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Abstract

A calibration-based approach is developed for predicting the be-

haviour of a physical system which is modelled by a computer simu-

lator. The approach is based on Bayes linear adjustment using both

system observations and evaluations of the simulator at parameterisa-

tions which appear to give good matches to those observations. This

approach can be applied to complex high-dimensional systems with ex-

pensive simulators, where a fully-Bayesian approach would be imprac-

tical. It is illustrated with an example concerning the collapse of the

Thermohaline Circulation (THC) in the Atlantic.
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1 Introduction

Computer simulators are used to make inferences about physical systems in

a very wide range of applications. Much of the interest is in using computer

simulators, in conjunction with historic and current system data, to make

predictions about future system behaviour. The use of computer simulators

is necessary because the medium- and long-term behaviour of many physical

systems follows natural laws that cannot be deduced from currently-available

data. A high-profile example of the role of computer simulators in policy-

making is the ongoing debate on climate change (Houghton et al., 2001).

The computer simulator takes input, describing the properties of the sys-

tem, and returns output, typically describing the evolution of the state of the

system through time. There are three major sources of uncertainty. Firstly,

the correct value for the input to the simulator is not known: in many cases

the very notion of a correct setting may be debatable. Secondly, the simulator

is an imperfect analogue of the system. Part of this is due to uncertainty about

the precise values of some of the simulator’s parameters, referred to as the sim-

ulator input. But even with the best choice for the simulator input, the output

will almost certainly not correspond exactly to the system behaviour. Finally,

if there are data involved, there is the uncertainty induced by measurement

error. These substantial uncertainties, together with necessary involvement

of experts, suggest that it is natural to adopt a Bayesian approach (Kennedy

and O’Hagan, 2001). However, the severe computational demands restrict the

application of a fully-Bayesian treatment to problems of moderate size and

complexity. For larger problems the more tractable Bayes linear approach has

had some success (Craig et al., 1996, 1997, 2001), and avoids much of the

computational burden of the fully-Bayesian approach.

In the Bayesian approaches, the runs of the simulator are used to inform
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a belief model of the simulator. This belief model, in conjunction with the

various uncertainties linking the simulator to the system, determines a like-

lihood for the simulator inputs using the observed system data, which may

be inverted via Bayes’s Theorem to give a posterior predictive distribution for

system behaviour. This is in contrast to the more traditional use of computer

simulators, in which the objective is to locate the best input and then make

inferences based solely on the simulator output at this input. To follow the tra-

ditional approach, we must first find, approximately, the best-fitting value of

the inputs, by matching the historical data to simulator output. This is often

termed ‘calibration’ or ‘tuning’ the simulator; often, calibration is important

even when there is no requirement for subsequent forecasting. The values of

other simulator outputs, for example those components corresponding to fu-

ture system behaviour, are then used as point predictions for the system. This

approach has the virtue of making good use of the simulator by running it at

the best-fitting input value.

In this paper we propose a synthesis of these two approaches, that has the

advantages of both and yet is tractable enough to be applied in large problems.

The essence of our approach is to use the available system data twice. The

data are first used to estimate the best-fitting input. The simulator is then

evaluated at this input, which we term the ‘hat run’. Comparison between

the output of the hat run and the corresponding values of the data may be

used as a diagnostic assessment of our ability to calibrate the model. Second,

the data are used again, in conjunction with the result of the hat run, for

linear prediction of the system values. We term this ‘Bayes linear calibrated

prediction’. The technical aspect of the analysis lies in the assessment of the

full covariance structure between the data, the system and the hat run. In

this assessment, we make explicit the dependence of the hat run on the system
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data, so that when we predict the system behaviour, the double use of the

data is correctly accounted for.

In section 2 we outline the fully-Bayesian approach to calibrated predic-

tion, introduce the notion of an emulator, and discusses limitations for complex

systems and large simulators. Section 3 describes an alternative Bayes linear

treatment that is scalable to large simulators, and contrasts this with the fully-

Bayesian approach. Section 4 introduces the ‘hat run’, an extension of the

Bayes linear treatment that introduces an element of calibration that, in cer-

tain circumstances, may dramatically reduce predictive uncertainty. The hat

run approach is illustrated in section 5, where a simple model of the Atlantic

is calibrated to data in order to predict the point at which the Thermoha-

line Circulation (THC) breaks down: a highly topical issue that dominates

the discussion of the impact of global warming on Western European climate.

Section 6 concludes, and an Appendix contains a description of the mathe-

matical treatment necessary to implement the hat run approach.

2 Calibrated prediction

In this section we outline the fully Bayesian approach to calibrated prediction

using a computer simulator. The treatment is drawn from Craig et al. (2001),

Kennedy and O’Hagan (2001), Goldstein and Rougier (2005a,b), Higdon et al.

(2005) and Rougier (2005).

2.1 The general problem

Our starting point is a physical system. Denote the system value as y ∈ Y;

typically y is a collection of space- and time-indexed quantities. Often we also
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have some observations on y, denoted z. We will write

z = Hy + e (1)

where H is the incidence matrix showing which linear combinations of y have

been measured, and e is the measurement error, which is taken to be inde-

pendent of all other uncertain quantities. Often the rows of H are simply

rows from the identity matrix. In large applications, the rows of H might cor-

respond to temporal averaging or spatial interpolation; in the latter case we

might include an additional error component in e to account for imprecision

in our linear mapping from y to z.

To specify Pr(y), we start with a simulator for the system, usually im-

plemented as computer code. This simulator can embody dynamic physical

laws, such as conservation laws, that would be very difficult to describe prob-

abilistically. The simulator is a deterministic function f : X → Y, where

x ∈ X is a collection of model parameters about which we are uncertain. This

uncertainty could arise because the model parameters correspond to physical

quantities whose values we do not know, or which are inferred from proxy data

(e.g., initial conditions, or ‘historic’ forcing functions), or because they corre-

spond to quantities with no accurately measurable physical analogue (e.g.,

in submodels standing in for missing or unknown physics), or because the

simulator is of sufficiently poor quality to induce uncertainty about the appro-

priate values of even measurable quantities (e.g., through excluding the effect

of sub-grid-scale processes).

For each x, we are also uncertain about the value of f(x), until we choose

to evaluate this value. If f is slow to evaluate and X is high dimensional, then

we will only have a very limited number of evaluations on which to condition
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our initial uncertainty about the values taken by f . Suppose that we have

n evaluations of our simulator at inputs X ,
(

x1, . . . , xn

)

, where we denote

the resulting evaluations as F ,
(

f(x1), . . . , f(xn)
)

. The evaluations (F ; X)

are informative for the function f and thus for y. To exploit this information,

we must describe how f and y are related. A common formulation in the

literature is the Best Input assumption (Goldstein and Rougier, 2005a), which

we will adopt here:

Best Input Assumption. There exists a value x∗ ∈ X where x∗ ⊥⊥ f , such

that f ∗ , f(x∗) is sufficient, both for the function f and for the value x∗, for

assessing uncertainties for y.

It is helpful to parameterise the relationship between f ∗ and y in terms of

the discrepancy,

ε , y − f ∗. (2)

The Best Input assumption implies that ε ⊥⊥ (f, x∗). Often we choose to set

E(ε) = 0. Our choice for Var(ε) is indicative of how good a model we believe

f to be. The structure of Var(ε) reflects the structure of Y. For example,

spatial and/or temporal indices for Y would typically be reflected in positive

off-diagonal elements in Var(ε); see, for example, Craig et al. (2001, section 6).

Another approach to assessing the off-diagonal structure of Var(ε) is discussed

in Goldstein and Rougier (2005b).

Using the Best Input assumption, we can represent our uncertainties on
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the following Bayesian belief net:

x∗

��

ε

��

e

��

f //

��

f ∗ // y // z

F ; X

(3)

where the boxes indicate vertices that are completely determined by their par-

ents. We require marginal distributions for each member of the collection

(f, x∗, ε, e). Both z and (F ; X) are instantiated, and f , ε and e are typi-

cally treated as nuisance quantities in order to make inferences for (x∗, y).

Our inference takes the form of a calibrated prediction based on the condi-

tional distribution Pr(x∗, y | z, F ; X). The marginal conditional distribution

Pr(x∗ | z, F ; X) is the Bayesian solution to the statistical inverse problem: find-

ing the input value which gave rise to the noisy observations z. We often refer

to this analysis as calibration. Likewise, the marginal conditional distribution

Pr(y | z, F ; X) is the system prediction. The Bayesian approach shows how

these two tasks may be unified, so that their answers are consistent.

2.2 The emulator

The belief net in (3) allows us to integrate out f , replacing the vertex f ∗ | (x∗, f)

with f ∗ | (x∗, F ; X). The distribution of f(x) conditional on (x, F ; X) is

termed the emulator of f . While terminology may vary, use of emulators in

computer experiments is well-established; see, e.g., the review in Santner et al.

(2003). The emulator is a stochastic representation of the function updated

with evaluations of that function at known inputs. The emulator allows us

to interpolate or extrapolate the evaluations (F ; X) to beliefs about the sim-
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ulator response at any x ∈ X . Most of the evaluations of the emulator in

inferential calculations for a large simulator are extrapolations from X, for

which Var
(

f(x) | x, F ; X
)

tends to be non-negligible even for a careful choice

of X; see, e.g., Koehler and Owen (1996), for a discussion of design strategies

for computer experiments.

2.3 Doing the fully-Bayesian calculation

The simplest implementation of the fully-probabilistic approach makes strong

parametric assumptions for the nuisance parameters, f , ε and e. We assume

that these are all gaussian with specified means and variances. In this case,

integrating out f gives us a gaussian emulator parameterised by a mean func-

tion and a variance function. We can also integrate out ε and e. The result

is that (y, z) | x∗ is gaussian, suppressing the conditioning on (F ; X), and we

can factorise the calibrated prediction distribution as

Pr(x∗, y | z = z̃) ∝ Pr(x∗)φ
(

y, z̃ | x∗
)

= Pr(x∗) φ
(

z̃ | x∗
)

φ
(

y | z = z̃, x∗
)

(4)

where φ(· | ·) denotes a gaussian Probability Density Function (PDF) with

known mean and variance, and z̃ is the observed value of z. The product of

the first two PDFs is proportional to the calibration distribution Pr(x∗ | z = z̃).

Once we have a sample from this calibration distribution we can easily aug-

ment it with sampled values for y | (z = z̃, x∗), given our gaussian assumptions.

Therefore the effective dimension of the calibrated prediction problem with the

gaussian assumptions is the dimension of the calibration problem, dim(X ).

Any generalisation of this approach will lead to a calculation with an effec-

tive dimension larger than dim(X ); e.g., including hyper-parameters for the

prior variances of f or ε, or using a non-gaussian distribution for e. Sometimes
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we can use plug-in values for hyper-parameters (Currin et al., 1991; Kennedy

and O’Hagan, 2001), but this does not address the fundamental problem of a

large input space. A ‘large’ simulator is one for which dim(X ) is greater than

we can sample effectively with current resources. Most simulators of com-

plex physical systems are therefore ‘large’, bearing in mind that the uncertain

quantities should include not just the model parameters but also the initial

value of the state vector and ‘historic’ values of forcing functions. A fully-

probabilistic approach can be applied in these circumstances by fixing some

of the components of x∗. But in this case we run the risk of undermining the

Best Input assumption, because if we are assuming the existence of a ‘special’

input, our assumption has more chance of being acceptable the larger is the

input space (Goldstein and Rougier, 2005a).

Consequently there is a need for an alternative to the fully-probabilistic ap-

proach when making inferences about complex systems with large simulators.

There is a similar need for systems with smaller simulators where the expert

is reluctant to make a gaussian choice for (transformed) values of the nuisance

parameters, either because he or she believes that the shape of the gaussian

distribution is not appropriate, or, as often happens in practice, because of

a general reluctance to make any type of fully-probabilistic specification. Fi-

nally, there is a similar need where rapid calculations are required for a variety

of modelling scenarios.

3 The Bayes linear approach to prediction

We now describe a simpler approach to belief specification and prediction, as

given in Craig et al. (2001). The crucial step is to split the fully-Bayesian
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belief net given in (3) into two parts:

x∗

��

ε

��

e

��

f //

��

f ∗
___ f ∗ // y // z

F ; X

(5)

On the lefthand side of the belief net, evaluations of the simulator and beliefs

about the simulator and the Best Input are used to compute the mean and

variance of f ∗. On the righthand side, the mean and variance for f ∗ are

combined with beliefs about the simulator discrepancy ε and the measurement

process to make a prediction for y using the values of z.

The mean and variance for f ∗ are derived from the mean function and

variance function of the emulator for f , derived using (F ; X), which are the

only features of the emulator that we are required to specify in this approach.

These are defined as

µ(x) , E
(

f(x)
)

κ(x, x′) , Cov
(

f(x), f(x′)
)

(6)

where µ(·) and κ(·, ·) are evaluated using (F ; X). In the fully-probabilistic

case µ(x) and κ(x, x′) would be the mean and variance functions of f(x) after

conditioning on (F ; X). But the construction of these two functions using

(F ; X) need not be by conditioning. It could be done more generally using

a Bayes linear approach (Craig et al., 1997, 1998, 2001), or by Kriging, or

informally in consultation with the modellers who built the simulator. Using

the mean and variance functions we can compute the unconditional mean and

10



variance of f ∗ by first conditioning on x∗:

E(f ∗) = E
(

µ(x∗)
)

Var(f ∗) = E
(

κ(x∗, x∗)
)

+ Var
(

µ(x∗)
)

,

(7)

as x∗ ⊥⊥ f . Depending on the form of the emulator, we may either need

to specify certain prior moments for x∗ or provide a full prior probability

distribution for x∗ from which the expectation of arbitrary functions of x∗ can

be computed. Either way, integrating x∗ out of the emulator can be facilitated

using look-up tables which can be prepared in advance (a similar approach

is used in variance-based sensitivity analysis; see, e.g., Oakley and O’Hagan,

2004). Because the calculation of the mean and variance of f ∗ involve only

simple algebraic operations it is possible to work with large input spaces,

certainly much larger than could be handled using a fully-Bayesian approach

and, say, simulation.

Given E(f ∗) and Var(f ∗), it is straightforward to compute the joint mean

and variance of the collection (y, z), where

y ≡ f ∗ + ε and z ≡ H(f ∗ + ε) + e (8)

with no gaussian requirement on the error terms. We now evaluate the ad-

justed mean and variance for y given z using the Bayes linear adjustment

formulae,

Ez(y) = E(y) + Cov(y, z)Var(z)−1 {

z̃ − E(z)
}

,

Varz(y) = Var(y) − Cov(y, z)Var(z)−1
Cov(z, y) .

(9)

The only expensive calculation in (9) is the inversion of Var(z), which is dom-

inated by the Choleski decomposition of the variance matrix (see, e.g., Golub

and Van Loan, 1983).
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The Bayes linear approach may be viewed either as a pragmatic approx-

imation to a full Bayes analysis or as an appropriate analysis when we have

only made prior specifications for means, variances and covariances, in a for-

malism where expectation rather than probability is the primitive expression

of belief; Goldstein (1999) discusses the fundamental features of this approach

and addresses the foundational justification for such procedures under par-

tial prior specification. Thus each variance expression corresponds to a direct

specification for the expected squared distance between the uncertain quantity

and its expectation, rather than as in the fully-probabilistic case, where this

variance is often considered to be a true but unknown parameter about which

we specify prior beliefs; for a discussion of how data may be used to adjust

the assessment of variances, see Goldstein and Wilkinson (1996).

The Bayes linear approach is tractable because there is no explicit learning

about x∗ using z. This allows us to integrate x∗ out to produce a prior variance

structure for f ∗, and then to introduce z, so that the Bayes linear approach

provides a prediction but not a calibration. We may assess if this approach

is good enough for the problem at hand, by evaluating the adjusted variances

for the quantities we are most concerned to predict. When the adjusted vari-

ances are too large, then we may seek to extract more information from the

combination of simulator evaluations and observed data, while retaining the

essential tractability of the Bayes linear approach. We now describe a form of

Bayes linear calibrated prediction for this purpose.

4 The ‘hat run’

4.1 An illustrative example

To motivate our development of Bayes linear calibrated prediction, we identify

by example the general conditions under which we may improve upon the

12



Bayes linear predictive approach in section 3. Suppose that the simulator f

has, say, three output components f1(x), f2(x) and f3(x), where x is a scalar

input. We have observations z1 and z2 corresponding to f1 and f2, and we

wish to predict the system value y3 corresponding to f3.

Suppose first that we may, to a good approximation, write our emulator

for each fi as

fi(x) ≈ ai + bi x + ci x
2, i = 1, 2, 3. (10)

Provided we may make enough evaluations of the simulator to identify the

coefficients to a good approximation, we can invert the first two outputs to

find x and x2 as linear expressions in f1(x) and f2(x), and write

f3(x
∗) ≈ β0 + β1 f1(x

∗) + β2 f2(x
∗), (11)

for computable values of β0, β1 and β2. This allows us to make a good linear

estimate of y3 in terms of (z1, z2), without first having to identify x∗.

In practice,we might need to expand each fi(x) in higher order functions of

the vector of inputs in order to get a good approximation. However, also, we

often match to large quantities of system data, and the above argument will

still hold whenever there is enough data to generate, at least approximately,

the corresponding linear inversion between the components of f . In these

situations the Bayes linear approach will work well, and we would not expect

a fully-Bayesian treatment to improve our prediction very much.

Now suppose, in our three-component example, that our emulator for each

component is

fi(x) = ai + bi x + cix
2 + ui(x) i = 1, 2, 3 (12)
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where ui(·) is treated as a stochastic process with average variance σ2
i . If

the σ2
i values are small then this does not much affect the previous argument.

However, if σ2
3 is large and u3 is only weakly correlated with u1 and u2 then the

local behaviour of f3(x) at x= x∗ can only be weakly determined by the global

fitting of the emulator based on evaluations for x spanning the input space

X . In this case, the fully-Bayesian approach has a potential advantage over

the Bayes linear approach, as follows. By explicitly constructing a posterior

distribution for x∗ given the simulator evaluations and the system data, we

may be able to make a reasonable Bayesian estimate, x̂ say, for x∗. This

calibration step identifies a particular simulator evaluation f(x̂), which is likely

to be strongly informative for f3(x
∗) by resolving much of the uncertainty

about u3(x
∗). Further, because the posterior distribution for x∗ is concentrated

around x̂, the value for f(x̂) will be an important element in the prediction

of y3.

4.2 The ‘hat run’ in practice

The Bayes linear approach is tractable for large problems precisely because it

sidesteps the calibration step. However, as we shall now describe, it is possible

to put this calibration back into the Bayes linear approach, without sacrificing

its tractability. We expect this to be important whenever the local behaviour

of the simulator for any general value of x cannot be well-determined from the

evaluations (F ; X). Our procedure is as follows.

First stage. We compute the Bayes linear estimate of x∗ using z, denoted

x̂. We therefore define

x̂ , Ez(x
∗) ≡ v + Wz (13a)
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where, from (9),

W , Cov(x∗, z) Var(z)−1 and v , E(x∗) − WE(z) . (13b)

The mean and variance of z are computed from (7) and (8). As x∗ ⊥⊥ f , the

covariance between x∗ and z is

Cov(x∗, z) = Cov
(

x∗, Hf(x∗)
)

= Cov
(

x∗, µ(x∗)
)

HT (14)

where µ(·) is the mean function from the emulator.

Second stage. We evaluate f at x̂. We refer to this evaluation as the ‘hat

run’, denoted f̂ , f(x̂).

Third stage. We evaluate the mean and variance of f̂ and the covariance

between f̂ and (y, z). We do this by expressing f̂ in terms of the primitive

uncertain quantities (f, x∗, ε, e), and the known quantities (H, v, W ). This

allows us to compute the mean and variance of f̂ in terms of our beliefs about

f , our prior distribution for x∗, and the means and variances of ε and e. As y

and z are also made up of the same uncertain quantities, we can also compute

the covariance of f̂ with (y, z). In terms of the primitive quantities,

f̂ , f
(

x̂
)

≡ f
(

v + Wz
)

≡ f
(

v + W
[

Hy + e
])

≡ f
(

v + W
[

H{f(x∗) + ε} + e
])

. (15)

How easy it is to evaluate this expression depends on the structure of the

emulator for f . In particular, if the emulator has an explicit functional repre-

sentation, then we can can substitute for the occurrences of f . For example,
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consider the commonly-used linear form in which the emulator is written as

f(x) = a + Ax + u(x) (16)

where (a, A) is a set of unknown coefficients and u(·) is a stochastic process

over X . In this case the final expression for f̂ is

f̂ = a + A
(

v + W
[

H{a + Ax∗ + u(x∗) + ε} + e
])

+ u(x̂), (17)

where the x̂ in u(x̂) can also be expanded out, if necessary. The mean and

variance of f̂ can therefore be exactly inferred from the joint distribution of
(

a, A, u(·), x∗, ε, e
)

, and well-approximated from the low-order moments of this

collection, if we use a moment-based approximation for u(·). The covariance

of f̂ and (y, z) can be inferred in the same way. The Appendix describes the

general calculations for this linear form. For more complicated emulators that

include non-linear and interaction terms in x, the calculations are essentially

the same, although in this case a symbolic computation step may be helpful

to multiply out and group like terms together.

Final stage. We now evaluate the adjusted mean and variance for y using

both z and f̂ as

Ez,f̂(y) = E(y) + Cov
(

y, (z, f̂)
)

Var
(

z, f̂
)

−1 {

(z̃, f̃) − E(z, f̂)
}

Varz,f̂(y) = Var(y) − Cov
(

y, (z, f̂)
)

Var
(

z, f̂
)

−1
Cov

(

(z, f̂), y
)

,

(18)

where f̃ is the observed value of f̂ . The mean Ez,f̂(y) is a prediction for y

that combines the global information contained in z with the local information

provided by f̂ . The variance Varz,f̂(y) expresses the accuracy of the prediction;

as we have explicitly accounted for the dependence of f̂ on z, this assessment
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does not count the system data twice.

We may determine whether or not to perform the hat run by evaluating

Varz,f̂(y) − Varz(y), as this does not involve the actual value of the hat run

(i.e. f̃). This reveals the potential for reducing our uncertainty by using the

Bayes linear calibrated prediction.

Informally, we expect that the hat run will be informative for y when the

following two conditions are satisfied. Firstly, we require that x̂ is a reasonable

estimate for those components of x∗ which are important in determining the

components of y that we are most concerned to predict accurately. We may

judge this by the magnitude of the adjusted variance for x∗ using z, namely

Varz(x
∗) ≡ Var(x∗) − W Var(z) W T . Secondly, we expect to gain from evalua-

tion of f̂ in those circumstances when the global fitting of the function leaves a

large amount of residual local uncertainty for important components of f(x).

This can be assessed through the size of the contribution of the residual to the

emulator variance at x̂.

4.3 More than one hat run

It is to possible perform and incorporate several hat runs at different stages

of the analysis. The ‘non-hat’ runs of the simulator are used to adjust beliefs

about the simulator. In our example they modify the mean and variance of

the regression coefficients (a, A) in (16), and the mean and variance of the

residual function u(·). At the point where a hat run is contemplated, the best

choice for x∗ is a function of current beliefs about the simulator, through the

two quantities v and W in (13), which depend on the evaluations (F ; X). If

we then do more ‘non-hat’ runs of the simulator, we further refine our beliefs

about the simulator, and this will give us a new hat-run with different v and

W to the original, v′ and W ′ say, based on an expanded set of evaluations,
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(F ′; X ′) say. It may happen that the new value x̂′ is very different from the

original value x̂. In this case we would want to evaluate the simulator at this

new value, and incorporate the result into our inference. We can compute

the covariance of this new hat run with x∗, but we can also compute the

covariance of the new hat run with the old one, remembering that x̂ and x̂′

are two different linear functions of z. Thus we will adjust our beliefs about y

using the observed data z and the outcomes of both hat runs. Naturally, we

can extend this process to any number of hat runs. All that is required is that,

each time we evaluate the simulator at a choice of inputs which is a (linear)

function of the data, we must evaluate the full covariance structure for this

run and all preceding hat runs, using an expansion such as (15), as applied to

the current adjusted beliefs summarised by the emulator of our simulator.

The precise way in which more than one hat run might be used will depend

on the application. For example, an early hat run might be intended primarily

for diagnostic purposes. At this point the emulator would be quite uncertain,

and a further collection of non-hat runs could materially change our emulator

and, consequently, change the location of x̂ as well. When we have carried

out sufficient simulator evaluations to reduce substantially uncertainty about

the regression coefficients in the emulator, then, rather than perform a single

hat run at x̂, we may choose to perform a collection of evaluations around x̂,

possibly aligned according to the principal components of Varz(x
∗). We would

assess the benefit of this strategy, for example to optimise the number and

location of points in the collection, in terms of its impact on predictive uncer-

tainty. In practice, with more than one hat run the calculations to compute the

joint mean and variance, though well-defined, would be intricate, and would

best be implemented in a computer algebra package. The expense of this extra

step has to be seen in the context of the cost of creating the simulator in the
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first place. Large simulators cost thousands of man-hours to construct, and

it does not seem unreasonable, in such cases, to expend a proportion of that

effort in improving their inferential capabilities.

4.4 Diagnostics

Once we have performed the hat run, we may use the observed outcome of f̂ ,

which we have denoted f̃ , in a ‘whole-system’ diagnostic. Define

d , z − Hf̂, (19)

the vector of deviations between the system data and the appropriate trans-

formation of the hat run. This vector of deviations is similar to those that

arise in the traditional practice of tuning the simulator to optimise the match

between simulator output and system data. A difficulty with the traditional

tuning process is that there is no metric to express what deviation is accept-

able given issues such as the inadequacy of the simulator, as measured by

Var(ε), measurement error, Var(e), and, possibly, non-uniform beliefs about

the Best Input x∗. In particular, any Bayesian attempt to quantify the metric

probabilistically runs into the difficulty that the data z have been used to cal-

ibrate the simulator. Using the hat-run approach, however, we can compute

the mean and variance of d from the prior mean and variance of the collection

(z, f̂). This prediction for the mean and variance of d is based entirely on

our assessment of primitive quantities such as x∗ and ε, and not on the actual

observed values of either z or f̂ ; this makes it a prior prediction for d. There-

fore by comparing the actual observed value for d, namely z̃ − Hf̃ , with its

prior prediction we can assess the quality of our judgements regarding these

primitive quantities.
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Because our assessments rely on our prior covariance specification, we em-

phasise the importance of the diagnostic evaluation of d before prediction. For

example, if we are concerned about the spatio-temporal structure of the sim-

ulator output, then it would be natural to examine a space- and time-indexed

plot of the components of d. Problems in this plot will lead us to a re-appraisal

of our statistical modelling, for example by changing the variance structure of

the discrepancy ε, or by dropping outlying, typically long-past, components of

the output vector.

In our application this diagnostic proves to be valuable, indicating a prob-

lem with our original assessment of the various uncertainties. We discuss this

further in section 5.5.

5 Example: Thermohaline circulation collapse

We illustrate our approach with a simple example, comprising a computer

simulator with five inputs, eight outputs, thirty evaluations and six system

data. To build an emulator, compute the full covariance structure of the

collection (y, z, f̂), and then compute the adjusted mean and variance for y

takes about 1 minute on a standard desktop computer, using code written for

the R statistical computing environment (R Development Core Team, 2004).

More details of the calculation are given in section 5.7.

5.1 A model of the Atlantic

Zickfeld et al. (2004), hereafter zsr, develop a compartmental model of the At-

lantic designed to manifest Thermohaline Circulation (THC) shutdown. This

model is shown schematically in Figure 1. The state vector comprises temper-

ature Ti and salinity Si for each of the four compartments. The key quantity

is the rate of meridional overturning, m (units ‘Sv’, a Sverdrup is 106 m3 s−1),
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which is driven by temperature and salinity differences between compartments

1 and 2. The model comprises an expression for m, and an Ordinary Differen-

tial Equation (ODE) system describing the conservation of temperature and

salinity in the presence of forcing from (T ∗

1 , T ∗

2 , T ∗

3 , F1, F2).

The five model parameters that are taken to be uncertain are the three re-

laxation temperatures, T ∗

1 , T ∗

2 and T ∗

3 , the thermal coupling constant Γ, which

affects the reversion of compartment temperature towards relaxation temper-

ature, and the empirical flow constant k, which scales the relation between m

and the temperature and salinity differentials. The three relaxation tempera-

tures should satisfy the ordering T ∗

2 < T ∗

1 < T ∗

3 , and so the set of five input

variables are re-parameterised as

x ,
(

T ∗

2 , T ∗

1 − T ∗

2 , T ∗

3 − T ∗

1 , Γ, k
)

∈ X ⊂ R
5
+. (20)

The zsr model is used to investigate the response of the equilibrium value of

overturning, meq, to different amounts of freshwater forcing, F1. For any given

set of parameter values we can plot meq against the value for F1. Typically,

low values of F1 are associated with positive values for meq. As F1 is increased

there comes a point at which meq goes negative. This value is the critical value

F crit
1 : it shows where the THC shuts down for that particular parameter set. In

our treatment, the model parameters are constrained to a region where F crit
1 is

always well-defined, and the analysis below should be treated as conditional on

this fact. The climate parameter corresponding to F crit
1 is a key determinant

of the impact of global warming on the Western European climate, since THC

shutdown could lower the temperature in the North-Eastern Atlantic by several

degrees Centigrade. Therefore our interest is in predicting the value of F crit
1

for the Atlantic, using data on the current state of the Atlantic for calibration
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Figure 1: A compartmental model of the Atlantic, as described in Zickfeld
et al. (2004).
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purposes. There are eight model outputs for this experiment: three equilibrium

temperatures and three equilibrium salinities (excluding compartment 4 in

each case) and equilibrium overturning, all of these taken at what is believed

to be the current value F1 = 0.014 Sv, plus the critical value F crit
1 . This

particular treatment of the zsr model is described in more detail in Goldstein

and Rougier (2005b).

5.2 Building an emulator

Our emulator has the linear form

f(x) = a + Ax + u(x) (21)

where a and A are an 8-vector and (8 × 5)-matrix, respectively, X = [0, 1]5

after a linear mapping (see the lower and upper limits in Table 2), and u(x)

is an 8-dimensional residual. Adopting a Bayes linear approach, our initial

knowledge about the simulator is represented by the mean and variance of the

collection
(

a, A, u(·)
)

, and updating by (F ; X) has the effect of modifying the

mean and variance of this collection. Our prior for u(x) is a weakly stationary

random field independent of (a, A); this is a reasonable simplification because

in our application the linear terms typically explain a large amount of the

variation in f(x).

For the prior covariance structure of u(x) in the emulator we choose a prod-

uct structure with a stationary and isotropic ‘gaussian’ correlation function:

Cov
(

u(x), u(x′)
)

= ρ(x, x′) Σu (22a)

where ρ(x, x′) ,

5
∏

j=1

exp

{

−

∣

∣

∣

∣

xj − x′

j

θ

∣

∣

∣

∣

2
}

. (22b)
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Output (Int.) x1 x2 x3 x4 x5

√

Σu
ii R2 (%)

f1 = T
eq
1 0.15 9.99 4.61 0.09 −0.05 −0.04 0.09 99.97

f2 = T
eq
2 −0.68 10.14 1.79 0.40 −0.50 0.91 0.37 99.30

f3 = T
eq
3 0.05 9.98 4.86 9.87 0.12 −0.15 0.06 99.99

f4 = S
eq
1 35.08 −0.01 −0.11 0.08 −0.04 −0.08 0.09 37.06

f5 = S
eq
2 34.59 0.08 0.23 −0.20 0.07 0.33 0.13 69.84

f6 = S
eq
3 35.10 −0.04 0.06 −0.02 0.02 −0.06 0.12 9.64

f7 = meq −23.57 1.04 35.83 −2.21 14.28 17.98 5.21 91.80

f8 = F crit
1 −0.08 −0.00 0.23 −0.01 0.05 0.07 0.03 89.90

Table 1: Expected value of regression coefficients from the emulator; residual
standard deviation; and R2. The latter two values are prior to updating the
residual using (F ; X).

We set θ = log(5)−0.5 ≈ 0.788, corresponding to Corr
(

ui(0), ui(1)
)

= 0.2. This

value for θ gives sample paths for ui(x) that appear moderately non-linear, as

u(x) should represent the low-order excluded effects in (21). The role of θ in

the inference is discussed in more detail in section 5.6.

Our design matrix X comprises just 30 evaluations of our simulator, reflect-

ing the type of budgetary constraints that exist in large computer experiments.

These 30 evaluations were generated from a latin hypercube selected to have

low correlations (less than 0.2 in absolute size) and large interpoint distances

(greater than 0.25). We estimate the parameters of the emulator using multi-

variate least squares, and we then update the residual field, ensuring that the

mean function of the emulator interpolates the evaluations; further details are

given in the Appendix. The resulting expected values for the coefficients (a, A)

are given in Table 1, along with the prior residual standard deviation and the

R2 values. The first three outputs (equilibrium temperatures for the surface

compartments) are very strongly determined by the three relaxation tempera-

tures, but the remaining five outputs have residuals which explain substantial

amounts of variation.
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5.3 Linking the model, the system and the system data

The model, being highly aggregated, does not map easily into measurements

that can be made on the system itself, i.e. temperature and salinity measure-

ments taken from the Atlantic. zsr’s intention is to calibrate their model to a

superior model, climber-2, which has been carefully tuned to the Atlantic in

a separate experiment. Therefore the ‘system’ in this case is the output from

climber-2, which we think of as a sophisticated measuring device. The out-

put from climber-2 is measured without error, so that Var(e) = 0. However,

there is some ambiguity about the precise values for compartment 1 (zsr, Ta-

ble 3), which we must include in the variance of the model discrepancy, ε. We

choose to use a diagonal variance matrix for ε; the non-zero values are given

in Table 3. The variance of ε is set at one hundredth of that in Goldstein and

Rougier (2005b), as it was strongly suggested by the whole-system diagnos-

tic d, given in (19), that our original values were inconsistent with our other

modelling choices and the data. This is discussed in more detail in section 5.5.

For consistency with zsr, we take the Best Input to have independent and

uniform components within given ranges; these are shown in Table 2. The

climber-2 measurements comprise temperatures T
eq
1 = 6.0 ◦C, T

eq
2 = 4.7 ◦C

and T
eq
3 = 11.4 ◦C, salinity differences S

eq
2 − S

eq
1 = −0.15 psu and S

eq
3 − S

eq
2 =

0.1 psu and overturning meq = 22.6 Sv (zsr, Table 3).

5.4 Prior to evaluating the ‘hat run’

After the 30 evaluations used to build the emulator, we may assess the benefit

from evaluating the simulator at the hat run input x̂. Table 2 shows the

value of the hat run input, and the reduction in uncertainty about x∗ that

follows from adjusting beliefs about x∗ by the data z. The data are highly

informative about the best value of first three inputs, moderately informative
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Simulator Range for x∗ Expressed on [0, 1]

inputs Lower Upper x̂ , Ez(x
∗) Sdz(x

∗)

x1 = T ∗

2 0 10 0.350 0.046

x2 = T ∗

1 − T ∗

2 0 5 0.537 0.107

x3 = T ∗

3 − T ∗

1 0 10 0.538 0.031

x4 = Γ 10 70 0.579 0.277

x5 = k 5000 100000 0.810 0.173

Table 2: Quantities associated with the simulator inputs. Range for the uni-
form prior on x∗; mean and standard deviation of x∗ adjusted by z = z̃, ex-
pressed on [0, 1]. The original mean and standard deviation for each compo-
nent of x∗ on [0, 1] are 0.500 and 0.289, respectively.

System Sd(ε) Sd(f ∗) Evaluated at x= x̂ Sd
(

f̂
)

values Sd
(

a + Ax
)

Sd
(

u(x)
)

y1 0.206 3.189 0.027 0.017 3.180

y2 0.200 2.990 0.112 0.073 2.981

y3 0.200 4.288 0.017 0.011 4.285

y4 0.013 0.089 0.028 0.018 0.080

y5 0.010 0.165 0.039 0.025 0.161

y6 0.010 0.106 0.038 0.025 0.087

y7 1.000 13.332 1.591 1.033 13.349

y8 0.005 0.077 0.010 0.007 0.075

Table 3: Quantities associated with the system values. Standard deviation of
the discrepancy; standard deviation of f ∗ , f(x∗); standard deviation of the
emulator at x = x̂, broken down into contributions from a + Ax and u(x);
standard deviation of the hat run f̂ , f(x̂).
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A B C D1 D2 E1 E2

Std dev., 10−2 Sv 7.73 2.31 1.60 2.27 2.26 2.03 1.81

Rel. to Sdz(y8), col. B −30% −2% −2% −12% −22%

Table 4: Predictive uncertainties for y8 , F crit
1 , after 30 evaluations of the sim-

ulator. A, prior to adjustment by z; B, after adjustment by z; C, anticipated
for adjustment by (z, f̂); D1, anticipated after performing one additional eval-
uation at the point of maximum emulator uncertainty; D2, anticipated after
performing one additional evaluation at the best point for reducing predictive
uncertainty; E1, anticipated after one order-of-magnitude more evaluations;
E2, anticipated after 2 orders-of-magnitude more evaluations.

about the last, and not informative at all about x∗

4. Overall, the large reduction

in uncertainty about x∗ that follows from adjusting by z suggests that the

hat run will be effective in reducing our uncertainty about y, as discussed in

section 4. Referring to Table 3, the residual makes quite a large contribution

to uncertainty about f(x) at x= x̂; this also suggests that the hat-run will

be effective. Table 3 also shows that Var(f ∗) and Var(f̂) are very similar for

the first three outputs. This arises because for these outputs the emulator

regression coefficients are effectively known, the residual is effectively zero,

and the contribution of the discrepancy is small relative to the uncertainty in

y that is engendered by uncertainty in x∗.

For simplicity, we concentrate on predicting y8 , F crit
1 , as this is the quan-

tity that most clearly quantifies the imminence of THC collapse, although our

approach allows us to compute a predictive mean and variance for the full

collection of system values. Our prior uncertainty about y8 is shown in col-

umn A of Table 4, while our adjusted uncertainty using the system data z in

the Bayes linear approach is shown in column B. The Bayes linear approach

has reduced our uncertainty about y8 by 70%. Our interest is how much we

can improve on this reduction using a single hat run evaluation, and how this

reduction compares with that of other types of evaluation of the simulator.
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The effect of the hat run is shown in column C of Table 4. The hat run

contributes a further reduction of 30% in our uncertainty about y8. This

seems substantial for a single additional evaluation, bearing in mind that 30

evaluations have already occurred, and bears out the analysis of Tables 1, 2

and 3, where we see that x2 is the most important input for f8, that we learn

quite a lot about x∗

2 from the calibration calculation, and that the emulator

residual contributes about half the uncertainty about f8(x) at x = x̂.

It is interesting to compare this reduction with what might be achieved us-

ing one or more additional simulator evaluations. First, we try two criteria for

selecting a single additional design point. One simple approach is to evaluate

the simulator at the point x ∈ X at which Var
(

f8(x)
)

is maximised. For our

evaluations this point is (1, 1, 1, 1, 0): an extreme point is the likely outcome

here, given that the design points in X tend not to occupy the corners. We can

use the mean function of the emulator to generate pseudo-data for this evalua-

tion, and examine the outcome of adding this evaluation to our set of 30. The

result is shown in Table 4, column D1: there is a 2% reduction in uncertainty.

Note that this calculation has not involved the value z̃ in choosing the next

evaluation point, and so there is no concern here about double-counting the

system data, of the kind we have been careful to account for in our use of f̂ .

Perhaps a better alternative is the one-step sequential design approach

suggested in Craig et al. (2001, section 8), which selects the input value x ∈ X

for which the adjusted variance Varz

(

y8

)

is minimised. For our evaluations

this point is (1, 0, 0, 1, 0.062): again, an extreme point is the likely outcome,

given that our emulator has a strong linear component. The result is shown in

Table 4, column D2: there is a slightly greater reduction in uncertainty with

this alternative, but still about 2%. Again, the value z̃ does not affect the

adjusted variance Varz(y), so there is no double-counting the system data.
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Both of these approaches to selecting an additional evaluation result in a

reduction in uncertainty of about 2%, which is much lower than using the ad-

ditional evaluation in the hat-run approach (30%). The Craig et al. approach

is the more effective of the two, although it costs slightly more to implement.

However, neither approach can gain the benefit of f̂ in resolving local uncer-

tainty in the region of X most likely to contain x∗. Note that we can also infer

that the benefit of including the hat run as the 31st evaluation, without giv-

ing it any special treatment, will give a reduction of uncertainty of no greater

than 2%; in fact, in this case the standard deviation of y8 is 2.29 × 10−2 Sv,

for a reduction of 0.53%. This illustrates that it is not simply the location

of the hat run which is the key to the uncertainty reduction: it is the special

treatment of the hat run which takes account of the way it links up with the

other uncertain quantities.

Second, we can consider two further calculations to get upper bounds on the

amount that uncertainty about y8 might be reduced by many more simulator

evaluations, if we do not carry out the hat run analysis. With an order-of-

magnitude more evaluations (say, 100) we might consider that Var(Ax) ≈ 0

for all x, in our emulator, while with two orders-of-magnitude (say, 1000) we

might also have Var
(

u(x)
)

≈ 0, in our emulator (at this point we are treating

the simulator as effectively known). The anticipated effect of these two limits

is shown in Table 4, columns E1 and E2. In the first case we achieve a 12%

reduction in uncertainty; in the second case a 22% reduction in uncertainty.

Seen in this context, a single hat run seems to offer extremely good value

in terms of reducing our uncertainty about y8. The superior performance of

the hat run in this particular application arises because the reduction in our

uncertainty about x∗ that it incorporates is more valuable than a reduction

in uncertainty about the simulator, even when the latter is taken to the point
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where the simulator may be treated as known. However, the comparison is

purely for illustration. If we were really able to reduce simulator uncertainty

to zero, then we could carry out the hat run analysis, in addition, at no extra

cost in simulator time.

5.5 The result of evaluating the hat run

Once we evaluate the hat run we can update our prediction for y8 for which we

now have a new mean value. The Bayes linear prediction after 30 evaluations

is y8 = 0.148±0.023 Sv (mean ± standard deviation); after performing the hat

run evaluation it is 0.132 ± 0.016 Sv, so there is also a change in the updated

mean value. (Also, for completeness, we evaluate the simulator at the two

one-step choices for x and update our prediction. In both of these cases our

prediction using the pseudo-data was accurate.)

We also have the opportunity to use the outcome of the hat run as a

‘whole-system’ diagnostic based on comparing the computed value of d from

(19) with its prior mean and variance, as explained in section 4.4. As the prior

mean of d is not zero and the prior variance shows some strong correlations,

we present the diagnostic comparing the observed value of d with its mean and

variance in terms of the components of the vector Q−T

(

d − E(d)
)

, where Q

is the Choleski decomposition of Var(d); these standardised components have

mean zero, variance one and correlation zero. The results are

1.104,−1.039, 0.042,−0.480,−1.420,−1.159

These do not suggest any cause for concern. If we were to calibrate the sum of

squared values of these six quantities with a χ2
6 distribution (making a gaussian

approximation) the test statistic of 5.889 would be 56th percentile.
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This diagnostic result is in marked contrast to the outcome when we pro-

ceed using our original choice for Var(ε), as given in Goldstein and Rougier

(2005b), which is 100 times larger. With this larger value for Var(ε) the stan-

dardised quantities from d are

0.815,−0.297,−0.297,−0.208,−0.293,−0.601

which seem rather small; the χ2
6 test statistic is 1.330, which is only 3rd per-

centile. There are many ways in which we might address this diagnostic warn-

ing. We have adopted the approach of scaling the discrepancy variance—a

quantity about which we do not have strong views—for reasons of parsimony,

and because by changing a single parameter we have obtained plausible out-

comes for each of the scalar diagnostics. An alternative response might have

been to scale differentially our uncertainty about components of ε, according

to whether or not they corresponded to components of z. We investigated an

extreme version of this, where we scaled all components bar ε8, which we left

at its original value of Sd(ε8) = 0.05 Sv. In this case the prediction for y8 using

z alone was 0.148±0.055; using z and the hat run it was 0.132±0.052. Uncer-

tainty about y8 is underpinned by uncertainty about ε8, which is irreducible

in our treatment, and consequently the potential for improvement by the hat

run is limited in this case.

In our application the whole-system diagnostic d has been instrumental in

identifying a problem with our previous choices, and allowing us to re-appraise

our statistical modelling.
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5.6 Sensitivity analysis for the correlation length

It is interesting to investigate the effect of changing θ, which controls the

correlation length in the prior correlation function of u(·), given in (22). This

is both because θ can be a hard parameter to set, and also to check our intuition

about how the behaviour of u(·) should affect the inference. The outcome for

predictive uncertainty about y8 for various different values of θ is shown in

Figure 2; for reference, the value θ ≈ 0.788 was used in the analysis of the

previous subsections, and in Table 4.

The hat run will be effective when the correlation length of u(·) corresponds

approximately to our range of uncertainty in x∗ after adjusting by z. In this

case an evaluation at x̂ will pin down the emulator residual in a region that is

likely to contain x∗. If the correlation length is shorter, then the hat run will

not perform much better than the standard Bayes linear prediction, because

the effect of the evaluation at x̂ fails to reach the residual at x∗. On the

other hand, if the correlation length is longer, the hat run will pin down the

residual over a large part of X , not just the region near to x∗; however a long

correlation length would represent a residual that was dominated by a linear

effect, which would be undesirable in our emulator where the linear effect

should be captured by the regression terms, leaving the residual to account for

non-linear effects.

This role for θ is demonstrated in Figure 2, where for low values of θ (short

correlation length) the hat run uncertainty C is close to the original Bayes

linear uncertainty B, while for high values it is ‘bottoming out’ at a level that

incorporates uncertainty in the regression coefficients as well as uncertainty

from the discrepancy. The convergence between E1 and E2 in Figure 2 arises

because in our emulators we update the residual function, and the amount

of uncertainty in the updated function decreases as the correlation length
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increases. The emulator for E2 has no residual uncertainty, and the effect of

varying θ in this emulator is felt entirely in the updated mean for the residual

function.

In practice we choose θ first, based on our judgement about our simulator

and our choice of global regression terms in our emulator. Thus the good

performance of the hat run in our example can be attributed to the fact that

although our correlation length is quite short, (i) the system data z allow us to

make quite an accurate appraisal of x∗, as measured by Varz(x
∗); and (ii) the

residual comprises a large part of our simulator uncertainty around x̂.

5.7 Details of the calculation

In general, the expensive calculations in the hat run approach involve finding

the expectation of various non-linear functions of x with respect to the prior

distribution of x∗, e.g. to find the mean and variance of the residual u(x∗),

and the covariance of x∗ and u(x∗), where u(·) is updated by (F ; X). As

these functions tend to be smooth functions of x, and as our prior for x∗

itself typically has quite a simple structure (e.g. independent components),

they can often be well-approximated by a numerical integration. We use this

approach because it is easy to program for a variety of different choices for the

correlation structure of u(·), and because it allows us to scale the calculation

according to our computing resources, simply by varying the number of points

in our numerical integration. For our grid we use a simple 5-dimensional

product of a 6-point gauss-legendre integration rule. For larger problems we

can adopt a more sophisticated integration approach, using a space-filling grid

and variance reduction techniques such as importance sampling with antithetic

variables (see, e.g., Evans and Swartz, 2000). This will often remain a feasible

calculation for quite large input spaces, because the simulator evaluations used
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to update u(·) tend to become sparser in X as dim(X ) increases, and this

sparsity translates into smoothness for the updated mean function and variance

function of u(·).

Where dim(X ) becomes very large we have the option of replacing the

numerical integrations with expansions based on low-order moments of x∗.

Technically the limit to our accuracy is the number of moments we have for

x∗. The downside of this approach is that it requires the explicit differentiation

of the mean function and variance function of u(·), which makes the calculation

dependent on the choice of correlation function for u(·), and consequently less

flexible and more complicated to program.

6 Conclusion

The calibrated prediction approach that we have described provides a unified

approach for (i) judging many aspects of the adequacy of our overall view of

the computer simulator, the corresponding emulator, and the associated dis-

crepancy between the simulator and the underlying system, by comparison

of simulator evaluations and system data; and, (ii) using such modelling and

observations for predicting system behaviour. This approach offers a powerful

compromise between the Bayes linear approach to prediction, which is ana-

lytically straightforward but which does not allow us easily to exploit local

information about the value of the simulator for inputs which appear to give

good matches to historical observations, and the full Bayes approach which

can better exploit such information but only at the price of an enormous, and

for large problems infeasible, computational burden. In contrast, our Bayes

linear calibrated predictions make efficient use of restricted aspects of the prior

formulation and remain tractable even for large problems.
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A Appendix: Detailed calculations

In the following calculations many terms will be exactly computable from

knowledge of the first- and second-moments of the uncertain quantities. Other

terms will be exactly computable using the distribution for the Best Input x∗,

such as E
(

r(x∗)
)

, where r(x) is defined below in (A4c). As long as the vari-

ance attributable to the residual in the emulator is relatively small, we can

approximate the latter terms using low-order gaussian quadrature rules with

little loss of accuracy in our inference (where the dimension of the input space

X is large, a computationally efficient alternative is to used moment-based ap-

proximations). Finally, there will be some terms for which we cannot make an

exact calculation without imposing further distributional assumptions. Again,

these concern the emulator residual and we use moment-based approximations.

This Appendix gives a complete description of the choices that we make.

A.1 The emulator

Our starting point is the emulator

f(x) = Ax + u(x) (A1)

where f(x) is a k-vector of simulator outputs, x is a (1+p)-vector of a constant

plus the model parameters, A is a k × (1 + p) matrix of uncertain coefficients,

and u(·), the emulator residual, is a vector-valued random field with zero mean,

and a product covariance structure

Cov
(

u(x), u(x′)
)

= ρ(x, x′) Σu (A2)
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for some given scalar covariance function ρ(·, ·). We estimate the mean and

variance of A and the variance Σu using multivariate least squares, from a col-

lection of evaluations (F ; X). For this to be appropriate the points in X should

be widely separated so that Corr
(

ui(Xm), ui(Xm′)
)

� 1, where Xm is the mth

row of X (and likewise for Fm, below). Where this is not possible, perhaps

because we are able to perform a large number of evaluations, a ‘generalised’

multivariate least squares is possible, although in this case it is important to

ensure that the residual u(·) is orthogonal to the regressors, which constrains

the structure of ρ(·, ·).

We can update u(·) using the observed values

Û , F − XĀT , (A3)

where Ā is the expected value of A. This is an approximation to the full

update, because by ignoring the induced covariance between A and u(·) we

cannot preserve the property that f(Xm) = Fm with probability 1. With our

approximate update we will have E
(

f(Xm)
)

= Fm and Var
(

f(Xm)
)

relatively

small. The product structure in (A2) simplifies the update of the residual, as

noted by O’Hagan (1998). The updated residual has the form

E
(

u(x) | Û
)

= r(x) (A4a)

Cov
(

u(x), u(x′) | Û
)

= r(x, x′) Σu (A4b)
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where

r(x) , ÛT P r′(x) (A4c)

P−1 ≡
{

ρ(Xm, Xm′)
}n

m,m′=1
(A4d)

r′(x) ,
{

ρ(Xm, x)
}n

m=1
(A4e)

and r(x, x′) , ρ(x, x′) − r′(x)T P r′(x′). (A4f)

A.2 Mean and variance of
(

y, z
)

We link our simulator to the system itself and the system data using the Best

Input approach, for which we have

y = f(x∗) + ε and z = Hy + e (A5)

where y is the system value corresponding to the simulator output, ε is the

simulator discrepancy, z the available system data, H the incidence matrix

mapping the system values to the system data, and e the measurement error.

The two uncertain quantities ε and e are taken to be independent of each

other and everything else, with zero means (assumed for simplicity) and given

variances Σε and Σe respectively.

We start by computing the mean and variance of f(x∗), by conditioning

on x∗ and then integrating out. For the first step,

E
(

f(x∗) | x∗
)

= Āx∗ + r(x∗) (A6a)

Var
(

f(x∗) | x∗
)

= M(x∗) + r(x∗, x∗)Σu (A6b)

where the expression M(x) , Var(Ax | x) involves the variance of A, techni-

cally a four-dimensional object, and is easily evaluated using a tensor approach
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(see, e.g., McCullagh, 1987). There are further terms below, also denoted with

M ’s, which need to be similarly treated. When we integrate out we get

E
(

f(x∗)
)

= ĀE(x∗) + E
(

r(x∗)
)

(A7a)

Var
(

f(x∗)
)

= E
(

M(x∗)
)

+ E
(

r(x∗, x∗)
)

Σu + ĀVar(x∗) ĀT

+ Ā Cov
(

x∗, r(x∗)
)

+ its transpose

+ Var
(

r(x∗)
)

. (A7b)

Now we can easily compute the mean and variance of the collection (y, z),

using (A5), and then we can adjust our beliefs about the mean and variance

of y using the observed values of the data z, using the Bayes linear adjustment

formulae, as given in (9).

A.3 Mean and variance of f̂

In this paper we extend the analysis to include an extra evaluation of the

simulator, at a point chosen with reference to the system data. We define

x̂ , Ez(x
∗), and denote this the ‘hat run’ input value. This value (including

the constant) can be written as a linear transformation of z, namely

x̂ ≡ v + Wz (A8)

where W , Cov(x∗, z) Var(z)−1 and v , E(x∗) − WE(z). The calculation of

the mean and variance of z is described above. The covariance is

Cov(x∗, z) =
[

Var(x∗) ĀT + Cov
(

x∗, r(x∗)
) ]

HT (A9)

using (14) and (A5).

Our interest is is computing the mean and variance of f̂ , f(x̂), and the
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covariance of f̂ with (y, z). Once we have computed these terms we will have

the mean and variance of the collection (y, z, f̂), and we will be able to adjust

our beliefs about the mean and variance of y using both the actual value of z

and the outcome of evaluating f at x̂, as given in (18).

We can find an explicit expression for f̂ in terms of x∗ by substituting

v + Wz for x̂, then H
(

f(x∗) + ε
)

+ e for z, then Ax∗ + u(x∗) for f(x∗). The

resulting expression for f̂ after making these substitutions is

f̂ = A
[

v + G
(

A x∗ + u(x∗) + ε
)

+ We
]

+ u(x̂) (A10a)

where G , WH. It is helpful to write this as

f̂ ≡ A b(x∗) + AGA x∗ + u(x̂) (A10b)

where b(x) , v +G
(

u(x)+ ε
)

+We and A ⊥⊥ b(x∗). Conditioning on x∗ gives

E(f̂ | x∗) = Ā
(

v + Gr(x∗)
)

+ M ′x∗ + E
(

u(x̂) | x∗
)

; (A11a)

here M ′ , E(AGA), which can be evaluated using the first- and second-

moments of A. The last term in (A11a) presents a problem, because we do

not have an explicit distribution for x̂ | x∗. Rather than impose a distribution,

we choose instead to approximate this term as

E
(

u(x̂) | x∗
)

= E
(

r(x̂) | x∗
)

≈ r(x̂∗), (A11b)

where

x̂∗ , E(x̂ | x∗) = v + G
(

Āx∗ + r(x∗)
)

. (A11c)

41



For the unconditional expectation we then have

E(f̂) ≈ Ā
[

v + G E
(

r(x∗)
) ]

+ M ′
E(x∗) + E

(

r(x̂∗)
)

. (A12)

To find the unconditional variance we first compute the variance of the

conditional expectation, which is

Var
(

E(f̂ | x∗)
)

≈ M ′
Var(x∗) (M ′)T

+ M ′
Cov

(

x∗, ĀGr(x∗) + r(x̂∗)
)

+ its transpose

+ Var
(

ĀGr(x∗) + r(x̂∗)
)

. (A13)

Next we need the conditional variance. For this we make the simplifying

approximation that ‘second-order’ covariances can be neglected, i.e.

Cov
(

(Ax∗, ε, e), u(x̂) | x∗
)

≈ 0 (A14)

which allows us to drop many small terms in the outer-product of f̂ . Starting

from (A10b) we can expand Var(f̂ | x∗) as the approximate sum of the following

terms:

M (2)(x∗) , Var
(

A b(x∗) | x∗
)

(A15a)

M (3)(x∗) , Cov
(

A E
(

b(x∗) | x∗
)

, AGAx∗ | x∗
)

, plus its transpose (A15b)

M (4)(x∗) , Ā Cov
(

b(x∗), u(x̂) | x∗
)

, plus its transpose (A15c)

M (5)(x∗) , Var(AGAx∗ | x∗) (A15d)

M (6)(x∗) , Var
(

u(x̂) | x∗
)

(A15e)

where M (3) and M (4) have both been simplified according to the general pat-

tern Cov(ac, b) = E(c) Cov(a, b) where (a, b) ⊥⊥ c. To evaluate these terms we
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require third- and fourth-moments for A. The simplest expedient, if we are un-

willing to specify values, is to adopt the third- and fourth-moment structure of

the gaussian distribution. Once the higher-moments are specified, M (2), M (3)

and M (5) follow straightforwardly, with M (2) following the general pattern

Var(bc) = E(b)2
Var(c) + Var(b) E(c2) where b ⊥⊥ c.

For M (4) we have

M (4)(x∗) ≈ ĀG Cov
(

u(x∗), u(x̂) | x∗
)

= E
(

r(x∗, x̂) | x∗
)

ĀGΣu ≈ r(x∗, x̂∗) ĀGΣu (A16)

using the same approximations as before; we can treat M (6) in exactly the

same manner, giving

M (6)(x∗) ≈ r(x̂∗, x̂∗) Σu. (A17)

When we take the expectation of each of these terms over x∗, that of M (5)

can be computed exactly from the first and second moments of x∗, while the

other terms can be computed using quadrature. This gives us the expectation

of the conditional variance.

Summing the variance of the conditional expectation and the expectation

of the conditional variance then completes the calculation of the unconditional

variance Var(f̂).

A.4 The two covariances

The calculation of Cov
(

f̂ , (y, z)
)

follows directly from (A5), along very similar

lines to that of Var(f̂). To compute Cov(f̂ , y) we need

Cov
(

E(f̂ | x∗) , E(y | x∗)
)

≈ M ′
Var(x∗) ĀT

+ M ′
Cov

(

x∗, r(x∗)
)

+ Cov
(

ĀG r(x∗) + r(x̂∗), Āx∗ + r(x∗)
)

. (A18)
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For the expectation of the conditional covariance we start with

Cov(f̂ , y | x∗) ≈ Cov
(

AE
(

b(x∗) | x∗
)

, Ax∗ | x∗
)

+ ĀG
[

r(x∗, x∗)Σu + Σε
]

+ Cov(AGAx∗, Ax∗ | x∗)

+ r(x̂∗, x∗)Σu, (A19)

and then we integrate out x∗. For Cov(f̂ , z) we have simply

Cov(f̂ , z) ≡ Cov(f̂ , Hy + e) ≈ Cov(f̂ , y)HT + ĀWΣe, (A20)

referring back to (A5) and (A10a).
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