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Abstract

We combine the ensembles from two different experimentdudysthe
climate sensitivity of the HadSMS3 climate model subjectaogmetric un-
certainty. We use a statistical framework based arounatrdmulators,
where expert judgements are required to quantify the weiatiip between
the two ensembles. Detailed diagnostics are presented.n/Applica-
tion, we perform a sensitivity analysis for various choiogslistribution
describing parametric uncertainty.
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1. Introduction

When we use models as the basis for inference about an uimdgslystem, like cli-

mate, there are three sources of uncertainty to accountGoldétein and Rougier
2004; O’'Hagan 2006). First, there is uncertainty about tiationship between our
particular implementation of the model, which we term #firmulator, and the system
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itself. Second, there are usually measurement errors itersydata used to calibrate
the simulator. Third, there are technology and budget caimés that prevent us from
evaluating our simulator as much as we would like. In thisgrape present a statisti-
cal treatment of this third source of uncertainty, terncede uncertaintpy O’'Hagan,
which involves using the evaluations we do have to consanetmulatorfor our sim-
ulator.

In general, an emulator is a stochastic representation wfietibn; that is to say, it
allows us to predict the output of a function at any point ia ithput space. If we write
our function as

z — g(x)

where we will be treatinge as a vector of variables ang(x) as a scalar, then the
emulator ofg(-) consists of the probability distribution function

Fg(:r) (U) £ Pr(g(x) < ’U) ) (l)

that is, the probability thaj(-) when evaluated at returns a value less than

In this paper, we develop and use such an emulator to prduictesponse of a
complex climate model. The response is the equilibrium gkén globally averaged
surface temperature following a doubling of the atmosghedncentration of CQ
This quantity is referred to as ttilimate sensitivityand represents a standard bench-
mark of the response of climate to increases in greenhowussgd he climate model
consists of the HadAM3 atmospheric general circulation eh@@ope et al. 2000) cou-
pled to a simple non-dynamic mixed layer ocean, a standandpséor the simulation
of climate sensitivity. We refer to it hereafter as HadSM3.cbmmon with other cli-
mate models, HadSM3 contains many poorly constrained peteas) which represent
the effects of sub-grid scale physical processes such as ¢twmation, convection,
radiative transfer, and turbulent boundary layer mixingeréiwe use our emulator to
explore the variation of climate sensitivity accordinghiaty-one HadSM3 parameters
controlling key physical processes in the model. Thusgur is climate sensitivity,
and ourz is a thirty-one dimensional vector of the parameter valpescise definitions
are given in section 2.

For inferential purposes we would like to know the value ofi8M3’s sensitivity
at any value forc. However, HadSM3 is a very expensive model to run, and we have
available only a limited number of evaluations, at inputveslX = {z1,...,2,},
giving rise to the collection of outputg = {g(z1),...,g(z,)}. Together, we term
these theensembleof evaluationsy; X ). The key feature of an emulator is that it
guantifies the uncertainty that arises from having only atéchnumber of evalutions.
Thus if z is very close to a point; € X we might be relatively certain aboytz),
which we might expect to be close §0x;) € y. On the other hand, if is a long way
from the evaluations itX then we might expect to be very uncertain about the value of
g(z). Emulator construction is discussed in section 3.

We use an emulator wherever we would like to use the underlyindelg(-), but
are prevented for reasons of cost: if models were costlesgdluate then emulators
would be redundant. Thus the emulator can be used to answplesijuestions like “I
wonder what would happen if we evaluaigd) atz?”. The answer would be a proba-
bility distribution for g(x), which we could use directly, or which we could summarise



in terms of the mean and standard deviation, or in terms ohtmial. By extension,
we can use the emulator to analyse the impact of uncertairthyei ‘correct’ value for
x, which we might terme*. If we attach a probability distribution to*, theng(z*)
is also an uncertain value. What is often not appreciatealaisdur uncertainty about
g(z*) comes fromtwo sources: uncertainty about and uncertainty about(-). This
will be discussed in more detail in section 5, where we treatligtion as an applica-
tion of emulators. Another important role for emulatorseamhich will be the focus
of this paper, is that they allow us to combine informatioonfrdifferent but related
experiments, because they provide a natural way for us tatguaur judgement of
the degree to which the experiments are similar. Sectiorowslhow we use emulators
to combine information from two experiments on HadSM3.

One point that must be stressed right at the start is that esing probability in
this paper to quantify our uncertainty. This makes our apphd@ayesian Through-
out the paper we will be exercising our judgement to creageltidst emulator that
we can, subject to various constraints such as transpagsritiractability; we favour
these constraints because they allow our approach to blg eggslicated. In no sense
could our approach be described as ‘objective’. Where weenshbices we state them
clearly and we back them up with diagnostic information. Bt do not claim that
these choices are uniquely acceptable across the whol&emeaf climate experts,
and consequently our results are very mach results. There is no single best em-
ulator for HadSM3, and there is no single best probabilistritiution for HadSM3’s
climate sensitivity. What we aim to do here is to provide arfesvork within which
it is possible to work out a number of different choices, dhgsirate one particular
choice, namely our own.

2. Two experimentson HadSM 3

Two recent high-profile studies have attempted to quantifyuacertainty about the cli-
mate sensitivity in a C@doubling experiment using HadSM3: an atmospheric model
coupled to a mixed-layer ocean. This section outlines theseexperiments, and the
resulting ensembles of evaluations. Details of the twoisgidan be found in the origi-
nal papers and their Supplementary Information; here wensamse those aspects that
are relevant for the statistical analysis.

2a. The QUMP study

In the Quantifying Uncertainty in Model Predictions (QUM&periment of Murphy

et al. (2004), thirty-one model parameters were identifieth@ng potentially impor-
tant, out of a possible 100 or so candidates. These thirgywaiti be referred to as
variables and they are described in Table 1, which also gives the slaones by which
they will be referred in this paper. Thirteen of the variabégefactors i.e. variables
that take values in a discrete set. Most of the factors hageeld, but two have 3 levels
(GABT andNFSL) and one has 4 level$RF). Of the eighteen continuous variables,
four are contingent on the setting of certain factors; foaraple, the value oRHCV
only affects sensitivity wheRHC is ‘of f ’; these contingent variables are the reason



that Murphy et al. (2004) count twenty-nine rather thantyhone variables in their
description (they did not includ€APE and ANV).

We denote a particular choice for the values of the variaddas The sensitivity at
x was computed in a three-phase experiment. The first phasa 2@agear calibration
run to deduce the appropriate ocean heat flux convergendeddidle used in the sub-
sequent two phases. The second and third phases were rungltbreim, once with
pre-industrial CQ, and once with doubled GO Sensitivity, org(x), was defined as
the difference in global mean temperature between the seand third phases. The
choice of variables in the original study was strongly deii@eed by the initial belief
that thel/sensitivity was additive in the factors, and additive in glienterms in each
of the the continuous variables. Consequently the initrialations in the ensemble
consisted of single parameter perturbations, augmentexd fayiall number of multi-
parameter perturbations. Since that original study, weehancess to a furthé31
evaluations, all multi-parameter perturbations. The fi28 of these are described in
Webb et al. (2006). The additional evaluations were ifjtiehosen to restore balance
to the overall ensemble, and then subsequently to popidgiens of the parameter
space which were thought to have important interactiongséltan be added directly
to the original ensemble, to give tB87 evaluations that we use in this paper.

2b. The CPNET study

Here we focus on the differences between QUMP and:thierrat eprediction net
(CPNET) experiment of Stainforth et al. (2005). The CPNHEIdgtvaried six of the
continuous variables, used in the processes for large sloalds and convection. Their
ensemble comprises a factorial design with five variabléisrae levels\F1, CT, CW
RHCV, ENT; RHC was always ‘Off’) and one at two level€FS). All the other vari-
ables in Table 1 are set at their standard values. Howewveln,.ewvas evaluated with
a number of different initial conditions, introducing aisttured source of uncertainty
that is not present in the QUMP study. On analysing the CPN& &, dve find that the
choice of initial condition does not appear to be predidyiv@portant, and so we pool
the evaluations across the initial conditions, effectidiscarding the extra informa-
tion that is present in the choice of initial conditions; mgar approach was used in
the CPNET study, where different initial conditions for tsemer were averaged, to
reduce variability.

The CPNET study adopted a Public Resource Distributed Ctingp(PRDC) ap-
proach, performing thousands of evaluations using sparkesyn volunteers’ home
and office computers. Within this approach it was not feasiblintegrate HadSM3
to equilibrium twice. Instead, three phases of fifteen yeaich were used. The third
phase in particular was too short to establish equilibriand so an exponential curve
was fitted to global mean temperature in this phase, and tktempelated to its hori-
zontal asymptote to give a point value for sensitivity. Camipg these simplifications
with the QUMP study, assisted by some direct comparisongudge that there are
sufficient differences that it is not possible to combinetiie ensembles directly, or
indirectly by reweighting the CPNET ensemble, but that theyin fact two different
but related experiments. This informs our statistical nidtechoices in section 4.

In our sample from the CPNET study we have a totaBdfx 2! = 486 dis-



Table 1: Description of the QUMP variables. Comparable taphy et al. (2004),
Supplementary Information, Table 2. Values in parenthgsiisate ‘low’, ‘intermedi-
ate’ and ‘high’ values of continuous variables. Values nqiarentheses indicate levels
of discrete variables, dactors Bold values indicate the standard setting. Variables
with short names followed byt* are also used in CPNET.

Parameter / Property Values Short name  Only when:

Large-scale cloud

Vi1 (ms™) (0.5,1, 2) VF1+t

Cy (x107*s™1) (0.5,1, 4) CTy

C\ (land, x10™% kg m—3) (1,2, 10) CW
Flow-dependenRhit Off, On RHC

Rherit (0.6,0.7,0.9) RHCVY RHC ‘Off’
Cloud fraction at saturation (%) 06, 0.7, 0.8) CFSt

Vertical gradient of cloud water Off, On VGCW

Convection

Entrainment rate coefficient (0.8,9) ENTT

CAPE closure Off, On CAPE

CAPE closure time-scale (hrs) 1,2,4) CAPEV CAPE ‘On’
Convective anvils Off, On ANV

Convective anvils, shape 1,2,3) ANVS ANV ‘On’
Convective anvils, updraught (0.1,0.5,1) ANVU ANV ‘On’
Seaice

Sea ice albedo (&°C) (0.50,0.57,0.65) SIA

Ocean-ice diffusion%10~*m?s™1) (0.25,1.003.75) O D

Radiation

Ice particle sizem) (25,30, 40) I PS

Non-spherical ice particles Off, On NSI P

Shortwave water vapour continuum Off, On SW

absorption

Sulphur cycle Off, On SCYC

Dynamics

Order of diffusion operator i3] obD

Diffusion e-folding time (hrs) (612, 24) DDTS

Starting level, gravity wave drag 3,4,5 GW\ST

Surface gravity wave wavelength (0 m) (1,1.5,2) GWAL

Land surface

Surface-canopy energy exchange Off, On SCEE
Forest-roughness lengths 1,2,3,4 FRF

Dependence of stomatal conductance o, C@ff, On STOM

Number of forest soil levels for 1,2,3 NFSL

evapotranspiration (grass)

Boundary layer

Charnock constantq(10~3) (12, 16, 20) CHAR
Free convective roughness length over sea (2, 13, 50) FCRL
(x10~*m)

Boundary layer flux profile¢zo (5, 10, 20) BLFP

Asymptotic neutral mixing lengthy (x1072) 55, 15, 50) ANML
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Figure 1: The main stages of our approach for combining mftion from the CPNET
and QUMP ensembles into an emulator for QUMP sensitivity.

tinguishable evaluations (in terms of thevalues), and®377 evaluations overall (ac-
counting for variations in the initial conditions). Many tifese produced unstable or
non-physical responses, particularly cooling (‘driftersVe choose to omit the drifters
in the CPNET study in the same way as Stainforth et al. (2086)ne of the QUMP
evaluations also display this type of cooling in the earfgsts, but so far all of these
have equilibriated and thx CO, run always remains warmer than the< CO, run,
both of which start from the end point of the calibration phas

2c. Outline of our approach

The two studies outlined in this section have different buhplementary strengths.
The QUMP study has a ‘standard’ definition for sensitivitydgrovides greater flexi-
bility for future inferences through its large number ofianles. The CPNET study, on
the other hand, has a more detailed analysis over six of thet imgortant variables.
Our intention is to combine the ensembles from these twdesudto an emulator for
QUMP sensitivity defined over the full set of thirty-one \ables.

As already described, an emulator is a probability distidwufunction F ), as
defined in (1). There are many ways of coming up with such atfangin aBayesian
emulatorwe probabilistically condition our beliefs abouf-) on the observations in
the ensemble. Therefore a Bayesian emulator combines turees® of information:
prior judgements abouf(-), and data from evaluations in the ensembleX). The
main stages of our approach are summarised in Figure 1. Hable two studies re-
quires a different emulator, because of the different déding of sensitivity. For the
CPNET emulator we have plentiful information from the CPNEfisemble, which
comprisesi21 evaluations in a six-dimensional space. Therefore we siint only



vague prior information, because we are content to let tf@rnmation from the en-
semble dominate. For the QUMP emulator, on the other handyave only limited
information in the ensemble$7 evaluations in &1-dimensional space). Therefore
we combine this with detailed prior information taken fronetCPNET emulator, and
from our judgement concerning the similarity of the CPNET® &UMP definitions of
sensitivity. Figure 1 also shows two diagnostic loops: welier we have data, we can
investigate the propriety of our choices and, to a limiteteek we can modify those
choices. This is discussed in more detail in section 4d.

3. Building an emulator from the CPNET ensemble

We illustrate our approach, as outlined in Figure 1, in tieist®n and the next. In this
section we develop an emulator for CPNET sensitivity witbwaprior information. In
section 3a we describe a simple and general framework faifgjpeg an emulator, and
in section 3b we make specific choices within that frameworanstruct an emulator
for CPNET sensitivity.

3a. A general Bayesian emulator

We describe here a simple Bayesian treatment of the emuldlerimpose a certain
structure on the general problem of constructing an emglasathis helps us to define
clearly the choices we must make. The emulator is written

g9(x) = h(z)" 5 + u(x) (2)

whereg(x) is the climate sensitivity of our simulator, or some monatdransforma-
tion of the same, termed thesponsgeh(-) is a known vector-valued function of the
variables, collectively termed thegressors 3 is an unknown vector ofregression)
coefficientsandu(x) is a scalar random field, termed tresidual Within the regres-
sors we would expect to include non-linear functions of tagables, such as;? or
x; X x;. We must use our judgement, in conjunction with the data eipassible,
to make choices for the transformationggf) and the components éf(-): statistical
model choice is a subtle balancing-act between fidelityiefiicy and ‘interpretability’—
much the same is true of building climate models. The chgldmecomes greater as
the number of components ingoes up, because the range of possible terms for in-
clusion among the regressors becomes much larger, andoitrteecdifficult to contrast
alternative choices in terms of standard diagnostics Estdual behaviour.

In our ensembley is ann-vector of climate sensitivities, possibly transformentia
X is then x p design matrix in which rowi comprises the values of the variables in
thes™ evaluation in the ensemble. From this design matrix we campte then x &
regression matrix!, where row; of H comprisesi(X;)”. For our given choice for the
response and the regressors, we make the following additbtwices for the structure
of the residual, which serve to simplify the analysis. Fitgt) has zero mean and
a constant unknown variance?; second, the correlation length afz) at anyx is
short compared with the inter-point distances in our endepgo that we may treat
the observed values of the residual as independent for tip@pes of constructing the



emulator (in spatial statistics this type of residual issaftermed a ‘nugget’); third,
u(-) is agaussiarrandom field for givers2.

These choices allow us to use the standamjugateanalysis, i.e. an analysis where
the prior and the posterior come from the same family of tigtions, so that the
update may be described in terms of alterations to disiobat parameters. From
this we can derive a simple expression for the distributiamctionF .y based on our
ensemblgy; X)) and our prior assessment of uncertainty concerning thenpeters
(8,02). The treatment of the residual as a nugget is non-standagdhrifcally it
is inconsistent with the fact thaf(-) is a deterministic continuous function, at least
on part of its domain, because it prevents Ggft), g(z’)) — 1 asz — z’. Our
attitude is that as long as the residual does not play a laageipthe emulator, this
type of misspecification is unlikely to be predictively inrsmt. In our emulators of
QUMP sensitivity we find that the regressifif is at leasp0% and typically more than
95%. The corresponding?? values for CPNET are lowei7(—90%), but we are less
concerned about the residual behaviour in the CPNET emula¢gause the CPNET
ensemble is less intensively used. There is an extengvatiitre on more general types
of emulator (see, e.g., Currin et al. 1991; O’'Hagan et al918®nnedy and O’'Hagan
2001; Craig et al. 2001; Santner et al. 2003), and these ¢onsileould be deployed in
our approach, but only at the expense of much more intri¢atesscal modelling.

The following outline of the conjugate analysis follows thetation of O’Hagan
and Forster (2004, ch. 11). Our prior f68, 0%} is Normal-Inverse-Gamma (NIG)

(8,0°) ~NIG(a,d, m, V) (3a)
or, equivalently,
Blo* ~Ni(m,0*V) and o®~IG(a,d) (3b)

where |’ denotes ‘conditional uponN () denotes th&-dimensional Gaussian distri-
bution, andG () the scalar Inverse Gamma distribution; we must specify ttlection
{a,d, m,V}, termed théhyperparametersVe have some concerns about the shape of
the NIG prior as a representation of our beliefs (e.g., itas possible to specify that
3 and ¢? are probabilistically independent, except in the non-imfative case that
will be presented below in section 3b), and we adopt it heoabse in our judgement
these concerns are outweighed by its tractability; O’Hagyaeh Forster (2004, second
half of ch. 11) discuss the shape of the NIG distribution itadeand present various
generalisations.

We update using our ensemble by applying Bayes’s theorenpdhterior distribu-
tion {3,0%} | (y; X) remains NIG, with updated parametdrs’, d*, m*, V*}, where

V*E(V '+ HTH)™ !, (4a)
m* 2 VHV "l 4 HTy), (4b)
a* 2 a+m"V i im4yTy — (mH)T(VF) " im*, (4c)
andd* £ d+n (4d)



(O’Hagan and Forster 2004, sec. 11.10). For our emulatoyseehe posterior predic-
tive distribution forg(z) at knownz, which is univariate Studerit-

g(x) ~ tg-(h(2)"m*, (a*/d")w* (z)) ()
providing thatr ¢ X, wherew*(z) £ h(x)"V*h(x) + 1. For clarity (5) states that
g(x) — h(z)"m*

(a*/d*)w*(x)
has a standard Studenthistribution withd* degrees of freedom, and

*

E(g(;L)) = h(z)™m*, Var(g(x)) = d*a_ 2w*(9c)

Standard statistical software can compute the distributimction I,y (v) for any =
andw. All the calculations in this paper were performed usingdtadistical computing
environmenR (R Development Core Team 2004).

Therefore the problem of building an emulator fgf) using the ensembley; X)
has been restructured to the problem of choosing a transtismfor sensitivity, a
collection of regressork(-), and, conditional on these choices, specifying the hyper-
parameterga, d, m, V'} in the NIG prior for{3,o2}. The two ‘big’ choices that we
have made in this framework are to treat the residual as aetuggd to adopt a NIG
prior. We would be interested in tractable generalisatimfresther of these choices, but
we are satisfied that these are reasonable choices for thlisaipn, not justa priori,
but also in the light of the diagnostic information preseirtelow.

3b. Building the CPNET emulator

As explained in section 2c, and illustrated in Figure 1, we @oing to simplify the
construction of our CPNET emulator by adopting vague priglidfs, which in terms
of the framework from section 3a are vague prior beliefs a§ouo?}, as summarised
in the hyperparametets:, d, m, V'}. The standaraon-informative priorhasa = 0,

d = —k wherek is the number of regressor functions/ifr), andV —! = 0 (O’'Hagan
and Forster 2004, sec. 11.17-11.19). In this case the parstistribution for3 | o2
has the classical Ordinary Least Squares (OLS) form—as eaeén from inspection
of the updating relations in (4)—although the interpretatis a little different, being
Bayesian rather than Frequentist. In particular, the odefit standard deviations are
direct statements of coefficient uncertainty, rather tretaridard errors’ arising from
a repeated-sampling approach that considers the data¢harngo be the source of
‘randomisation’ (a nonsensical concept in this context)this paper, when we refer
to, say, a 90% CI we are referring to a 90% ‘Credible Intervalfi interval defined by
the 5" and95™ percentiles of the distribution of the coefficient, gtr), or any other
uncertain quantity (O’Hagan and Forster 2004, sec. 2.51).

With this prior, we deploy exactly the same techniques thatld/be used in a stan-
dard analysis to fit an OLS regression (see, e.g., Draper anith $998). In particular,
we choose the transformationgfnd the regressors together, and we use the residuals
for diagnostic information. The QUMP authors, who explicitonstruct an emulator



for their analysis, choose the transformatibfy, based on a general view across the
modelling community that this function has a simpler additstructure in terms of
the variables. This would only be a reasonable transfoonatinegative values for
sensitivity were judged highly unlikely at any because otherwise it would introduce
an extreme discontinuity at zero. We subscribe to this view,we will investigate a
wider range of possible power-transformations, includmmglogarithm, using the Box
and Cox (1964) approach (see, e.g., Draper and Smith 19881 32).

For the regressors, the QUMP authors chose linear addéivest for the factors
and piecewise linear terms for the continuous variables. villereplace the piece-
wise linear terms with quadratics—which requires the sammbrer of regression
coefficients—as there is no compelling reason to think that $M3 has a discon-
tinuous first derivative at the standard setting of its y@lga. We also choose to take
logarithms of some of the continuous variables, namelyatfos which the intervals
in Table 1 have strong positive skewness; this slightly iowps the fit of the emulator
and reduces the role of the squared terms, making it easietérpret the emulator
coefficients (given below in Table 2). The variables transfed in this way aré&/F1,
CT, CWENT, DDTS, FCRL, BLFP andANM_; only the first three of these are relevant
for the CPNET study.

We would like our emulator to include interactions among vheables. In the
QUMP study it was not possible to estimate interactions ftlo@single-parameter per-
turbation ensemble, but they were found to be influential®NET. Our general strat-
egy regarding interactions is to treat the different phgigirocesses as non-interacting
(these processes are shown in Table 1), but to include otters within each process.
Our starting point is to include all two-way interactiongfire five CPNET variables in
the ‘Large Scale Cloud’ block, giving a total of

1464+ (6—1)+5x4/2 =22
—— N——_——
linear and quad. two-way int.

regression coefficients. Th&— 1 is for the quadratic terms: we cannot estimate a
quadratic forCFS because it only has two levels in the CPNET ensemble. For the
same reason we cannot estimate cubic or higher effects iroaithe variables. A
statistician would not have recommended this type of defsigthe CPNET study, or,
indeed, recommended single-parameter perturbationbé0QUMP study, although it
must be borne in mind that these types of ensemble study gitterfulfil a number of
different and not necessarily compatible objectives.

Based on this regression, the Box-Cox approach indicasgddh(y) is a good
choice for the transformation of the response; the typicajdlostic for this approach
is shown in Figure 2. This is a fortuitous outcome, becaugeghrticular transfor-
mation automatically assigns zero probability to negagmesitivities in the predictive
distribution of the emulator. In an earlier analysis theipeacal had been favoured,
which required us to truncate the predictive distributiorhis truncation was not a
particularly elegant solution, but in practice it madddittlifference because for most
values ofz, almost all of the probability mass in the predictive distition was above
zero.

We do notwant to rule out the possibility of higher-ordeeirtctions as well. There

10
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are too many of these to include them all up to a given ordet,sanwe use forward
stepwise regression based on the Akaike Information @GoitefAIC) (see, e.g. Draper
and Smith 1998, ch. 15) to identify the most important termsag all possible two-,
three- and four-way interactions, including interactidretweenENT and the ‘large
Scale Cloud’ variables. We do not have strong views abouptigence or absence of
interactions among these six variables, and so this sinmuldairly standard technique
seems adequate; had we stronger views we could have adopssetaian hierarchical
approach (see, e.g., Chipman et al. 1997). We find fifteehdurhteractions, namely
(in order of acceptanceRHCV: ENT, CT: ENT, CW ENT, CFS: ENT, CT: CW ENT,
CT: CW CFS, CT: CW RHCV, CW RHCV: ENT, CT: RHCV: ENT, CT: CFS: ENT, VF1: ENT,
VF1: RHCV: ENT,VF1: CW ENT, VF1: CT: CWandVF1: CT: ENT. We include these
higher-order interactions in(-), but we do not include any others. This gives a total
of 37 regressor functions ih(-), including the intercept.

As they may be of some independent interest, the regressiefficients for our
CPNET emulator are given in Table 2, along with their staddigviations. The six
variables have been re-scaled to lie in the closed intérval1], according to the min-
imum and maximum values given in Table 1; this range was c¢hasther than, say,
the original units of0, 1], because it makes the linear and quadratic functions orthog
onal with respect to a uniform weighting function. There soene influential two-way
interactions, and the three-way interactions tend to bedinee size as the typical two-
way interactions. There is strong evidence here for the apae of interactions in
determining HadSM3's sensitivity.

4. An emulator for QUM P sensitivity

Having built an emulator for CPNET sensitivity, we turn now using this emula-
tor as prior information for our emulator for QUMP sensitivi We approach this in
two stages. First, we construct a prior emulator for QUMPsgesity. Initially, we
must choose a collection of regressors for the QUMP emulatwse will be a su-
perset of the regressors for the CPNET emulator, as QUMPWesy-five additional
variables. Our prior beliefs about QUMP sensitivity arertlsammarised in terms of
hyperparametera, b, m, V'}. With the CPNET emulator these hyperparameters took
non-informative values, but for the QUMP emulator they Wwélve informative values
based on the updated hyperparameters from the CPNET ematadoon our judge-
ment regarding the similarity of the CPNET and QUMP senisiéis. The way we
choose to quantify these judgements is discussed in setthion

In the second stage we will update these parameters usinQuh¢P ensemble
to give us the posterior valugs*, b*, m*, V*}. These form the basis of our QUMP
emulator.

4a. The regressors

For our QUMP emulator regressors, we start with all thoseesgprs in the CPNET
emulator 87 in number) plus the missing quadratic ternJRS. We add all the factors
from the QUMP study, and linear and quadratic terms for tive centinuous variables.
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Table 2: Coefficients from the CPNET emulator10?). VF1, CT and CWare in
logarithms, and all variables are standardised to thevatér1,1]. Linear terms are
shown ag, interactions agé\: B or A: B: C, and quadratic terms & A. The response
is log(sensitivity) and theR? is 0.87.

Regressor Mean  St.dev| Regressor Mean  St. dev.
(I'ntercept) 11478 30.4 CW RHCV —78.7 12.2
VF1 —158.7 11.5 CW CFS —17.2 13.9
CcT 283.1 13.0 RHCV: CFS 21.6 13.9
Cw —142.3 12.2 RHCV: ENT —92.2 13.3
RHCV 70.5 12.1 CT: ENT —138.5 15.3
CFS —166.0 12.8 CW ENT 86.3 12.8
ENT —149.0 13.1 CFS: ENT 85.0 14.7
VF1: VF1 46.6 15.9 VF1: ENT —28.4 12.8
CT: CT —88.6 18.8 CT: CW ENT —178.6 13.9
CW CW —66.5 22.8 CT: CW CFS —45.0 16.3
RHCV: RHCV —4.8 17.8 CT: CW RHCV 48.0 13.5
ENT: ENT 239.0 16.3 CW RHCV: ENT 42.8 15.2
VF1: CT —21.8 11.8 CT: RHCV: ENT —35.7 14.4
VF1: CW 25.6 114 CT: CFS: ENT —52.1 17.6
VF1: RHCV —27.6 11.5 VF1: RHCV: ENT 61.1 14.5
VF1: CFS 3.0 13.8 VF1: CW ENT —35.5 14.2
CT: W 56.8 13.8 VF1: CT: CW —24.6 13.2
CT: RHCV 84.8 12.2 VF1: CT: ENT —23.9 14.0
CT: CFS 25.4 15.0
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We would also like to include some additional two-way inttians. As outlined in
section 3b, we choose to include all two-way interactiortbiwieach physical process,
but we do not include any interactions between processeshbse betwee&NT and
the ‘Large Scale Cloud’ variables from the CPNET emulatakén together this gives

37T4+14+10x142x2+1x3+ 12x2 4+104+12+14+64+94+17+6 =140
~——

QUMP factors new cont. vars new interactions

coefficients. Not all interactions are possible; &HC: RHCV is not possible because
RHCV is only effective wherRHC is ‘Off’. The physical process ‘Dynamics’ hds
interactions becaus@/\ST is a three-level factor; likewise ‘Land Surface’ hgsinter-
actions becaudeRF is a four-level factor an®lFSL is a three-level factor.

4b. Linking matched coefficients

When constructing our prior for the QUMP emulator coeffitgewe distinguish be-
tween matched coefficients and new coefficients. The matcbefficients have a di-
rect counterpart in the CPNET emulator. For example, thdficants onENT and
ENT: ENT in the QUMP emulator match to corresponding coefficienthen@PNET
emulator, but the coefficient dnPS in the QUMP emulator is a new coefficient, be-
causd PSwas not varied in the CPNET study, so that it does not featutted CPNET
emulator, except through its contribution to the constant.

We can express the extent to which we think that CPNET seitgiand QUMP
sensitivity are the same by specifying the degree to whiehntlatched QUMP emu-
lator coefficients are likely to deviate from their countas in the CPNET emulator.
To quantify the relation between individual pairs of mathweefficients we use the
general framework

Bi—ci=1+w) (B —ci)+ (ry/ri) vi (6)

where3? and 3; are matched coefficients in the CPNET and QUMP emulators, re-
spectively. Our uncertainty aboy is induced by our uncertainty abogdf, and by

the choices we make for the various terms on the rightharel&id6). Two of these
terms are straightforward:, is the typical scale of the transformed response, and
the typical scale of the regressor. These are included sovthaan treat botty; andy;

as scale-free, remembering that the unitgdfaind3; are ‘response units per regressor
units’. This makes it reasonable to use the same choicesta all the matched coef-
ficients, if we so choose. The third term,is a centring term for the two coefficients;
for this application we will choose; = 0 for all coefficients, but in other applications

a non-zero value might be preferred (see, e.g. GoldsteirRangier 2006).

The two Greek termsy; andv;, are the most important in (6). They represent
independent mean-zero uncertain quantities, for which wstspecify standard devi-
ations. We will want to set S@;) small, so just for the moment we treatas zero.

In that case S@v;) controls the probability that; — c; has a different sign t6? — c;.
Setting Sdw;) small relative tol would be akin to stating that; and 3{ were very
similar. For example, setting $d;) = 1/4 would state that a change of sign in go-
ing from 89 — ¢; to 3; — ¢; was judged to be a four-standard-deviation event; crudely,
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to have a probability of less than 3%¢df; is unimodal (Pukelsheim 1994), we term
this ‘very unlikely’. This is the value that we will chooserfall matched coefficients.
The second Greek termm,, is included to ensure thdt can be uncertain even when
Y equalse; with probability one. A small value is appropriate here, avel choose
Sd(v;) = 1/20 for all matched coefficients. With this value is is very uelikthat re-
gressor will explain more than one-fifth of the range of the QUMP entotaesponse
in the case wherg? = ¢;.

4c. The rest of the prior emulator

The choices we make forn;, Sdw;) and Sdv;) in section 4b allow us to infer the
mean vector and the variance matrix of the matched coeftgienthe QUMP prior
emulator from the mean vector and variance matrix of theasponding coefficients in
the CPNET emulator. Before we can translate those into gd@réhe hyperparameters
m andX we must think about the residual process in the QUMP emulator

We believe that the residual variance for the QUMP prior extarlwill be less than
that of the CPNET emulator, because the recorded value sitsély in the CPNET
study includes an extra source of uncertainty, namely tlyenptotic approximation
to the equilibrium value. Therefore, for’ in the QUMP prior emulator we choose a
mean value half of that from the CPNET emulator, and choodaradard deviation
equal to the mean, to preserve a large amount of uncertdiotyanslate these choices
into values for{a,d} we need to know that the marginal distribution @t in the
NIG distribution isIG(a, d), and that the mean and variance of this distribution are
given bya/(d — 2) and2a?/{(d — 2)? (d — 4)}, respectively. Denoting the CPNET
hyperparameters with a subscript,'we can compute the mean valuewf from the
CPNET emulator ag? £ ao/(dy — 2). Then we can solve/(d — 2) = s3/2 and
2a?/{(d — 2)* (d — 4)} = (s3/2)? simultaneously fofa, d}. This givess? = 0.023,

a = 0.035andd = 5.

Once we have computdd, d}, we can use these two values along with the values
{ao, do, mg, Vo } to compute the mean and variance of the matched coefficienitei
QUMP emulator. We need to know that the marginal distributod 3 in the NIG
distribution is multivariate Studerit-and that the mean and variance of this distribution
are given bym and{a/(d — 2)}V, respectively. Then it is a simple matter to compute
the mean and variance ¢f, the CPNET emulator coefficients, use (6) to map these
into a mean and variance fgt, the QUMP prior emulator matched coefficients, and
then infer{m, V'} from the values of«, d} that we computed above.

The only thing left to specify is a prior mean and variancetf@ unmatched coef-
ficients in the QUMP emulator. These are the coefficients gressors that do not
appear in the CPNET emulator. For these coefficients we usgngefvork similar to
(6), namely

Bi = (ry/7i) Vi - (7)

This is just a way of assigning an uncertainty to each unneat¢h in terms of the
scale-free quantity Sa;). We have to decide how much of the response range we
believe these additional regressor terms can explain. Buice is Sqv;) = 1/16 for

all the new coefficients, so that it is very unlikely that agdenregressor can explain
more than a quarter of the range of the response.
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4d. Prior diagnostics

We have used the CPNET ensemble in two ways in constructingmar emulator
for the QUMP experiment. We have usednitlirectly, to select the transformation of
the response and to identify important third-order intécars in the Large-scale cloud
parameters and the entrainment rate coefficient. We hao@iatd idirectly, to choose
the prior hyperparameters of the matched coefficients. éndtter we have assigned
specific values to quite imprecisely defined quantities. riricieal world we would
arrive at such values through introspection, but in pradtics impossible in a detailed
analysis not to incorporate some trial-and-error. For examoriginally, we had larger
values for S@w;) and Sdv;), because at that stage we were screening out fewer of the
drifters from the CPNET experiment. These choices werediyogatisfactory in terms
of the diagnostics described below. Now we have decidedreescout more of the
drifters (see section 2b), we modify our choices, but we oaescape the knowledge
of how our previous choices performed. Statistical purigtsild regard this as a form
of double-counting (the data influencing the prior), but aenoragmatic view is that
simple revisions of this kind, taking care to avoid ‘ovetifig’, tend to approximate an
informal type of higher-order learning that we have choseftainclude in the formal
analysis.

Our main diagnostic is to use our QUMP prior emulator to pretlie evaluations
in the QUMP ensemble. Each individual prediction, takengimally, has a Student-
distribution, as given in (5). In Figure 3 we show 2dl7 predictions, in terms of their
median and 95% CI, and we also show the actual value in eaeh Tag predictions
are ordered by the median, which allows us to confirm that ssessment of the hyper-
parameters has some predictive power; i.e. that our piedsare not insensitive to the
values forz. We can also confirm that there is no apparent systematipraigiction,
with respect to the response. This diagnostic suggestsmbdiave over-stated un-
certainty, as alR97 values are well within the 95% CI that we predict. We could if
we so chose, impose constraints on (ygr)), and use these to modify our statistical
modelling of NIG hyperparameters suchds However, we are comfortable with the
general principles we have adopted in setting the priotfer@QUMP emulator, and we
prefer to leave things as they are, rather than to risk thpisias that we have in any
way over-tuned our prior.

Note that the cluster of low-dispersion points on the lefithgide of the bottom
panel of Figure 3 correspond to the fifty or so single-par@mpérturbations in the
QUMP ensemble. We interpret the low dispersion of thesetpa@a evidence for the
importance of interactions among the variables in deteimgiQUMP sensitivity.

4e. Updating the QUMP emulator

Updating the QUMP emulator is a very simple process, follayhe rules givenin (4).
This updated emulator will be used in in an application intisecs; it is not detailed
here because it has a large number of coefficients. It is afsomative to investigate
the ways in which the coefficients change following the update have done this but
do not presented our results here for reasons of space.

We now have access to a second set of diagnostics, thatigatesthe posterior
predictive properties of the QUMP emulator. One such diatjnds broadly compara-
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Figure 4: Posterior prediction ‘leave-one-out’ diagnostiowing, for each evaluation
in the QUMP ensemble, the posterior median and 95% CI aftgatimg with the other
296 evaluations. The evaluations are ordered by the medikme that the vertical
scale differs from that in Figure 3.

ble with the univariate prior prediction given in Figure &etleave-one-out diagnostic.
In this case we update the emulator with all but one evalodtam the QUMP ensem-
ble, and then predict that evaluation. We can do this witB®llevaluations; the result
is shown in Figure 4. In alll5 of the297 actual values folog(sensitivity) lie outside
the 95% CI of the posterior prediction. In terms of the binahnodel, the probability
of observingl5 or fewer successes out 297 independentrials withp = 0.05is 0.58,
i.e. not unusual and therefore supportive of our statiktizadelling choices; this is
only suggestive, however, as our trials are not indepentientiuse the predictions are
correlated across the ensemble members.

A sterner diagnostic is to consider the multivariate bebawiof a collection of
predictions, taking this correlation into account. Fostpurpose we selett0 evalua-
tions, and update using the othef7 (‘leave-150-out’). The joint distribution of alll 50
predictions after updating should be multivariate Stugesayy 50 ~ tg (u, E). It fol-
lows thaty/s, = Q=7 (y150 — 1) should have distributiot (0, I), whereQ™Q = %;
i.e., should have uncorrelated standardised componeidsreF5 show the result of
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one such random sample as a Quantile-Quantile plot (QQ;@lot a histogram with
the standard Studemtdensity overlaid: this is a fairly typical pattern acros§etient
possible random samples. Here it is clear from the QQ-pl@iiriicular that there is
some mis-fitting, but the differences appear to be relatinghor. These diagnostics
appear to be broadly supportive of our statistical modgltéhoices.

5. The predictive distribution of sensitivity

We present here one application of our QUMP emulator: ptedjcsensitivity tak-
ing account of uncertainty in the correct parametrisatibthe HadSM3 simulator.
The notion of correct parameter values in this context,acaltth widely used, is not
straightforward, and has received some attention in thisstas literature on computer
experiments (see, e.g., Kennedy and O’Hagan 2001; Craig 20@1; Goldstein and
Rougier 2004, 2006); Rougier (2006) discusses the morerglsygproach in the con-
text of ensemble-based climate prediction. For simpljeity proceed on the basis that
such values exist. We defing as the vector of correct values, and we use the distribu-
tion function F,- to describe our uncertainty abatit. Our purpose in this section is
not to come up with a ‘better’ prediction for climate sensiti than the model-based
predictions currently in the literature, but simply to éfarthat such a notion would
require a consensus abdd:: something that does not currently exist.

5a. Estimating the predictive distribution

Our objective is to compute the (cumulative) distributiamétion fors £ g(z*),
namely
Fs(v) 2 Pr(6 < wv) = / 1(g(z) <v) dF,-(z) (8)

wherel(-) is the indicator function. The notatiofi- - - dF,- (x) denotes d.ebesgue-
Stieltjesintegral, which generalises the idea of expectation taigelrandom quantities
such asz* which include both discrete and continuous components ge, Ross
1988, sec. 7.9). For any given value far(8) simply sums the probability content
of the region of the input space for which < v; i.e. our uncertainty about is a
consequence of our uncertainty abatit This is referred to as thprior predictive
distribution for §, the “prior” in this case indicating “prior to the inclusiasf actual
system data (possibly measured with error) for calibragiorposes”. In this paper we
will not be considering the effect of calibration, and so waymefer without ambiguity
to (8) as thepredictive distribution

One way to calculate (8)—in principle—is by simple Monte IGantegration, i.e.
to compute

FP () 207y 1y < v) 9)
=1
whereX £ {xy,...,x,} are sampled independently from the distributiBp., the

climate simulator is evaluated at each andy; is the result in each case. By the
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Figure 5: Joint diagnostics from the prediction of a randamgle of 150 members of
the QUMP ensemble. The theoretical distribution in eacle aa standard Student-
with 152 degrees of freedom (effectively, a gaussian distribution)
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Strong Law of Large Numbers (see, e.g., Grimmett and StegrzaR01, sec. 7.4),

Tim F" (v) = Fs(v).
This is the ‘standard’ approach to ensemble experimenttirimate; the ensemble is
used directly in the resulting inference. In many problehm,vever,F(;(")(-) will be
a very uncertain approximation because of limitations mdlze ofn, the number of
evaluations in the ensemble. For example, a back-of-threlepe calculation suggests
that withn = 297, Monte Carlo probability estimates will be accurate to aho6%.
Itis also a very restrictive approach, because it requireghsemble to have been sam-
pled according to a specific distribution. An alternativergach is to use the ensemble
to construct an emulator f@r(-). Then we replace(-) in (8) with our emulator, which
gives

Fs(0) = [ Fy)(0)dFye (o) (10)

(without getting into technicalities). This is a simple gealisation of (8) in which
the indicator functiorl (g(a:) < v) is replaced with the appropriate probability. In the
limit as the number of evaluations in our ensemble beconmgs lee have . (v) —
1(g(z) < v) because it becomes more and more likely that somewhere ensemble
we have actually evaluated that particular choice:pénd so our emulator becomes
more and more like a simple look-up table. But the importaaitdire of (10) is that
it allows us to incorporate our uncertainty abaut) in the more usual case where
we have only a small collection of evaluations in our ensemblow our uncertainty
aboutd is a consequence of our uncertainty abgtiand our uncertainty abouj(-);
this latter source of uncertainty only tends to zero if thenber of evaluations in our
ensemble becomes very large.

We can compute (10) using the same Monte Carlo approach ghave, giving an
estimate

Fy™ (v) £ ‘12 s (v (11)

wherez!, ...,z are sampled fron¥ - as before. The primes indicate that these are
not the samer values as we have evaluated in our ensenibleln this case we can
havem > n, wheren is the number of evaluations in the ensemble. We can make
as large as necessary to achieve a good estimdif, dfecause each evaluation of the
integrand is the calculation of a distribution functiontheer than an evaluation of the
simulator. But it is important to bear in mind that this adizge has been purchased
with the choices that we must make in order to construct thelaor and derive the
distribution functionF, .. Hence the importance of the emulator diagnostics.

By the same token, we do not select our ensemble on the batbie dfstribution
function F., but rather in order to build as accurate an emulator as plessiThis
might mean, for example, over-sampling components afhich are thought to be
important for determining sensitivity. These types of deoare discussed in the ex-
tensive literature on Bayesian experimental design (sge, @haloner and Verdinelli
1995), and there is also a literature on the particular featof design for computer
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experiments (see, e.g., McKay et al. 1979; Sacks et al. I8&js and Mitchell 1995;
Koehler and Owen 1996).

Note that simple Monte Carlo integration is a very crude apph to determining
the value ofFs(v). More sophisticated statistical approaches, such as liapoe Sam-
pling with variance reduction techniques or Markov chainf#oCarlo (MCMC), will
be necessary in more complicated problems; these are destuis, e.g., Evans and
Swartz (2000) or Robert and Casella (1999). We will use sinipbnte Carlo integra-
tion because our application is straightforward, and we tivadm = 102 is sufficient,
and only takes a few seconds.

5b. Investigating the choice of prior fae*

Our predictive distribution fop will depend on our prior forr*, namelyF,., and on
our emulator forg(-), which in turn will depend on our choice foX, our resulting
evaluationsy, and the choices we make in the construction of our emuldtoour
particular application these latter choices have beerritestin sections 3 and 4. One
of the advantages of using an emulator is that we can inastijfferent choices for
F,+, to establish to what extent our predictive distributiondds affected by aspects
of our distribution function for the correct parameters Here we present a simple
experimentto investigate the shape of the distribution sthéss that this is a sensitivity
analysis. Our candidates fdf,- below do notrepresent our judgements about the
correct parametrisation of HadSM3. O’Hagan and Oakley 42@@scuss the problem
of eliciting distributions for model parameters.

For our base-line choice fdr,.- we adopt the QUMP prior, namely that all compo-
nents ofz* are independent; all continuous components are uniforminvthe limits
given in Table 1, and all factors have equal probability ochdavel (also given in Ta-
ble 1). We will consider some alternative specificationstfa marginal distributions
of the continuous components of. Our resulting predictive distributions far are
shown in Figure 6; the base-line is shown as distribudon

First, the actual definition of the variables in a simulasoid some extent arbitrary.
Often, for example, the choice of whether some variable khio@ represented gsor
aswy = 1/ may come down to what is more efficiently represented in thepmder
code. Naturally this makes a difference to the choices weenfiakZ,, since if o*
has a uniform distribution thet* does not. In a superficial analysis this can cause
some debate, along the lines of “Should our distribution hiéoum in ©* or in ¢*?”,
but only because the uniform distribution is presumed teasgnt some form of ‘prior
ignorance’. A deeper analysis reveals that it is the conegjptrior ignorance’ which
is at fault, not the choice of the uniform distribution. Wee arot ignorant about the
parameters in our simulators; for example it is possiblelimteanges for them, and
also information about symmetry, as shown in Table 1. It niaesunderstood that
selecting a uniform distribution is a choice made not of igmae, but of judgement.
Thus if a uniform distribution is chosen fgr* then the distribution of)*, and indeed
of every well-behaved function @f*, is also chosen at the same instant. There is no
‘default’ distribution for F,-, uniform or otherwise: every choice must be defensible
as a description of someone’s uncertainty. One thing we cahawvever, is a simple
experiment to see whether uniformgrt or in «»* makes any practical difference. The
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marginal priors for the componentsef corresponding t&NT, VF1 andRHCRI T can
be treated as uniform in the reciprocal; shown as distrdsul? in Figure 6.

Second, as has frequently been noted, the uniform is agtaalery poor choice
of shape for a distribution on the correct value of a contumigariable; see, e.g.,
Garthwaite et al. (2005). The uniform asserts, for the airvalue of a continuous
variable, that all values within some range are equallylyikand all values outside
that range are impossible. Thus W which we believe is an important determinant
of HadSM3's sensitivity, all values betweérand10 are deemed equally likely, even
though the standard valuedsand a value such #&s9 is deemed impossible. This does
not seem a very defensible position. A more natural choiteigsituation would be to
favour a prior which had a continuous density function, eathan a step at either end,
so that, for example, an impossible value like is only a little less probable than the
nearby possible value df1. The simplest such distribution is symmetric triangular,
which has the same number of parameters as the uniformadison. We investigate
using this distribution for the correct values of all of thentinuous variables; shown
as distribution”' in Figure 6.

Third, we investigated increasing the width of the triaragudrior for each of the
continuous variables by 15% (subject to a non-negativityst@int, andCFS > 0.5
andANVS > 1), to account for the possibility that the experts who setiftths might
have underestimated their parametric uncertainty (sge, ®oll and Klayman 2004).
This is shown as distributio® in Figure 6.

Finally, we combined the triangular prior with the recipabexpression oENT,
VF1 andRHCRI T, shown as distributio in Figure 6.

Comparing the predictive distribution férderived under our different specification
for F,« we can see immediately that the shape of the mlamsmatter, particularly in
determining the length of the upper tail, where the mostsris& from a decision-
making point of view. The biggest difference comes from ehiitg to the reciprocal
for the components of* corresponding t&NT, VF1 andRHCRI T. In both cases the
triangular distribution gives a smaller uncertainty fothan the uniform, with a ma-
terially lower probability of extremely high values. Thisflects the fact that extreme
values for HadSM3’s sensitivity are found in the cornershaf parameter-space, and
the triangular distribution downweights these relativettie uniform. Similarly, the
uniform and reciprocal-uniform are more different than thangular and reciprocal-
triangular. It is also interesting to note that the predietiistribution fors is relatively
insensitive to the width of the marginal distributions, @ast for our experiment of
increasing that width by5%.

All of these findings are conditional upon our emulator ford33, and con-
sequently on the CPNET and QUMP ensembles. They are alsotprialibrating
HadSM3 with climate data: the necessary steps for this aseribed in Rougier
(2006).

6. Summary
An emulator allows us to separate the process of choosingvaileations in the en-

semble from the inference that we intend to do. Consequevelycan choose our
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evaluations wisely, rather than ‘randomly’, and we can @enfa variety of inferences,
including a detailed sensitivity analysis, such that thefgested for,«. This is im-
portant because there can be no ‘right’ choicefigr, although we might hope that a
broad consensus might emerge.

But the main part of this paper has addressed another featw@mulators; they
provide us with an opportunity to exercise our judgementmhging a simulator such
as HadSM3 in a C®doubling experiment. We can, if we so chooagad if we have
sufficient evaluations, delegate all such judgements todstia statistical tools. To a
large extent, this is what we did in section 3b, when we buileenulator for CPNET
sensitivity, using the CPNET ensemble. We used the Box-@gxaach to select an
appropriate transformation of the response; we used ssepsdglection to help choose
the regressors; and we did this within an emulator frameveorksistent with a non-
informative prior. Our judgements were exercised much niorgection 4, where we
had to make explicit quantitative choices that describectttient to which we believed
that the CPNET and QUMP sensitivities were related. We didhmake these judge-
ments in isolation, however, but with the support of dethdeagnostic information.

We see this feature as the crucial advantage of emulatéh&ren providing the
opportunity to augment a small ensemble with prior inforiorator in allowing us to
combine information from different but related studies.
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