, we implement the four

tests: the sign test, WRS test, WMT test and KS test, many times in order to

summarize the main properties of NPI-B-RP and plot the boxplot of these values

in Figure 4.5. With the KS test the minimum value of the NPI-B-RP values is

0.3780, the maximum is 0.978 and the median is 0.684. For the WMT test these

measures are 0.496 , 0.992 , 0.726, respectively. The sign test has a minimum value

of NPI-B-RP values it is 0.501 and the maximum is 0.994, while the median is 0.782.

With the WRS test the minimum is 0.483, the maximum is 0.967 and the median is

0.674. Note that the distribution of NPI-B-RP values is approximately symmetric

in four tests.

4.6 Performance of NPI-B-RP

When a new method is suggested we need to explore some ways of judging the

performance of this method. In Sections 4.2, 4.3 and 4.4 we have presented an

approach to check if the NPI-B-RP values are included in the NPI-RP intervals or

not, we now show two different ways for this. The first method uses the mean square

error (MSE) and the other illustrates the predictive inference of the NPI-B method

and its power when it is used to find RP values.

4.6.1 Mean Square Error with NPI-B-RP

Using the mean square error (MSE) is a possible way to compare between NPI-B

and standard-B as the methods to locate RP values. It is one of the measures of

accuracy. To calculate the MSE of RP values we need the estimate of RP, which we

already have using NPI-B and standard-B (the details of the results of standard-B
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Figure 4.5: Boxplots of NPI-B-RP values from four tests
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not consider here). We also need the values of RP. We try to find it by drawing

B original samples and applying the test to find RP. For example, the two samples

rank sum test draws B pairs of two original samples from Gamma (5,2) with equal

sample size 10, and applies the test between these pairs to get the ratio of significant

outcomes to be RP1, and the ratio of nonsignificant outcomes to be RP2. We

consider RP1 and RP2 as the values of population, because if we repeat this process

many times we find approximate values of RP1, such as 0.378, 0.356, 0.375, 0.372

and 0.370. We can deal with one of them as a value of the RP1 and the same status

appears with RP2. Note that these two values complement each other.

Now, we follow the same steps which were considered in Sections 4.2, 4.3, 4.4

and 4.5 to arrived at NPI-B-RP1 and NPI-B-RP2 as the estimates of RP1 and RP2

from NPI-B samples, we repeat this V times to have V items of NPI-B-RP1 and

NPI-B-RP2, and then find the MSE of these values using this formula

MSE =
1

V

V∑
v=1

(estimatev − parameterv)2 (4.4)

For the MSE of NPI-B-RP of NPI-B samples the formula will be

MSE.NPI.RP =
1

V

V∑
v=1

((NPI.RP1v −RP1)2 + (NPI.RP2v −RP2)2) (4.5)

Then find the MSE for the NPI-B and standard-B (after following the last process

to get RP values from standard-B) in order to make a comparison between them in

the 10 scenarios which discussed before.

Scenario 1: KS test, Uniform (0,1) and Uniform (0.25,0.5), α = 0.1678, H1 :

F (t) 6= G(t).

Scenario 2: KS test, Normal (0,1), α = 0.1678, H1 : F (t) 6= G(t).

Scenario 3: WMT test, Uniform (0,1), α = 0.289, H1 : δ < 0.

Scenario 4: WMT test, Uniform (0,1) and Uniform (0.25,0.5), α = 0.289,

H1 : δ < 0.

Scenario 5: WMT test, Gamma (5,2), α = 0.370, H1 : δ > 0.

Scenario 6: WMT test, Gamma (1,3) and Gamma (5,2), α = 0.370, H1 : δ > 0.
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scenario

1 2 3 4 5 6 7 8 9 10

MSE.NPI.RP 0.082 0.181 0.063 0.132 0.052 0.055 0.052 0.040 0.492 0.092

MSE.standard.RP 0.180 0.398 0.106 0.172 0.096 0.094 0.064 0.075 0.541 0.139

Table 4.16: MSE values

scenario

1 2 3 4 5 6 7 8 9 10

mean of NPI-B-RP 0.712 0.641 0.690 0.703 0.691 0.681 0.587 0.663 0.760 0.768

mean of standard-B-RP 0.793 0.718 0.757 0.759 0.767 0.761 0.637 0.733 0.828 0.845

sd of NPI-B-RP 0.172 0.104 0.150 0.173 0.127 0.122 0.209 0.121 0.154 0.143

sd of standard-B-RP 0.285 0.170 0.157 0.175 0.161 0.147 0.212 0.146 0.153 0.144

Table 4.17: summary of RP values

Scenario 7: WRS test, Normal (0,1), α = 0.556, H1 : θ 6= 0.

Scenario 8: WRS test, Normal (0,1), α = 0.5, H1 : θ > 0.

Scenario 9: sign test, Gamma(2,2), α = 0.377, H1 : θ > 2.

Scenario 10: sign test, Normal (0,1), α = 0.377, H1 : θ < 0.

From Table 4.16 we see that using the NPI-B method gives a minimum value

of MSE of RP for all scenarios, while the standard-B method has larger values of

them. That can be an advantage of the NPI-RP method because it means that

the NPI-B method is more accurate when predicting RP. Furthermore, NPI-B gives

small values of standard deviation (sd) of RP values in most cases, as Table 4.17

shows. This Table summarises the mean and standard deviation of RP values which

are derived from NPI bootstrap and standard bootstrap.

4.6.2 Predictive Performance of NPI-B-RP

It is useful to study a predictive inference with the NPI-B method and there is a

possible way to do this as follows:

1. Sample a data set from the selected distribution and apply the test to estimate

the NPI-B-RP value.

2. From the same distribution select L further data sets of the same sample size
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to consider them as the future samples. Then find the proportion of these

samples which have the same test outcome, we refer to this proportion by

simulated future proportions (SFP).

3. Repeat this many times (say 100 times) and show the pairs (NPI-B-RP, SFP).

We implemented those steps with some nonparametric tests and plotted the

result in Figure 4.6. In this Figure, the upper left plot, we draw the first original

sample from Beta (1,2) and the second one from Beta (2,1), then apply the KS

test to test H0 : Fx(t) = Fy(t) versus H1 : Fx(t) 6= Fy(t) with α = 0.1678 and

nx = ny = 10, and plot the pairs (NPI-B-RP , SFP) which are found using the

previous steps. We see that 13% of the points (or of the cases) are at the bottom

of the plot. Each of these points has a large value of NPI-B-RP and a small value

of SFP. That is because the decision of the test with the two original samples was

wrong in these cases. But with 87% of the other points at the top, each point has

large values of NPI-B-RP and SFP, and these values are close together because the

decision taken in the original experiment was correct. From these results we can

say that when using NPI-B to predict the RP value, an accurate predictive value is

given in 87% of cases. In other words, the SFP values are considered as an indicator

of the proportion of the same test outcomes in the future. If the value of NPI-B-

RP is close to the value of SFP, that means that the NPI-B is a good method for

predicting RP values.

The similar pattern appears in the bottom left plot. In this one we test H0 : θ = 0

versus H1 : θ > 2 with a sign test. The original sample is drawn from Gamma (2,2)

with size n = 10 and α = 0.377. Here 8% of the points are in the bottom section

of the plot and 92% of them are in the top section. This means that in 92% of the

cases, the values of SFP and NPI-B-RP are close. In the right upper plot, the WMT

test applied with H0 : δ = 0 versus H1 : δ < 0, α = 0.289 and n1 = n2 = 10. The

original samples are drawn from Uniform (0,1). In this test 24% of the cases arrived

at the wrong decision in the original experiment, and 76% arrived at the correct

decision, and with these cases the values of SFP and NPI-B-RP have a similar effect

to that in the previous tests. That also happened with the WRS test in 56%, in the

right bottom plot, the WRS test the hypothesis H0 : θ = 0 , H1 : θ > 0 with α = 0.5
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Figure 4.6: Plot the pairs (NPI-B-RP,SFP) of some nonparametric test with

sample size 10
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and n = 10, the original sample from Normal (0,1). The purpose of this section

has been to prove the value of the NPI-B approach to predicting RP values and the

benefit is clear now because of the strong agreement between SFP and NPI-B-RP

values. It is interesting to observe that the results here are in line with those in

Chapter 3.

4.7 Concluding Remarks

This chapter explored how the use of NPI-B to estimate RP differs from NPI-RP.

It avoids the hardness of calculations and uses the point estimate to present the

RP instead of the lower and upper values. Furthermore, it is a flexible approach to

use when considering large sample sizes, unlike NPI-RP which is not very flexible.

Additionally, the NPI-B-RP values are included in the intervals of NPI-RP and that

is consistent with the outcomes in Chapter 3. And to show this consistency in a

different way we constructed the confidence intervals for the predicted values of NPI-

B-RP and found that all these intervals are included or overlap with the bounds of

NPI-RP. Morever, using the NPI-B method makes the variation and MSE of RP

values smaller than the standard bootstrap method does, which shows the accuracy

and the value of NPI-B method. The simulated future proportions (SFP), which are

the proportion of the same test outcomes in the future, are close to the NPI-B-RP

values in most cases, that explored the validity of the NPI-B method to predict RP

values. This study could be improved using different significance levels and larger

sample sizes. This approach can be applied quite straightforwardly and formally

to various tests such as the rank correlation test, the Kruskal-Wallis test, tests for

two means and tests for two variances [52]. We can resample NPI-B samples from

data and apply any such test to find the NPI-B-RP values. This approach will be

more complex with tests which use categorical data. It would be challenge to derive

the NPI-B-RP for goodness of fit tests. That would be an exciting topic for future

research.



Chapter 5

Conclusions

This chapter summarises the main results of this thesis and concludes with a range

of ideas for future research. In this thesis we have introduced a new version of

bootstrap, nonparametric predictive inference bootstrap (NPI-B), and used it for

inference about the reproducibility of tests.

In Chapter 2, NPI-B was presented for data on finite intervals, real line and

non negative observations. The NPI-B method goes outside the range of obser-

vations, it depends on sampling values from intervals which are created by data

values, and adds new values to the data. The NPI-B has more variation than the

standard bootstrap. This is a good point of NPI-B because this property eliminates

the underestimation of variance which appears in standard-B. The NPI-B does not

work well with estimation using confidence intervals, but when its performance with

prediction is tested, using prediction intervals, the NPI-B method is a promising

alternative to the standard bootstrap for prediction. It often gives good coverage

proportions in our study. The results of the NPI-B method with order statistics

are consistent with the results of the NPI aspect, and this agreement improves if n

is large. It will be interesting, for further research, to study the NPI-B with order

statistics using different sample sizes which give a wide picture about its perfor-

mance from this perspective. We could also use future sample sizes that differ from

the data sample.

129
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In Chapter 3, we discussed the NPI method of the reproducibility probability

(RP) of some nonparametric tests. RP does not have a unique interpretation in the

classical frequentist statistics framework. The NPI lower and upper probabilities are

derived for the event that a future test will have the same outcome as the original

test. Three nonparametric tests were discussed in this chapter, but we can apply

this method with various statistical tests, such as the goodness of fit test. For

the sign test we proved that the minimum value of the NPI lower bound of the

reproducibility probability is 0.5. For the other tests considered in this chapter no

such lower bound for the lower RP has been found and indeed values less than 0.5

occurred. So studying the minimum value of the NPI lower bound of RP with those

tests is an idea for future research. Additionally, we considered the two-sided test

in the case of the sign test only. Exploring how to derive the bounds of the NPI-RP

of the two sided tests of other tests may lead us to further research.

If we consider large sample sizes or more complex hypotheses, the computation

is inflexible, so we explored NPI-B as a promising method to fix this in Chapter 4.

In Chapter 4, the NPI-B method was discussed as an alternative method of NPI

for predicting the RP of some nonparametric tests. It is a possible method when

dealing with large sample sizes or complicated hypotheses. As mentioned before,

there is no single definition of RP, but in this chapter we provided the main defini-

tion of it. It is the probability that the experiment in the second trial will have the

same outcome as the first trial. To contend with this we repeated the experiment

many times to sample NPI-B, then found the ratio of times which have the outcome

of the first one. It must be referred to that after simulation we found that the pre-

dicted values of RP using NPI-B, which are called NPI-B-RP values, are included in

the NPI lower and upper probabilities which were explored in Chapter 3. Also the

confidence intervals of the NPI-B-RP values are included or sometimes overlap with

the bounds of NPI-RP. This means that the results in this chapter are consistent

with those in Chapter 3. In addition, the predicted values of RP have less variation

and less MSE when NPI-B is used to derive them rather the standard-B. That is

a useful attribute of NPI-B. Addotionally the simulated future proportions (SFP),
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which are the proportion of the same test outcomes in the future, are close to the

NPI-B-RP values in most cases, that explore the validity of the NPI-B method to

predict RP values. In Chapter 3 we proved that the minimum value of the sign test

using NPI-RP is 0.5. It would be interesting for future research to study what the

minimum value of NPI-B-RP values is with different tests.

This study could be extended in different ways, such as using future sample sizes

which differ from the data sample size, or different significance levels. Additionally,

this method could be applied to different statistical tests such as the goodness of fit

test. The NPI-B method works with data on the real line. It is a challenge to know

how the NPI-B method works with cells in tables to apply a goodness of fit test

using it, to test how well the model fits the specified theoretical distribution and to

estimate the reproducibility probability.

To apply the NPI-B method we divided the data set into intervals and sampled

the future observation uniformly from this interval, we considered this as a logical

assumption. However, on the other hand, it might be not the unique assumption

to sample values. Furthermore, to use NPI-B method with data on the real line,

we made some assumptions about the distributions of the tails. It would be inter-

esting to think about the effect if we changed these assumptions or used different

distributions to sample from the tails or from the intervals. Moreover, in this thesis

we used the NPI-B method with data on the real line, is it possible to use it with

multivariate data? These suggestions could be the basis for future research into the

NPI-B method.

This thesis presented the NPI-B method and its effective performance for predic-

tion. Moreover, the NPI-B method was presented for the reproducibility probability

of some nonparametric tests. It is a useful method because it avoids the difficulty of

NPI for reproducibility probability and makes the studying of reproducibility more

flexible. That is the most important point because the reproducibility of tests is

important in the real world, especially in the medical field.
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