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Abstract

This paper describes an approach to computing probabilistic assess-

ments of future climate, using a climate model. It clarifies the nature

of probability in this context, and illustrates the kinds of judgements

that must be made in order for such a prediction to be consistent with

the probability calculus. The climate model is seen as a tool for mak-

ing probabilistic statements about climate itself, necessarily involving

an assessment of the model’s imperfections. A climate event, such as a

2◦C increase in global mean temperature, is identified with a region of

‘climate-space’, and the ensemble of model evaluations is used within

a numerical integration designed to estimate the probability assigned

to that region.
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1 Introduction

A simple question will help to motivate this paper:

What is the probability that a doubling of atmospheric CO2 from
pre-industrial levels will raise the global mean temperature by at
least 2◦C?

This seems to be a well-posed question (subject to technical clarifications
which need not concern us here), and certainly a topical one. It is the kind
of question a policymaker might ask a climate scientist.

There are two aspects of this question that ought to be highlighted. First,
the question asks explicitly for a probability; second, it asks about the be-
haviour of the climate itself. So it is necessary to establish exactly what is
meant by ‘probability’ in this context, and it is also necessary to understand
that answers which focus on the response of this or that climate model are
inadequate. In order to satisfy the policymaker, climate scientists must link
their particular climate model to the climate system, so that their predictive
statements about quantities such as future temperature address the needs of
policymakers, and are directly comparable to those of other scientists with
other models.

This paper clarifies the nature of probabilistic model-based inferences
about actual climate, using recent developments in Statistics, notably the
field of Computer Experiments. It provides a framework for such inferences,
clarifying the role of the climate model, and the purpose of the ensemble of
climate model evaluations. In a nutshell, it illustrates ‘thinking probabilisti-
cally’ about climate models and about the climate itself. Therefore even if
its detailed prescriptions seem to climate scientists to be inappropriate (al-
though there is no evidence from current practice that they should be), the
general approach should serve as a template for all model-based probabilistic
inference for climate.

2 Probability and uncertainty

The first thing to understand about probability in this context is that there
is no such thing as ‘the’ probability. To ask for ‘the’ probability is to commit
a category error. A probability is a numerical summary of a person’s state
of knowledge about a proposition: it is inherently subjective (i.e., it relates
to the mind of a subject). Therefore probability takes the possessive article,
not the definite one: better to say your probability. Inference based on
a subjective interpretation of probability is termed Bayesian Statistics ; see,
e.g., O’Hagan and Forster (2004), Bernardo and Smith (1994), or Lad (1996).
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Some readers will be concerned about this characterisation of probability.
There appears to be a syllogism that runs “Science is objective, your type
of probability is subjective, objective and subjective are antonyms, therefore
your type of probability has no place in science.” It comes up in discussions
with scientists often enough to warrant a brief comment. The error is to
confuse two meanings of ‘subjective’. ‘Objective’ in this context may be
taken to mean disinterested, or uninfluenced by personal prejudice: obviously
a hallmark of good science. There is a meaning of ‘subjective’ which is
antonymous to this: emanating from a person’s emotions or prejudices. But
in dictionaries this is the second meaning. The first meaning of ‘subjective’
is relating to the mind of the subject, and this is the appropriate sense when
probability is used to describe uncertainty: uncertainty is a property of the
mind.

A scientist’s prediction will be perforce subjective, but he should aim to
be objective as well, by making a disinterested appraisal of the probabilities
he attaches to events—this is not paradoxical. Objectivity is not always easy
to achieve. For example, if a climate scientist thought too little attention
was being given to a certain type of future climate catastrophe, he might be
tempted to overstate his probability of the event, in order to attract attention.
For the policymaker, though, it is not just what a scientist thinks that is im-
portant, but also the extent to which that scientist can justify his assessment.
Even though probabilities are subjective statements, not all such statements
are demonstrably valid, and of those that are, not all are authoritative. Valid
statements are those that are consistent with the probability calculus, the
axioms of which were clarified by Kolmogorov in the 1930s. The probability
calculus allows us to derive potentially complex ‘posterior’ probabilities from
simpler ‘prior’ ones, and in this sense its practical contribution is to sim-
plify the task of making a prediction. Authoritative statements are those for
which the scientist is prepared to defend his specification of the prior prob-
abilities as a reasonable summary of his judgements. This does not rule out
the judgement “I know very little about this quantity”, although too many
such judgements might call into question the climate scientist’s expertise.

In climate prediction the collection of uncertain quantities for which the
climate scientist must specify prior probabilities can be large. Probability
distributions over large collections are hard to specify with confidence, in
fact the task can often seem overwhelming. They can also be intractable in
computations. To make progress it is often necessary to impose additional
structure. This is the purpose of constructing a statistical framework (statis-
tical modelling is the more usual term, but in this paper ‘model’ is reserved
for the climate model): to find representations of prior probabilities that can
be specified in terms of relatively simple numerical summaries, and which are
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tractable in computations. Note that such a statistical framework is never
‘true’—its role is to help structure and summarise a person’s judgements.

This paper makes such a structural choice, identified below as (S1′). This
choice defines the primitive quantities for which a prior distribution must
be specified, and does so in such a way that the prior distribution separates
into a more manageable set of marginal distributions. This structural choice
can easily accommodate current practice in climate science; that is to say,
climate scientists should not find it at all restrictive, at least in the short
term. This paper also makes two additional tractability choices, identified
below as (T1) and (T2). These take place within the framework established
by the structural choices. The main justification for these tractability choices
is computational, and they may easily be generalised.

One of the criticisms levelled at the Bayesian approach is that it is hard
to apply in practice. It is hard to quantify judgements about states of knowl-
edge, and structural abstractions, although intended to simplify this process,
can also obscure it by their unfamiliarity, or by being too restrictive. Practis-
ing Bayesian statisticians know all too well that specifying a prior distribution
per se is not the difficulty, but specifying a good one is. This is an area full of
pitfalls, and often a scientist will find it helpful to work with a statistician to
formulate his prior (see, e.g., Garthwaite et al., 2005). The amount of effort
and resources devoted to this task ought to reflect the importance of the
resulting inference. If it is worth spending thousands of hours constructing
a climate model, and millions of dollars collecting climate data, then it does
not seem unreasonable to invest a similar amount quantifying our judgements
about how these two are related. But this has not yet happened.

3 Predicting future climate

A natural starting-point for predictions about future climate are observations
of historical and current climate. In a probabilistic treatment, the predictive
distribution for future climate is found by conditioning future climate on the
observed values for historical and current climate.

We denote climate by the vector (yh, yf ), collectively y, where yh corre-
sponds to historical and current climate, and yf to future climate. The vector
y is a large collection of quantities, where each component is typically defined
by type, and by location and time. The components of yh will depend on the
available data, while the interpretation of yf will depend on what particular
future is to be predicted. In the context of the question posed at the start of
the Introduction, our yf would be a future in which concentrations of atmo-
spheric CO2 are double their pre-industrial levels; more generally yf might
correspond to one of the SRES scenarios (Nakićenović, 2000).
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We can express the climate data, z say, in general terms as

z ≡ yh + e (1)

where e is an uncertain residual quantity defined as e , z − yh; ‘,’ denotes
‘defined as’ and ‘≡’ ‘equivalent by definition’. Here we make the simplifying
assumption that it is possible to match climate and climate data one-to-
one, but a generalisation would be straightforward. Note that there is no
sense in which (1) is the ‘true’ relationship. It functions as a way for the
climate scientist to structure his judgements about about z and yh, so that
a distribution for {y, e} induces a distribution for {y, z}.

At this point we make a structural choice to simplify the specification of
the prior distribution Pr(y, e): that e and y can be treated as probabilistically
independent, written

e ⊥⊥ y. (S1)

If I judge the two quantities to be probabilistically independent then knowing
the value of y will not change my predictions about e, and vice versa. This can
also be expressed in terms of conditional probabilities, as Pr(e | y) = Pr(e),
where ‘|’ denotes ‘conditional upon’. Condition (S1) should be recognised as
a choice, and a pragmatic one at that. The quantity e might be thought of
as ‘measurement error’. A list of the ways in which a measurement error can
occur shows that many of them are weather-related (e.g., a seasick technician,
atmospheric turbulence), and, therefore, climate-related. By adopting (S1)
we are making the judgement that the impact of y on e is of secondary
importance in the inference as a whole. Note that (1) and (S1) together
rule out multiplicative errors in the original units; if required, these can be
incorporated using logarithms.

We will also make a tractability choice: that the marginal distribution
of e is Gaussian (also referred to as ‘normal’) with zero mean and specified
variance matrix Σe, written

e ∼ Gau(0, Σe), with Σe specified (T1)

(known measurement biases can be incorporated with a non-zero mean). The
variance matrix Σe might be taken to be diagonal, implying that the measure-
ment errors are treated as mutually independent. However, measurements
and measurement errors typically share characteristics, and consideration
should be given to constructing Σe hierarchically by type of instrument, by
instrument ID, and by proximity in space and time; the shared structure
would involve non-zero off-diagonal components.

A prediction for future climate is written as the probability density func-
tion Pr(yf | z= z̃), thought of as a function of yf ; here z̃ denotes the measured
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values of z, the observational data on historical and current climate. For this
section it is clearer, notationally, to predict the whole of y rather than just
yf ; the marginal distribution of (yf | z = z̃) can be extracted from that of
(y | z = z̃) straightforwardly, both in theory and practice. In general terms,
the prediction for y is

Pr(y | z= z̃) = c Pr(z= z̃ | y) Pr(y)

= c Pr(e=yh − z̃ | y) Pr(y)

= c Pr(e=yh − z̃) Pr(y)

= c ϕ(yh − z̃;0, Σe) Pr(y) (2)

where c , Pr(z= z̃)−1, and ϕ(·) is the Gaussian density function with spec-
ified mean and variance. The first line is sometimes referred to as Bayes’s
Theorem, although it is simply a consequence of the definition of conditional
probability in terms of joint and marginal probabilities, as laid down by the
probability calculus. The second line uses the definition of e in (1), the third
line uses (S1), and the final line uses (T1). In computations we can often
ignore c, which fulfils the role of a normalising constant, ensuring that the
probability density function integrates to 1.

Eq. (2) demonstrates that a prediction for climate based on historical
and current climate data requires a specification of the prior distribution
Pr(y); that is, a probability distribution over climate itself. There is a partial
exception, when prior information about yh is judged so weak relative to the
information in z = z̃ that the marginal distribution Pr(yh) is taken to be
‘locally uniform’ (see, e.g., Box and Tiao, 1973, sec. 1.2.5). In this case the
distribution

Pr(yh | z= z̃) = c ϕ(yh − z̃;0, Σe) Pr(yh)

is approximately Gaussian, and the predictive distribution for y is

Pr(y | z= z̃) ≈ Pr(yf | yh) ϕ(yh − z̃;0, Σe) .

This generalises to the case where the marginal distribution for e is something
other than Gaussian, although huge amounts of climate data may be required
(Bernardo and Smith, 1994, sec. 5.3). But even in this case it is still necessary
to specify the conditional prior distribution Pr(yf | yh) in order to make a
prediction about future climate.

This is the basic message of this section: it is not possible to make a
probabilistic prediction about future climate without specifying a probability
distribution for climate. Or, to put it another way, anyone who claims to
make such a prediction without such a specification has either made an im-
plicit choice—a lack of transparency which is unfortunate in the context of
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science and policy—or has violated the probability calculus, and so has made
a demonstrable error.

4 The role of the climate model

This section explains that the role of the climate model is to induce a distribu-
tion for climate itself. This is probably not how climate scientists view their
models, but it is the appropriate interpretation of the use of these models
within the context of probabilistic climate prediction.

As outlined in section 3, the climate scientist needs to specify his prior
probabilities Pr(y). This is challenging both because y is such a large col-
lection of quantities, and because these quantities are linked by complex
interdependencies, such as those arising from laws of nature. For example,
conservation laws strongly constrain the evolution of the climate state-vector
from one moment to the next; a näıve treatment of Pr(y) such as local uni-
formity (invoked in section 3), would violate conservation by treating the
climate state-vector at time t + dt as independent of the value at time t.

In such situations statisticians have found it convenient to specify distri-
butions for quantities such as y by elaboration from a simpler collection of
uncertain quantities (O’Hagan and Forster, 2004, sec. 4.28). For example,
when asked about the number of heads from 10 spins of a coin, a statistician
is unlikely to specify directly a probability for each of the eleven outcomes.
Rather, additional structure will be imposed on the distribution, because
this is judged to give rise to a better quantification. In the case of the spun
coin, the probability for each of the outcomes may be inferred from a bino-
mial model and a single uncertain quantity, the probability that a single spin
comes up heads. In this case the additional structure is that the spins are
exchangeable.

In the case of climate, the additional structure is supplied by a climate
model. A climate model is a collection of equations and the means for solv-
ing them, at least approximately. These equations embody regularities, both
theoretical and empirical, such as conservation laws, equations of state, and
coupling equations where the model-domain is described over a number of
interacting sub-domains. If we treat some of the coefficients within the equa-
tions as uncertain, i.e., we assign them a probability distribution, then the
climate model induces a probability distribution over the model-outputs. The
same is true if we treat as uncertain the initial value of the state-vector, or
the value of various forcing functions. If we can then relate the now-uncertain
model-outputs to the climate vector y, we induce a distribution for y.

Relating an imperfect model to the system it purports to represent is
an extremely challenging task: there is no reason to expect a simple resolu-
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tion. In fact there appear to be foundational difficulties that prevent us from
expressing such a relationship in terms of operationally-defined quantities
pertinent to the model itself (Goldstein and Rougier, 2005, 2006b). These
objections notwithstanding, this paper adopts the simplest framework that
takes explicit account of the model’s imperfections; this is also the de facto
standard in the statistical treatment of model-based inference for complex
systems (see, e.g., Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon
et al., 2005; Goldstein and Rougier, 2006a).

We treat the climate model as a deterministic function g(·) of a specified
collection of model-inputs x (equation coefficients, initial conditions, forcing
functions). The model represents the mapping

x → g(x),

where the components of g(x) are made to correspond one-to-one with the
components of y itself, insofar as this is possible. The input-space X is the
set of all values of x that cannot be ruled out by a priori considerations,
and the output-space G is the image of input-space; i.e., G , {g(x), x ∈ X}.
A point in G will represent a simplified climate, in the same way that the
climate model g(·) is a simplification of the processes that are involved in the
real climate.

When a climate scientist considers the ways in which evaluations of the
model can be informative about actual climate, it is likely that he will con-
sider, on a priori grounds, that some choices of x ∈ X are better than others.
We posit the existence of a special uniquely-defined model-input value, x∗

say, for which
y ≡ g(x∗) + ε∗ (3)

where ε∗ , y − g(x∗), is termed the model’s discrepancy. Together, x∗ and
ε∗ link the model g(·) to the actual climate y, so that assigning a prior
distribution to {x∗, ε∗} induces a prior distribution for y. As in (1), eq. (3)
is not a ‘true’ representation of the relationship between g(·) and y, but
rather a way for a climate scientist to structure his judgements about such a
relationship. Its usefulness depends on our ability to attach meaning to the
special model-input value x∗.

The simplest way to provide x∗ with a unique definition is to treat it
as the ‘best’ value in the input-space X . In this case we can think of the
difference between the climate itself and any model evaluation in two parts:

y − g(x) ≡ g(x∗)− g(x)︸ ︷︷ ︸
reducible

+ ε∗ (4)

where the first part represents a contribution that may be reduced by a better
choice of model-input, and the second part is an irreducible contribution
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that arises from the model’s imperfections. Any analysis of a model based
on a specific choice for x, such as the ‘standard parameterisation’, needs to
account for uncertainty about each of these two contributions, unless the
climate scientist is prepared to assert that his choice of x is optimal (see the
discussion on Tuning in section 6.1).

The real benefit to defining x∗ as the ‘best’ input is that we can relate
it to operationally-defined quantities in the climate itself. Therefore x∗ is
not just a ‘statistical parameter’, devoid of meaning: it derives its meaning
from the physics in the climate model being approximately the same as the
physics in the climate. On this basis, one of the tangible benefits of building
higher-resolution climate models is that judgements about x∗ become easier
to specify, because the physics in the model is closer to that in the climate.
Higher-resolution models may also have smaller input-spaces, because the re-
duced need for flux-corrections and sub-grid-scale parameterisations. In this
paper ‘best’ is written in scare quotes, because it is hard to give an opera-
tional definition that is simultaneously consistent with a particular imperfect
model and the climate itself. As a practical consequence the climate scientist
can be expected to have quite a vague prior distribution for x∗, particularly
for low-resolution models, although this does not mean that any old choice
will do (see the discussion on Pr(x∗) in section 8).

If we impose additional structure on the choice for Pr(x∗, ε∗), then we also
impose additional structure on Pr(y). For example, asserting that ε∗ = 0
is equivalent to asserting that y must lie in G, sometimes referred to as the
‘strong constraint’. The grounds for such a strong assertion are unclear. After
all, a climate scientist who really judged this to be true of his model would
not need to make any further improvements—he would spend the rest of his
career exploring his model’s input-space. Journal editors and policymakers
condone this misjudgement by accepting results that are “conditional on
the model being correct”. Such results are not quantitatively informative
about the climate itself, unless the strong constraint has been justified. A
justification such as “specifying an appropriate distribution for ε∗ is hard,
so we set it to 0” should be recognised as a calculated decision to make life
easier for climate scientists but harder for policymakers.

Therefore we do not want to assert that ε∗ = 0. We do, however, im-
pose some lesser structure on Pr(x∗, ε∗), in the form of a revised structural
choice: that the ‘best’ input, the discrepancy, and the measurement error are
mutually independent, written

x∗ ⊥⊥ ε∗ ⊥⊥ e ; (S1′)

note that (S1′) implies (S1), because y is a deterministic function of x∗ and
ε∗. A simple interpretation is in terms of the two contributions in (4). For
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any given model evaluation g(x), (S1′) implies that our uncertainty about the
difference y − g(x) decomposes cleanly into (i) uncertainty about the effect
of having a ‘non-best’ input, and (ii) uncertainty about the discrepancy. We
are making the judgement that interactions between these two sources of
uncertainty are of secondary importance in the inference as a whole. There
are some situations where this may be too strong, and generalisations are
possible (section 7.1).

We also make another tractability choice: that the marginal distribution
of ε∗ is Gaussian with zero mean and specified variance matrix Σε, written

ε∗ ∼ Gau(0, Σε), with Σε specified (T2)

(known model-biases can be incorporated with a non-zero mean), where the
rows and columns of Σε are partitioned in ‘h’ and ‘f ’, so that, for example,
Σε

hh and Σe both match yh.
In computations we will not need the prior distribution Pr(y) explicitly,

but for reference it is found as

Pr(y) =

∫
Pr(y | x∗) Pr(x∗) dx∗

=

∫
Pr(ε∗=y − g(x∗) | x∗) Pr(x∗) dx∗

=

∫
Pr

(
ε∗=y − g(x∗)

)
Pr(x∗) dx∗

=

∫
ϕ(y − g(x∗);0, Σε) Pr(x∗) dx∗. (5)

The first line is a standard result from the probability calculus, sometimes re-
ferred to as the ‘law of total probability’. The second line uses the definition
of ε∗ from (3), the third line uses (S1′), notably ε∗ ⊥⊥ x∗, and the final line
uses (T2). This makes it clear that the task of specifying a prior distribution
Pr(y) given the model g(·) has been repackaged into specifying a prior distri-
bution Pr(x∗) and a variance matrix Σε, both of which are model-specific. It
may not be easy for the climate scientist to quantify his judgements in these
terms, but given that he needs a distribution for y in order to proceed, the
real question is whether it is better to specify Pr(x∗) and Σε, or to specify
Pr(y) directly.

Technical aside. To simplify the exposition, in this paper the climate
model g(·) is treated as known, rather than known only at a finite set of
evaluations. Judgements about {x∗, ε∗} should be thought of as conditional
on g(·). This may be reasonable in many applications, but see Goldstein and
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Rougier (2006a) and the references therein for the more general case, where
g(·) is itself treated as uncertain.

5 Model validation

Model validation is about assessing whether the model is indeed about as
good as the climate scientist judges it is; in our case, that is according to
his specification of Pr(x∗), Σε, and Σe. This can be done by examining the
climate scientist’s ability to predict the historical and current climate data.
This has been termed ‘retrodiction’ or ‘postdiction’. In Bayesian Statistics
the term ‘prediction’ suffices because uncertainty is not exclusively a property
of future quantities: anything uncertain can be predicted, and, prior to seeing
the climate data z̃, z is simply another uncertain quantity, just like yh or yf .

The predictive distribution for z is found using the same steps as in (5),
which gives

Pr(z) =

∫
ϕ
(
z − gh(x

∗);0, Σε
hh + Σe

)
Pr(x∗) dx∗. (6)

Here we have used the fact that z ≡ gh(x
∗) + ε∗h + e from (1) and (3), and,

using (S1′), (T1), and (T2), the collection {ε∗, e} is jointly Gaussian, so that
ε∗h + e is Gaussian.

Note that in (6), and some of the expressions below, the two variance
matrices for ε∗h and e are combined additively. It would be possible to spec-
ify a single variance matrix in their place, but this would obscure the fact
that model discrepancy and measurement error are two completely different
things. Consequently their variance matrices are quite different. The only
situation in which a single matrix might be specified is where the climate
scientist judges that one uncertainty dominates the other. For example, if
(Σε

hh)
−1Σe � I, where I is the identity matrix, then the discrepancy variance

dominates. If this was judged to be the case, the climate scientist would be
justified in approximating Σe with 0, and concentrating his efforts on speci-
fying Σε.

The simplest way to construct a diagnostic from Pr(z) and the observed
climate data z̃ is to compute marginal probabilities such as Pr(zi ≤ z̃i), where
zi is the ith component of z; general methods for computing this type of
probability are discussed in section 8. A value close to 0 or to 1 indicates
that the observed value z̃i is in the tail of the climate scientist’s distribution
for zi, which may give cause for concern. Rather than use single components
of z, we might also use subsets; for example, all quantities of a certain type,
or from a certain location or time. In this way it is possible to get an insight
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into where inconsistencies arises. Perhaps the climate scientist has over-
stated the model’s ability to replicate precipitation, by choosing too-small
values in the appropriate part of the diagonal of Σε. In this case, removing
precipitation from a subset would improve the value of the diagnostic.

Responding to evidence of inconsistency can be tricky. To a limited extent
the climate scientist can modify his choice for, say, Σε. This would usually
be appropriate if he were initially quite uncertain about his specification of
Σε and if he implemented changes that were highly aggregated, to avoid the
danger of over-fitting to z̃. Statistical purists would regard this as a form
of double-counting, but it may also be regarded as an informal implementa-
tion of a hierarchical statistical framework. It may be difficult to improve
the diagnostic in this way, which would suggest that the problem is more
fundamental; for example, the use of Gaussian distributions in (T1) or (T2).
Sometimes this can be addressed by transforming some of the climate com-
ponents (e.g., by using logarithms for small but strictly positive quantities,
or the logistic transformation for proportions).

6 Climate inference with a climate model

By this stage the climate scientist should already have validated his model
and his specification of Pr(x∗), Σε

hh and Σe, as described in section 5. There
is no direct way to validate his specification of Σε

fh or Σε
ff , although these

ought to be consistent with his choice for Σε
hh. Where possible, the climate

scientist should arrange that there are components of yh that are like the
components in yf .

6.1 Learning about the ‘best’ model-input

In Statistics learning about x∗ is often referred to as model calibration. Cli-
mate scientists sometimes speak of ‘constraining’ x∗ with the climate data,
but this conjures up the wrong image. It is not simply a case of ring-fencing
an area of ‘good’ candidates for x∗ within the model’s input-space X . Even
were the climate data measured without error (i.e., z = yh), it would be
difficult to partition the model’s input-space X cleanly into ‘good’ and ‘not-
good’ regions, because of uncertainties about the relationship between the
model and climate. Instead, calibration consists of computing the distribu-
tion Pr(x∗ | z= z̃). We can think of this distribution as ‘scoring’ the points in
X as candidates for x∗. A key feature of calibration is that it should take ac-
count of the model’s imperfections. It would make little sense to calibrate an
imperfect model on the basis that the model was, in fact, perfect. The model
validation step should prevent this type of misjudgement from occurring.
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The calibration distribution is

Pr(x∗ | z= z̃) = c Pr(z= z̃ | x∗) Pr(x∗)

= c ϕ
(
z̃ − gh(x

∗);0, Σε
hh + Σe

)
Pr(x∗) (7)

where c , Pr(z= z̃)−1, as before. The first line is Bayes’s Theorem, and
the second line follows from (S1′), (T1), and (T2), using the same reasoning
as in (5) and (6). One way to summarise this calibration distribution is in
terms of its modes, i.e. its local maxima. In our approach we have posited a
unique ‘best’ model-input, but this does not mean that we will find a clear-
cut candidate using the climate data. It is quite possible—in fact, it is highly
likely—that there will be multiple modes in the calibration distribution.

For example, with the given data z = z̃ and a particular model it might
not be possible to distinguish between a candidate value for x∗ with high
climate sensitivity offset by a strong aerosol forcing, and one with low cli-
mate sensitivity offset by a weak aerosol forcing. These might be two modes
in the calibration distribution or, if the data and the model permit, they
might be two points on a ridge. In situations like this we can use the proba-
bilistic framework to determine what kind of additional observations would
best reduce our uncertainty about x∗. The simplest approach is to generate
pseudo-data using the climate model and the statistical framework, include
these data in yh and z, and examine their impact on the calibration distribu-
tion (e.g., in terms of reducing the variance or selecting one mode over the
other).

‘Tuning’. This process of computing the calibration distribution should
be contrasted with the alternative practice of ‘tuning’ the model using the
data z = z̃. Tuning the model involves searching over x ∈ X for an optimal
value that minimises some metric defined on the vector of differences z̃ −
gh(x); here z̃ is standing in for yh, which we cannot observe directly. All big
climate models are tuned in this way, and the result is sometimes termed the
‘standard parameterisation’. However, because the model evaluation times
are so long, typically only a small number of components of x are varied in
the tuning procedure, and it is seldom possible to verify that the standard
parameterisation is optimal.

There are two issues with this practice, even assuming that it can be
effectively implemented. First, what metric should be minimised? Second,
what about the situation where many choices of x seem to give the same
optimal value? The probabilistic approach gives cogent answers to both
of these questions. First—taking the simple case where Pr(x∗) is locally
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uniform—the implicit metric is the generalised sum of squares(
z̃ − gh(x)

)T(
Σε

hh + Σe
)−1(

z̃ − gh(x)
)
,

from (7). This shows explicitly the role of the model discrepancy and the
measurement error in quantifying the difference between z̃ and gh(x). Second,
the probabilistic approach outlined in this paper never commits us to using
just a single model-input value, but allows us to incorporate, with appropriate
weights, all candidates for x∗ that are not ruled out by the climate data
(section 8). Although our approach commits us to accepting a ‘best’ input,
it does not commit us to acting as though we have found it. Nor does it
make the concept of the ‘best’ input contingent on the data we happen to
have collected, although we do use that data to learn about the ‘best’ input’s
value.

6.2 Learning about future climate

There are two distributions for future climate: the prior prediction Pr(yf ) and
the posterior prediction Pr(yf | z= z̃). The prior prediction may be computed
from (5). The posterior prediction is the conditional prediction, also referred
to as the calibrated prediction because it is the prediction made once x∗ has
been calibrated using z= z̃. The calibrated prediction is computed as

Pr(yf | z= z̃) =

∫
Pr(yf | x∗, z= z̃) Pr(x∗ | z= z̃) dx∗

=

∫
ϕ
(
yf ; µf |z(x

∗), Σf |z
)

Pr(x∗ | z= z̃) dx∗, (8a)

where Pr(x∗ | z= z̃) was given in (7), and

µf |z(x) , gf (x) + Σε
fh

(
Σε

hh + Σe
)−1(

z̃ − gh(x)
)
, (8b)

Σf |z , Σε
ff − Σε

fh

(
Σε

hh + Σe
)−1

Σε
hf . (8c)

The first line in (8a) is the law of total probability. The second line, and
the definitions in (8b) and (8c), follow from the fact that the conditional
distribution {y, z} | x∗ is Gaussian, by (S1′), (T1), and (T2). The expressions
in (8b) and (8c) are standard matrix expressions for the conditional mean
and variance of a Gaussian random vector (see, e.g., Mardia et al., 1979,
sec. 3.2).

Eq. (8) makes it clear that there are two routes via which the climate
data impact on predictions of future climate. First, these data typically
have the effect of concentrating the distribution Pr(x∗ | z= z̃) in (8a), rel-
ative to its prior form Pr(x∗). If gf (x) varies a lot over x ∈ X , then this
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concentration reduces our uncertainty about yf , through reducing our un-
certainty about gf (x

∗). The degree of concentration depends not just on the
quantity of climate data, but also on its variety. A given type of data will
tend to concentrate the calibration distribution in a particular way. Ideally
we want these different concentrations be ‘orthogonal’, so that the size of
their intersection—the joint concentration—is small. A simple approach is
to ensure that there are several different types of quantities in yh (physical
insights are helpful here). A strong version of this is to include observations
on palaeo-climate proxies, involving an additional ‘forward’ model mapping
the climate state-vector into the proxies.

The second route operates through the discrepancy ε∗, and can be seen
in the mean function, (8b). As long as Σε

fh 6= 0, the difference z̃ − gh(x) is
used to adjust the mean of yf away from gf (x). This route will not operate
for palaeo-climate proxies if—as seems likely—the covariance between the
proxies and the post-industrial climate state-vector in both the measurement
error and the model discrepancy is judged to be zero.

The posterior predictive distribution can also be used to quantify the
value of additional climate data, e.g., from a proposed array of buoys. Pseudo-
data representing measurements from the buoys can be included in z, and the
impact of these additional data can be quantified in terms of their ability to
reduce uncertainty about key aspects of future climate. Ideally the arrange-
ment (i.e., number, location, and telemetry) of the buoys can be optimised
in this way, but at the very least it is possible to rule out costly experiments
that appear to have little impact on our predictions for future climate.

7 Specifying the discrepancy

The climate scientist can leave the discrepancy ε∗ out of the analysis by
setting Σε = 0, which has the effect of constraining ε∗ to be 0, according to
(T2). Section 4 has already discussed why this would be a misjudgement.
This section examines Σε in more detail.

7.1 Specifying the diagonal components

The diagonal components of Σε, denoted diag(Σε), summarise the climate
scientist’s judgement about the model’s ability to replicate climate. For any
given model-output component gi(·) and matching climate component yi, the
climate scientist must specify how accurate he judges the model would be
at its ‘best’ model-input x∗. According to (S1′), this can be done without
reference to the actual value of x∗.
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Take Sea-Surface Temperature (SST), for example, at a specific spatial
location such as the Azores, and time, such as today. How accurately can we
expect the model to replicate this climate quantity at its ‘best’ input? Proba-
bly better than ±10◦C, but probably not as well as ±1◦C. For his particular
model the climate scientist might judge that a value such as

√
Σε

ii = 2◦C
would be appropriate, perhaps representing his view that

Pr
(
|ε∗i | ≤ 6◦C

)
≥ 95%,

by a statistical rule of thumb for unimodal distributions known as the 3-Sigma
Rule (Pukelsheim, 1994). Possibly the same value will do for all SSTs, or
maybe it will need to be modified by latitude. This type of reasoning about
diag(Σε) may be crude, and subject to much refinement in the future, but it
is less crude than choosing diag(Σε) = 0.

Another climate scientist might differ, and suggest a standard deviation
of 1.5◦C for the same quantity. It is natural to ask: who is right? and does
it matter? It is not necessary to compare the propriety of the two values
directly, although in some cases that may be possible. It may be easier to
investigate the impact of the different choices on the resulting climate infer-
ence: perhaps the inference is insensitive to the difference. If the difference
does matter, then diagnostics (section 5) may be able to indicate that one
value better reflects the data than the other. But there can be no certainty
of a clear-cut answer to the subtle question of which scientist to favour. One
possible response is to use the probabilistic framework to determine which
additional climate observations would best resolve the issue, perhaps using
pseudo-data (section 6).

An interesting situation arises when the climate scientist judges that our
structural choice (S1′) is not sufficiently general. This makes it difficult to
specify the diagonal and non-diagonal components of Σε because the struc-
tural framework within ε∗ is defined is inadequate. For example, suppose
it was revealed that x∗ was an extreme value in X . At an extreme model-
input value, simplifications in the model might break down or the model’s
solver might break down, both leading to a model-output g(x∗) which was
less trusted as a representation of the climate system than the output from
a central value for x∗. In this case the climate scientist might judge that
the discrepancy could be larger for extreme values of x∗. Another situation
which violates (S1′) is where the climate scientist judges (e.g., from theoret-
ical considerations) that a certain model-input value is good for predicting
one subset of the components of y and a different value is good for predict-
ing another subset: these two subsets might be differentiated by type, for
example atmospheric pressure and ocean salinity.
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In cases like these, the dependence of the climate scientist’s uncertainty
about ε∗ on the value of x∗ can be introduced into the inferential calculations
with only minor additional cost, by treating the relationship between y and
g(·) given in (3) in the more general form

y ≡ g(x∗) + Q(x∗)Tε∗

where Q(x∗) is the square-root of a specified variance matrix defined as a
function of x∗, and then ε∗ ⊥⊥ x∗ as before. In a statistically more sophis-
ticated treatment, Goldstein and Rougier (2005, 2006b) consider a general-
isation of (3) and (S1′) which may be thought of as a way to choose Q(·)
in the above expression, but which is really a more flexible framework for
specifying judgements about the relationship between the climate model and
the climate system, within which (3) and (S1′) is a special case. Goldstein
and Rougier (2006b) contains the most complete statement in the Statistics
literature on linking one or more models and the underlying system.

7.2 Specifying the off-diagonal components

The off-diagonal components of Σε summarise how the discrepancies are re-
lated across different model-outputs. If Σε

fh = 0 then inspection of (8b)
shows that the predictive mean of yf | (x∗ = x, z = z̃) is simply gf (x). But
if Σε

fh 6= 0 then non-zero components in z̃ − gh(x) modify the mean of yf

relative to gf (x). A simple way of expressing this is that the prediction in
this case can be ‘bias-correcting’.

Climate scientists tend to believe that where a climate model is in error,
it is often systematically so. If, for example, the model is revealed to have
under-represented SST in the Azores for the last twenty years, then the cli-
mate scientist might judge that there is a more-than-evens chance that this
under-representation will continue into the future. Spatially, if the model is
revealed to over-represent rainfall in northern France, the climate scientist
might judge that there is a more-than-evens chance that it over-represents
rainfall in southern France as well. There may also be other more com-
plicated types of effect: perhaps if the model over-represents temperature it
contemporaneously (or with a lag) under-represents rainfall. It is these types
of systematic error that the off-diagonal components of Σε represent.

Craig et al. (2001, p. 722) give an example of how these types of judge-
ments about systematic errors in the model may be represented in practice.
The authors consider a model of a hydrocarbon reservoir, and are concerned
with the discrepancy on well pressures, at different wells and at different
times. After a discussion with the reservoir engineers, and supported by
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data analysis on the output of a simplified (low-resolution) version of the
model, they selected a discrepancy variance of the general form

Cov (ε∗it, ε
∗
i′t′) = σ2

1 exp
{
−θ1 (t− t′)2

}
+ σ2

2 δii′ exp
{
−θ2 (t− t′)2

}
where i represents a well location and t represents time, δii′ is the Kronecker
delta function, and {σ1, σ2, θ1, θ2}, termed the the hyperparameters, have ex-
plicit values assigned. In this specification there is a time effect, which says
that discrepancies tend to extend through time, which interacts with a loca-
tion effect, which says that discrepancies at the same well tend to be more
closely related than discrepancies at different wells. This type of parameter-
isation can be fed back to the reservoir engineers as (random) realisations
of the discrepancy vector, plotted by well and by time, so that they can
get a feeling for typical behaviour, and then adjust the hyperparameters if
necessary. Craig et al. (1998) describe computer-based tools for this purpose.

The restriction that Σε be a variance matrix imposes constraints on the
type of functional forms that can be used to parameterise the covariance in
terms of properties such as type, location, and time. Choosing and quanti-
fying such parameterisations is part of Spatial Statistics (see, e.g., Cressie,
1991).

8 Computation: The role of the ensemble

This section describes how to go from a climate scientist’s posterior prediction
Pr(yf | z= z̃), given in (8), to his probability for any particular climate event.

Each climate event can be identified with a region of climate-space, and
the probability of the event is then the probability that actual climate y
falls into that region. To address the question posed at the start of the
Introduction, denote by Q the region containing all the values for y in which
global mean temperature is at least 2◦C higher in 2100. To assess the climate
scientist’s probability of the event, we integrate his posterior prediction for
y over the region Q. This is a perfectly general operation, but our Q only
involves future climate, so we can concentrate on yf rather than the whole
of y. The result is

Pr(yf ∈ Q | z= z̃) =

∫
1Q(yf ) Pr(yf | z= z̃) dyf

=

∫
1Q(yf )

∫
ϕ(yf ; x

∗) Pr(x∗ | z= z̃) dx∗ dyf

=

∫ {∫
1Q(yf ) ϕ(yf ; x

∗) dyf

}
Pr(x∗ | z= z̃) dx∗ (9)
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where 1Q(yf ) is the indicator function of the event yf ∈ Q. The first line
integrates over Q, the second line introduces the posterior prediction from
(8), writing ϕ(yf ; x

∗) for ϕ
(
yf ; µf |z(x

∗), Σf |z
)

to simplify the notation, and
the final line re-arranges this integral to express it as an expectation of a
function of x∗ with respect to the calibration distribution, (7). An interesting
feature of (9) is how the integration over climate-space is re-formulated as
an integration over model-input space, through the use of a climate model
to induce a distribution for climate itself.

Typically all model-based calculations of probabilities for climate events
will involve the type of double integral given in (9): one integral over yf , and
one over x∗. An advantage of the two tractability choices (T1) and (T2) is
that the internal integral with respect to yf can often be computed directly.
For example, if the climate scientist can arrange for one of the model’s out-
puts to correspond to global mean temperature in 2100, then the integral
of 1Q(yf ) ϕ(yf ; x

∗) is over the righthand tail of a Gaussian distribution with
known mean and variance, and this can be computed at effectively no cost.
To emphasise this we can write (9) as

Pr(yf ∈ Q | z= z̃) ≡
∫

f(x∗) Pr(x∗ | z= z̃) dx∗ (9′)

where f(x) ,
∫

1Q(yf ) ϕ(yf ; x) dyf .
The remaining integral, over x∗, is much more challenging. Resource

constraints will often prevent us from evaluating the integrand as many times
as would be required to determine Pr(y ∈ Q | z= z̃) to high accuracy. The
role of the ensemble of model evaluations is to estimate the integral over x∗

as well as possible. It follows that the choice of evaluations in the ensemble
should be guided by the principles of numerical integration, for which there
is a large literature (see, e.g., Robert and Casella, 1999; Evans and Swartz,
2000).

One possible stochastic method is Monte Carlo integration; this is not
the best method but it is one of the simplest. Treating (9′) as a statistical
expectation, we have the approximation

I(n) , n−1

n∑
i=1

f(Xi) Xi
iid∼ Pr(x∗ | z= z̃) , (10)

where the model-inputs X1, . . . , Xn are sampled independently from the cali-
bration distribution, and the model is evaluated at each set of inputs in order
to compute f(Xi). This approximation is asymptotically exact, i.e.,

lim
n→∞

I(n) = Pr(yf ∈ Q | z= z̃) ,
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by the Strong Law of Large Numbers (see, e.g., Grimmett and Stirzaker,
2001, p. 329). Therefore the value of I(n) can be thought of as an estimate
of the required probability. The problem with (10) is that we do not have
a simple way to sample from Pr(x∗ | z= z̃). We can solve this problem by
sampling from the prior distribution Pr(x∗) and then re-weighting (see, e.g.,
Smith and Gelfand, 1992). This gives a different approximation

J (n) ,
n∑

i=1

wi f(Xi) Xi
iid∼ Pr(x∗) (11a)

where
wi ∝ Pr(z= z̃ | x∗=Xi) = ϕ

(
z̃ − gh(Xi);0, Σε

hh + Σe
)
, (11b)

from (7), and
∑n

i=1 wi = 1. The distribution Pr(z= z̃ | x∗) is termed the
likelihood function of x∗, and (11) can be simply expressed as “sample from
the prior, weight by the likelihood”. The role of the climate data z = z̃ is
to up-weight model-inputs that give good matches, and down-weight those
that give bad matches. This approximation is also asymptotically exact.
Crucially, there are standard assessments of the accuracy of estimates such
as I(n) and J (n), which will depend on n.

Eq. (11) illustrates the balancing act at the heart of every model-based
inference, between the quality of the model and the accuracy of the inferential
approximation. A high-resolution model confers two advantages. First, the
prior distribution Pr(x∗) may be easier to specify, as discussed in section 4.
Second, the discrepancy variance Σε ought to be smaller, so that the induced
probability distribution for y has more physical structure; this also dimin-
ishes the sensitivity of the inference to the climate scientist’s specification
of Σε, which can be challenging. On the other hand, a long evaluation time
means that n in (11) will be small, compromising the accuracy of the proba-
bility estimate. There is a danger that climate scientists’ natural inclinations
will take them too far in the direction of model quality. A high-resolution
model that can only be evaluated once, or a handful of times, is of little use
in climate inference because the probability estimates are not reliable. One
simple expedient to illustrate this would be to require all climate scientists
who use models to publish a measure of the accuracy of their probability es-
timates, such as the 95% confidence interval. This would show in a relatively
short time where the balance ought to lie.

There are better ‘generic’ methods than simple Monte Carlo integration,
for example importance sampling with variance reduction techniques like
antithetic variables, or latin hypercube sampling. More sophisticated still,
we can use methods that allow us to exploit the particular features of our
integrand, based on our knowledge of the climate model from the evaluations
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as they become available (sequential methods), from other sets of evaluations
in related experiments, or from evaluations of other similar climate models.
It can be quite hard work designing an effective ensemble to perform a given
inference, but if a climate model takes hundreds of hours to evaluate for a
given x, then it does not seem unreasonable to spend a few hours choosing
the ensemble before the experiment starts, or choosing the next point in the
ensemble while the experiment is running. It seems almost reckless to select
each point at random using a simple Monte Carlo approach.

Choices for Pr(x∗). This paper has not made any explicit suggestions
for specifying the probabilistic framework, beyond the structural choice (S1′)
and the two tractability choices (T1) and (T2). It is pitched at a very general
level, and actual specifications will depend on both the application and the
climate scientist. However, some bad choices have been highlighted: both
Σe = 0 and Σε = 0 are bad choices, in the sense that they would seldom
represent the climate scientist’s own judgement about his data and his model.

One more bad choice should be highlighted, which is to assign x∗ a uni-
form distribution on X . This asserts that the climate scientist judges that
every value in X is an equally-good candidate for x∗, no matter whether it is
in the centre of X , or tucked into a corner. To take one example, how many
of the authors in Murphy et al. (2004) really judge that, for their model,
all values for the ‘best’ entrainment rate coefficient between 0.60 and 9.00
are equally-probable even though the standard setting is 3? Or that values
of 0.59 or 9.01 are simply impossible? If a value of 9.01 is impossible, then
common sense suggests that a value of 9.00 ought to be highly improbable,
and certainly less probable than a value of 3. So at the very least a triangular
distribution would have been more defensible.

Referring back to the discussion in section 2, there is no sense in which
any distributional choice is ‘objective’, unless it is a disinterested assessment
of uncertainty. So a simpler shape like a rectangle does not confer more
objectivity than a more complicated shape like a triangle. The only thing
that confers objectivity is a climate scientist’s ability to justify his choice
without compromising his reputation.

9 Summary: Pertinent questions

Instead of a standard summary, I offer here a selection of questions for policy-
makers to ask climate scientists, and for climate scientists to ask each other.
The purpose of the questions is to illuminate the degree to which climate
scientists have objectively quantified their uncertainty, and so to assess the
value of their probabilistic predictions as a guide to future climate.
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0. Probability. What do your probability statements about future climate
represent? Why should we believe that your probability is a better
guide to the future than someone else’s?

A good guide to the second part of this question should be found in the
answers to the following.

1. Measurements. Do you have exact observations on historical and cur-
rent climate data? If not, how have you quantified the measurement
errors? (Σe in our treatment.)

2. The ‘best’ model-input. How have you related your climate model to
the climate itself: are you adopting the ‘best’ model-input approach?
(If not, see below.) If so, do you judge that extreme values of the ‘best’
input are as likely as central values? (Pr(x∗) in our treatment.)

3. Model imperfections. Do you believe that if you knew the ‘best’ model-
input x∗, then the model-output g(x∗) would exactly replicate climate
itself? If not, how have you quantified the model’s imperfections? (Σε

in our treatment.)

4. Model validation. What diagnostics did you compute to check that your
climate data and your model are about as good as your specification
of Σe, Pr(x∗), and Σε imply?

5. Computation. How did you estimate your probability? What uncer-
tainty do you have about your estimate? Possible follow-up: Isn’t it
rather reckless to use a random design (like Monte Carlo integration)
if the model evaluations are very expensive?

Any attempt to derive model-based predictions for future climate needs
to address these same issues. The particular contribution of this paper has
been to focus on probabilistic prediction, and to channel these questions into
particular quantities, according to the probabilistic framework summarised
by the choices given in (S1′), (T1), and (T2). A climate scientist is welcome
to reject these choices as being too simplistic to represent his judgements
about the model, real climate, and the climate data. What he cannot do is
reject the probability calculus if he wants to make probabilistic predictions.
Consequently he must show, mathematically, how his more general frame-
work can be used to perform the operations of model validation, calibration
and calibrated prediction, and provide a precise statement about the role of
the ensemble of model evaluations, exactly as has been done here.
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