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Abstract

We combine the ensembles from two different experiments to study the
climate sensitivity of the HadSM3 climate model subject to parametric un-
certainty. We use a statistical framework based around linked emulators,
where expert judgements are required to quantify the relationship between
the two ensembles. Detailed diagnostics are presented. As an applica-
tion, we perform a sensitivity analysis for various choicesof distribution
describing parametric uncertainty.
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1. Introduction

When we use models as the basis for inference about an underlying system, like cli-
mate, there are three sources of uncertainty to account for (Goldstein and Rougier
2004; O’Hagan 2006). First, there is uncertainty about the relationship between our
particular implementation of the model, which we term thesimulator, and the system
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itself. Second, there are usually measurement errors in system data used to calibrate
the simulator. Third, there are technology and budget constraints that prevent us from
evaluating our simulator as much as we would like. In this paper we present a statisti-
cal treatment of this third source of uncertainty, termedcode uncertaintyby O’Hagan,
which involves using the evaluations we do have to constructanemulatorfor our sim-
ulator.

In general, an emulator is a stochastic representation of a function; that is to say, it
allows us to predict the output of a function at any point in the input space. If we write
our function as

x→ g(x)

where we will be treatingx as a vector of variables andg(x) as a scalar, then the
emulator ofg(·) consists of the probability distribution function

Fg(x)(v) , Pr
(
g(x) ≤ v

)
, (1)

that is, the probability thatg(·) when evaluated atx returns a value less thanv.
In this paper, we develop and use such an emulator to predict the response of a

complex climate model. The response is the equilibrium change in globally averaged
surface temperature following a doubling of the atmospheric concentration of CO2.
This quantity is referred to as theclimate sensitivity, and represents a standard bench-
mark of the response of climate to increases in greenhouse gases. The climate model
consists of the HadAM3 atmospheric general circulation model (Pope et al. 2000) cou-
pled to a simple non-dynamic mixed layer ocean, a standard set-up for the simulation
of climate sensitivity. We refer to it hereafter as HadSM3. In common with other cli-
mate models, HadSM3 contains many poorly constrained parameters, which represent
the effects of sub-grid scale physical processes such as cloud formation, convection,
radiative transfer, and turbulent boundary layer mixing. Here we use our emulator to
explore the variation of climate sensitivity according to thirty-one HadSM3 parameters
controlling key physical processes in the model. Thus ourg(·) is climate sensitivity,
and ourx is a thirty-one dimensional vector of the parameter values;precise definitions
are given in section 2.

For inferential purposes we would like to know the value of HadSM3’s sensitivity
at any value forx. However, HadSM3 is a very expensive model to run, and we have
available only a limited number of evaluations, at input valuesX , {x1, . . . , xn},
giving rise to the collection of outputsy , {g(x1), . . . , g(xn)}. Together, we term
these theensembleof evaluations,(y;X). The key feature of an emulator is that it
quantifies the uncertainty that arises from having only a limited number of evalutions.
Thus if x is very close to a pointxi ∈ X we might be relatively certain aboutg(x),
which we might expect to be close tog(xi) ∈ y. On the other hand, ifx is a long way
from the evaluations inX then we might expect to be very uncertain about the value of
g(x). Emulator construction is discussed in section 3.

We use an emulator wherever we would like to use the underlying modelg(·), but
are prevented for reasons of cost: if models were costless toevaluate then emulators
would be redundant. Thus the emulator can be used to answer simple questions like “I
wonder what would happen if we evaluatedg(·) atx?”. The answer would be a proba-
bility distribution forg(x), which we could use directly, or which we could summarise
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in terms of the mean and standard deviation, or in terms of an interval. By extension,
we can use the emulator to analyse the impact of uncertainty in the ‘correct’ value for
x, which we might termx∗. If we attach a probability distribution tox∗, theng(x∗)
is also an uncertain value. What is often not appreciated is that our uncertainty about
g(x∗) comes fromtwo sources: uncertainty aboutx∗ and uncertainty aboutg(·). This
will be discussed in more detail in section 5, where we treat prediction as an applica-
tion of emulators. Another important role for emulators, one which will be the focus
of this paper, is that they allow us to combine information from different but related
experiments, because they provide a natural way for us to quantify our judgement of
the degree to which the experiments are similar. Section 4 shows how we use emulators
to combine information from two experiments on HadSM3.

One point that must be stressed right at the start is that we are using probability in
this paper to quantify our uncertainty. This makes our approachBayesian. Through-
out the paper we will be exercising our judgement to create the best emulator that
we can, subject to various constraints such as transparencyand tractability; we favour
these constraints because they allow our approach to be easily replicated. In no sense
could our approach be described as ‘objective’. Where we make choices we state them
clearly and we back them up with diagnostic information. Butwe do not claim that
these choices are uniquely acceptable across the whole spectrum of climate experts,
and consequently our results are very muchour results. There is no single best em-
ulator for HadSM3, and there is no single best probability distribution for HadSM3’s
climate sensitivity. What we aim to do here is to provide a framework within which
it is possible to work out a number of different choices, and illustrate one particular
choice, namely our own.

2. Two experiments on HadSM3

Two recent high-profile studies have attempted to quantify our uncertainty about the cli-
mate sensitivity in a CO2 doubling experiment using HadSM3: an atmospheric model
coupled to a mixed-layer ocean. This section outlines thesetwo experiments, and the
resulting ensembles of evaluations. Details of the two studies can be found in the origi-
nal papers and their Supplementary Information; here we summarise those aspects that
are relevant for the statistical analysis.

2a. The QUMP study

In the Quantifying Uncertainty in Model Predictions (QUMP)experiment of Murphy
et al. (2004), thirty-one model parameters were identified as being potentially impor-
tant, out of a possible 100 or so candidates. These thirty-one will be referred to as
variables, and they are described in Table 1, which also gives the shortnames by which
they will be referred in this paper. Thirteen of the variables arefactors, i.e. variables
that take values in a discrete set. Most of the factors have 2 levels, but two have 3 levels
(GWST andNFSL) and one has 4 levels (FRF). Of the eighteen continuous variables,
four are contingent on the setting of certain factors; for example, the value ofRHCV
only affects sensitivity whenRHC is ‘off’; these contingent variables are the reason
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that Murphy et al. (2004) count twenty-nine rather than thirty-one variables in their
description (they did not includeCAPE andANV).

We denote a particular choice for the values of the variablesasx. The sensitivity at
x was computed in a three-phase experiment. The first phase wasa25-year calibration
run to deduce the appropriate ocean heat flux convergence field to be used in the sub-
sequent two phases. The second and third phases were runs to equilibrium, once with
pre-industrial CO2, and once with doubled CO2. Sensitivity, org(x), was defined as
the difference in global mean temperature between the second and third phases. The
choice of variables in the original study was strongly determined by the initial belief
that the1/sensitivity was additive in the factors, and additive in simple terms in each
of the the continuous variables. Consequently the initial evaluations in the ensemble
consisted of single parameter perturbations, augmented bya small number of multi-
parameter perturbations. Since that original study, we have access to a further231
evaluations, all multi-parameter perturbations. The first128 of these are described in
Webb et al. (2006). The additional evaluations were initially chosen to restore balance
to the overall ensemble, and then subsequently to populate regions of the parameter
space which were thought to have important interactions. These can be added directly
to the original ensemble, to give the297 evaluations that we use in this paper.

2b. The CPNET study

Here we focus on the differences between QUMP and theclimateprediction.net
(CPNET) experiment of Stainforth et al. (2005). The CPNET study varied six of the
continuous variables, used in the processes for large scaleclouds and convection. Their
ensemble comprises a factorial design with five variables atthree levels (VF1, CT, CW,
RHCV, ENT; RHC was always ‘Off’) and one at two levels (CFS). All the other vari-
ables in Table 1 are set at their standard values. However, each x was evaluated with
a number of different initial conditions, introducing a structured source of uncertainty
that is not present in the QUMP study. On analysing the CPNET data, we find that the
choice of initial condition does not appear to be predictively important, and so we pool
the evaluations across the initial conditions, effectively discarding the extra informa-
tion that is present in the choice of initial conditions; a similar approach was used in
the CPNET study, where different initial conditions for thesamex were averaged, to
reduce variability.

The CPNET study adopted a Public Resource Distributed Computing (PRDC) ap-
proach, performing thousands of evaluations using spare cycles on volunteers’ home
and office computers. Within this approach it was not feasible to integrate HadSM3
to equilibrium twice. Instead, three phases of fifteen yearseach were used. The third
phase in particular was too short to establish equilibrium,and so an exponential curve
was fitted to global mean temperature in this phase, and then extrapolated to its hori-
zontal asymptote to give a point value for sensitivity. Comparing these simplifications
with the QUMP study, assisted by some direct comparisons, wejudge that there are
sufficient differences that it is not possible to combine thetwo ensembles directly, or
indirectly by reweighting the CPNET ensemble, but that theyare in fact two different
but related experiments. This informs our statistical modelling choices in section 4.

In our sample from the CPNET study we have a total of35 × 21 = 486 dis-



Table 1: Description of the QUMP variables. Comparable to Murphy et al. (2004),
Supplementary Information, Table 2. Values in parenthesesindicate ‘low’, ‘intermedi-
ate’ and ‘high’ values of continuous variables. Values not in parentheses indicate levels
of discrete variables, orfactors. Bold values indicate the standard setting. Variables
with short names followed by ‘†’ are also used in CPNET.

Parameter / Property Values Short name Only when:

Large-scale cloud

Vf1 (ms−1) (0.5,1, 2) VF1†
Ct (×10

−4 s−1) (0.5,1, 4) CT†
Cw (land,×10

−4 kg m−3) (1, 2, 10) CW†
Flow-dependentRhcrit Off, On RHC
Rhcrit (0.6,0.7, 0.9) RHCV† RHC ‘Off’
Cloud fraction at saturation (%) (0.5, 0.7, 0.8) CFS†
Vertical gradient of cloud water Off, On VGCW

Convection

Entrainment rate coefficient (0.6,3, 9) ENT†
CAPE closure Off, On CAPE
CAPE closure time-scale (hrs) (1, 2, 4) CAPEV CAPE ‘On’
Convective anvils Off, On ANV
Convective anvils, shape (1, 2, 3) ANVS ANV ‘On’
Convective anvils, updraught (0.1, 0.5, 1) ANVU ANV ‘On’

Sea ice

Sea ice albedo (at0 ◦C) (0.50, 0.57, 0.65) SIA
Ocean-ice diffusion (×10

−4 m2 s−1) (0.25, 1.00,3.75) OID

Radiation

Ice particle size (µm) (25,30, 40) IPS
Non-spherical ice particles Off, On NSIP
Shortwave water vapour continuum
absorption

Off, On SWV

Sulphur cycle Off, On SCYC

Dynamics

Order of diffusion operator 4,6 ODD
Diffusion e-folding time (hrs) (6,12, 24) DDTS
Starting level, gravity wave drag 3, 4, 5 GWST
Surface gravity wave wavelength (×10

4 m) (1, 1.5,2) GWWL

Land surface

Surface-canopy energy exchange Off, On SCEE
Forest-roughness lengths 1, 2, 3, 4 FRF
Dependence of stomatal conductance on CO2 Off, On STOM
Number of forest soil levels for
evapotranspiration (grass)

1, 2,3 NFSL

Boundary layer

Charnock constant (×10
−3) (12, 16, 20) CHAR

Free convective roughness length over sea
(×10

−4 m)
(2, 13, 50) FCRL

Boundary layer flux profile,G0 (5, 10, 20) BLFP
Asymptotic neutral mixing length,λ (×10

−2) (5, 15, 50) ANML5
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Figure 1: The main stages of our approach for combining information from the CPNET
and QUMP ensembles into an emulator for QUMP sensitivity.

tinguishable evaluations (in terms of thex values), and2377 evaluations overall (ac-
counting for variations in the initial conditions). Many ofthese produced unstable or
non-physical responses, particularly cooling (‘drifters’). We choose to omit the drifters
in the CPNET study in the same way as Stainforth et al. (2005).Some of the QUMP
evaluations also display this type of cooling in the early stages, but so far all of these
have equilibriated and the2 × CO2 run always remains warmer than the1 × CO2 run,
both of which start from the end point of the calibration phase.

2c. Outline of our approach

The two studies outlined in this section have different but complementary strengths.
The QUMP study has a ‘standard’ definition for sensitivity, and provides greater flexi-
bility for future inferences through its large number of variables. The CPNET study, on
the other hand, has a more detailed analysis over six of the most important variables.
Our intention is to combine the ensembles from these two studies into an emulator for
QUMP sensitivity defined over the full set of thirty-one variables.

As already described, an emulator is a probability distribution functionFg(x), as
defined in (1). There are many ways of coming up with such a function; in aBayesian
emulatorwe probabilistically condition our beliefs aboutg(·) on the observations in
the ensemble. Therefore a Bayesian emulator combines two sources of information:
prior judgements aboutg(·), and data from evaluations in the ensemble(y;X). The
main stages of our approach are summarised in Figure 1. Each of the two studies re-
quires a different emulator, because of the different definitions of sensitivity. For the
CPNET emulator we have plentiful information from the CPNETensemble, which
comprises421 evaluations in a six-dimensional space. Therefore we startwith only

6



vague prior information, because we are content to let the information from the en-
semble dominate. For the QUMP emulator, on the other hand, wehave only limited
information in the ensemble (297 evaluations in a31-dimensional space). Therefore
we combine this with detailed prior information taken from the CPNET emulator, and
from our judgement concerning the similarity of the CPNET and QUMP definitions of
sensitivity. Figure 1 also shows two diagnostic loops: wherever we have data, we can
investigate the propriety of our choices and, to a limited extent, we can modify those
choices. This is discussed in more detail in section 4d.

3. Building an emulator from the CPNET ensemble

We illustrate our approach, as outlined in Figure 1, in this section and the next. In this
section we develop an emulator for CPNET sensitivity with vague prior information. In
section 3a we describe a simple and general framework for specifying an emulator, and
in section 3b we make specific choices within that framework to construct an emulator
for CPNET sensitivity.

3a. A general Bayesian emulator

We describe here a simple Bayesian treatment of the emulator. We impose a certain
structure on the general problem of constructing an emulator, as this helps us to define
clearly the choices we must make. The emulator is written

g(x) = h(x)Tβ + u(x) (2)

whereg(x) is the climate sensitivity of our simulator, or some monotonic transforma-
tion of the same, termed theresponse; h(·) is a known vector-valued function of the
variables, collectively termed theregressors; β is an unknown vector of(regression)
coefficients, andu(x) is a scalar random field, termed theresidual. Within the regres-
sors we would expect to include non-linear functions of the variables, such asxi

2 or
xi × xj . We must use our judgement, in conjunction with the data where possible,
to make choices for the transformation ofg(·) and the components ofh(·): statistical
model choice is a subtle balancing-act between fidelity, efficiency and ‘interpretability’—
much the same is true of building climate models. The challenge becomes greater as
the number of components inx goes up, because the range of possible terms for in-
clusion among the regressors becomes much larger, and it becomes difficult to contrast
alternative choices in terms of standard diagnostics like residual behaviour.

In our ensemble,y is ann-vector of climate sensitivities, possibly transformed, and
X is then × p design matrix in which rowi comprises the values of the variables in
theith evaluation in the ensemble. From this design matrix we can compute then× k
regression matrixH , where rowi ofH comprisesh(Xi)

T . For our given choice for the
response and the regressors, we make the following additional choices for the structure
of the residual, which serve to simplify the analysis. First, u(·) has zero mean and
a constant unknown variance,σ2; second, the correlation length ofu(x) at anyx is
short compared with the inter-point distances in our ensemble, so that we may treat
the observed values of the residual as independent for the purposes of constructing the
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emulator (in spatial statistics this type of residual is often termed a ‘nugget’); third,
u(·) is agaussianrandom field for givenσ2.

These choices allow us to use the standardconjugateanalysis, i.e. an analysis where
the prior and the posterior come from the same family of distributions, so that the
update may be described in terms of alterations to distributional parameters. From
this we can derive a simple expression for the distribution functionFg(x) based on our
ensemble(y;X) and our prior assessment of uncertainty concerning the parameters
(β, σ2). The treatment of the residual as a nugget is non-standard. Technically it
is inconsistent with the fact thatg(·) is a deterministic continuous function, at least
on part of its domain, because it prevents Corr

(
g(x), g(x′)

)
→ 1 asx → x′. Our

attitude is that as long as the residual does not play a large part in the emulator, this
type of misspecification is unlikely to be predictively important. In our emulators of
QUMP sensitivity we find that the regressionR2 is at least90% and typically more than
95%. The correspondingR2 values for CPNET are lower (70–90%), but we are less
concerned about the residual behaviour in the CPNET emulator, because the CPNET
ensemble is less intensively used. There is an extensive literature on more general types
of emulator (see, e.g., Currin et al. 1991; O’Hagan et al. 1999; Kennedy and O’Hagan
2001; Craig et al. 2001; Santner et al. 2003), and these emulators could be deployed in
our approach, but only at the expense of much more intricate statistical modelling.

The following outline of the conjugate analysis follows thenotation of O’Hagan
and Forster (2004, ch. 11). Our prior for{β, σ2} is Normal-Inverse-Gamma (NIG)

(β, σ2) ∼ NIG
(
a, d,m, V

)
(3a)

or, equivalently,

β | σ2 ∼ Nk

(
m,σ2 V

)
and σ2 ∼ IG

(
a, d

)
(3b)

where ‘|’ denotes ‘conditional upon’,Nk

(
·
)

denotes thek-dimensional Gaussian distri-
bution, andIG

(
·
)

the scalar Inverse Gamma distribution; we must specify the collection
{a, d,m, V }, termed thehyperparameters. We have some concerns about the shape of
the NIG prior as a representation of our beliefs (e.g., it is not possible to specify that
β andσ2 are probabilistically independent, except in the non-informative case that
will be presented below in section 3b), and we adopt it here because in our judgement
these concerns are outweighed by its tractability; O’Haganand Forster (2004, second
half of ch. 11) discuss the shape of the NIG distribution in detail, and present various
generalisations.

We update using our ensemble by applying Bayes’s theorem; the posterior distribu-
tion {β, σ2} | (y;X) remains NIG, with updated parameters{a∗, d∗,m∗, V ∗}, where

V ∗ , (V −1 +HTH)−1, (4a)

m∗ , V ∗(V −1m+HTy), (4b)

a∗ , a+mTV −1m+ yTy − (m∗)T (V ∗)−1m∗, (4c)

andd∗ , d+ n (4d)
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(O’Hagan and Forster 2004, sec. 11.10). For our emulator, weuse the posterior predic-
tive distribution forg(x) at knownx, which is univariate Student-t:

g(x) ∼ td∗

(
h(x)Tm∗, (a∗/d∗)w∗(x)

)
(5)

providing thatx 6∈ X , wherew∗(x) , h(x)TV ∗h(x) + 1. For clarity (5) states that

g(x) − h(x)Tm∗

√

(a∗/d∗)w∗(x)

has a standard Student-t distribution withd∗ degrees of freedom, and

E
(
g(x)

)
= h(x)Tm∗, Var

(
g(x)

)
=

a∗

d∗ − 2
w∗(x).

Standard statistical software can compute the distribution functionFg(x)(v) for anyx
andv. All the calculations in this paper were performed using thestatistical computing
environmentR (R Development Core Team 2004).

Therefore the problem of building an emulator forg(·) using the ensemble(y;X)
has been restructured to the problem of choosing a transformation for sensitivity, a
collection of regressorsh(·), and, conditional on these choices, specifying the hyper-
parameters{a, d,m, V } in the NIG prior for{β, σ2}. The two ‘big’ choices that we
have made in this framework are to treat the residual as a nugget, and to adopt a NIG
prior. We would be interested in tractable generalisationsof either of these choices, but
we are satisfied that these are reasonable choices for this application, not justa priori,
but also in the light of the diagnostic information presented below.

3b. Building the CPNET emulator

As explained in section 2c, and illustrated in Figure 1, we are going to simplify the
construction of our CPNET emulator by adopting vague prior beliefs, which in terms
of the framework from section 3a are vague prior beliefs about {β, σ2}, as summarised
in the hyperparameters{a, d,m, V }. The standardnon-informative priorhasa = 0,
d = −k wherek is the number of regressor functions inh(·), andV −1 = 0 (O’Hagan
and Forster 2004, sec. 11.17–11.19). In this case the posterior distribution forβ | σ2

has the classical Ordinary Least Squares (OLS) form—as can be seen from inspection
of the updating relations in (4)—although the interpretation is a little different, being
Bayesian rather than Frequentist. In particular, the coefficient standard deviations are
direct statements of coefficient uncertainty, rather than ‘standard errors’ arising from
a repeated-sampling approach that considers the data themselves to be the source of
‘randomisation’ (a nonsensical concept in this context). In this paper, when we refer
to, say, a 90% CI we are referring to a 90% ‘Credible Interval’: an interval defined by
the5th and95th percentiles of the distribution of the coefficient, org(x), or any other
uncertain quantity (O’Hagan and Forster 2004, sec. 2.51).

With this prior, we deploy exactly the same techniques that would be used in a stan-
dard analysis to fit an OLS regression (see, e.g., Draper and Smith 1998). In particular,
we choose the transformation ofy and the regressors together, and we use the residuals
for diagnostic information. The QUMP authors, who explicitly construct an emulator
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for their analysis, choose the transformation1/y, based on a general view across the
modelling community that this function has a simpler additive structure in terms of
the variables. This would only be a reasonable transformation if negative values for
sensitivity were judged highly unlikely at anyx, because otherwise it would introduce
an extreme discontinuity at zero. We subscribe to this view,but we will investigate a
wider range of possible power-transformations, includingthe logarithm, using the Box
and Cox (1964) approach (see, e.g., Draper and Smith 1998, sec. 13.2).

For the regressors, the QUMP authors chose linear additive terms for the factors
and piecewise linear terms for the continuous variables. Wewill replace the piece-
wise linear terms with quadratics—which requires the same number of regression
coefficients—as there is no compelling reason to think that HadSM3 has a discon-
tinuous first derivative at the standard setting of its variables. We also choose to take
logarithms of some of the continuous variables, namely those for which the intervals
in Table 1 have strong positive skewness; this slightly improves the fit of the emulator
and reduces the role of the squared terms, making it easier tointerpret the emulator
coefficients (given below in Table 2). The variables transformed in this way areVF1,
CT, CW, ENT, DDTS, FCRL, BLFP andANML; only the first three of these are relevant
for the CPNET study.

We would like our emulator to include interactions among thevariables. In the
QUMP study it was not possible to estimate interactions fromthe single-parameter per-
turbation ensemble, but they were found to be influential in CPNET. Our general strat-
egy regarding interactions is to treat the different physical processes as non-interacting
(these processes are shown in Table 1), but to include interactions within each process.
Our starting point is to include all two-way interactions inthe five CPNET variables in
the ‘Large Scale Cloud’ block, giving a total of

1 + 6 + (6 − 1)
︸ ︷︷ ︸

linear and quad.

+ 5 × 4/2
︸ ︷︷ ︸

two-way int.

= 22

regression coefficients. The6 − 1 is for the quadratic terms: we cannot estimate a
quadratic forCFS because it only has two levels in the CPNET ensemble. For the
same reason we cannot estimate cubic or higher effects in anyof the variables. A
statistician would not have recommended this type of designfor the CPNET study, or,
indeed, recommended single-parameter perturbations for the QUMP study, although it
must be borne in mind that these types of ensemble study attempt to fulfil a number of
different and not necessarily compatible objectives.

Based on this regression, the Box-Cox approach indicates that log(y) is a good
choice for the transformation of the response; the typical diagnostic for this approach
is shown in Figure 2. This is a fortuitous outcome, because this particular transfor-
mation automatically assigns zero probability to negativesensitivities in the predictive
distribution of the emulator. In an earlier analysis the reciprocal had been favoured,
which required us to truncate the predictive distribution.This truncation was not a
particularly elegant solution, but in practice it made little difference because for most
values ofx, almost all of the probability mass in the predictive distribution was above
zero.

We do not want to rule out the possibility of higher-order interactions as well. There
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are too many of these to include them all up to a given order, and so we use forward
stepwise regression based on the Akaike Information Criterion (AIC) (see, e.g. Draper
and Smith 1998, ch. 15) to identify the most important terms among all possible two-,
three- and four-way interactions, including interactionsbetweenENT and the ‘large
Scale Cloud’ variables. We do not have strong views about thepresence or absence of
interactions among these six variables, and so this simple and fairly standard technique
seems adequate; had we stronger views we could have adopted aBayesian hierarchical
approach (see, e.g., Chipman et al. 1997). We find fifteen further interactions, namely
(in order of acceptance)RHCV:ENT, CT:ENT, CW:ENT, CFS:ENT, CT:CW:ENT,
CT:CW:CFS,CT:CW:RHCV,CW:RHCV:ENT,CT:RHCV:ENT,CT:CFS:ENT,VF1:ENT,
VF1:RHCV:ENT,VF1:CW:ENT,VF1:CT:CW, andVF1:CT:ENT. We include these
higher-order interactions inh(·), but we do not include any others. This gives a total
of 37 regressor functions inh(·), including the intercept.

As they may be of some independent interest, the regression coefficients for our
CPNET emulator are given in Table 2, along with their standard deviations. The six
variables have been re-scaled to lie in the closed interval[−1, 1], according to the min-
imum and maximum values given in Table 1; this range was chosen rather than, say,
the original units or[0, 1], because it makes the linear and quadratic functions orthog-
onal with respect to a uniform weighting function. There aresome influential two-way
interactions, and the three-way interactions tend to be thesame size as the typical two-
way interactions. There is strong evidence here for the importance of interactions in
determining HadSM3’s sensitivity.

4. An emulator for QUMP sensitivity

Having built an emulator for CPNET sensitivity, we turn now to using this emula-
tor as prior information for our emulator for QUMP sensitivity. We approach this in
two stages. First, we construct a prior emulator for QUMP sensitivity. Initially, we
must choose a collection of regressors for the QUMP emulator: these will be a su-
perset of the regressors for the CPNET emulator, as QUMP has twenty-five additional
variables. Our prior beliefs about QUMP sensitivity are then summarised in terms of
hyperparameters{a, b,m, V }. With the CPNET emulator these hyperparameters took
non-informative values, but for the QUMP emulator they willhave informative values
based on the updated hyperparameters from the CPNET emulator and on our judge-
ment regarding the similarity of the CPNET and QUMP sensitivities. The way we
choose to quantify these judgements is discussed in section4b.

In the second stage we will update these parameters using theQUMP ensemble
to give us the posterior values{a∗, b∗,m∗, V ∗}. These form the basis of our QUMP
emulator.

4a. The regressors

For our QUMP emulator regressors, we start with all those regressors in the CPNET
emulator (37 in number) plus the missing quadratic term inCFS. We add all the factors
from the QUMP study, and linear and quadratic terms for the new continuous variables.

12



Table 2: Coefficients from the CPNET emulator (×103). VF1, CT andCW are in
logarithms, and all variables are standardised to the interval [−1, 1]. Linear terms are
shown asA, interactions asA:B or A:B:C, and quadratic terms asA:A. The response
is log(sensitivity) and theR2 is 0.87.

Regressor Mean St. dev. Regressor Mean St. dev.

(Intercept) 1147.8 30.4 CW:RHCV −78.7 12.2

VF1 −158.7 11.5 CW:CFS −17.2 13.9

CT 283.1 13.0 RHCV:CFS 21.6 13.9

CW −142.3 12.2 RHCV:ENT −92.2 13.3

RHCV 70.5 12.1 CT:ENT −138.5 15.3

CFS −166.0 12.8 CW:ENT 86.3 12.8

ENT −149.0 13.1 CFS:ENT 85.0 14.7

VF1:VF1 46.6 15.9 VF1:ENT −28.4 12.8

CT:CT −88.6 18.8 CT:CW:ENT −78.6 13.9

CW:CW −66.5 22.8 CT:CW:CFS −45.0 16.3

RHCV:RHCV −4.8 17.8 CT:CW:RHCV 48.0 13.5

ENT:ENT 239.0 16.3 CW:RHCV:ENT 42.8 15.2

VF1:CT −21.8 11.8 CT:RHCV:ENT −35.7 14.4

VF1:CW 25.6 11.4 CT:CFS:ENT −52.1 17.6

VF1:RHCV −27.6 11.5 VF1:RHCV:ENT 61.1 14.5

VF1:CFS 3.0 13.8 VF1:CW:ENT −35.5 14.2

CT:CW 56.8 13.8 VF1:CT:CW −24.6 13.2

CT:RHCV 84.8 12.2 VF1:CT:ENT −23.9 14.0

CT:CFS 25.4 15.0
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We would also like to include some additional two-way interactions. As outlined in
section 3b, we choose to include all two-way interactions within each physical process,
but we do not include any interactions between processes, bar those betweenENT and
the ‘Large Scale Cloud’ variables from the CPNET emulator. Taken together this gives

37+1+10× 1 + 2 × 2 + 1 × 3
︸ ︷︷ ︸

QUMP factors

+ 12 × 2
︸ ︷︷ ︸

new cont. vars

+ 10 + 12 + 1 + 6 + 9 + 17 + 6
︸ ︷︷ ︸

new interactions

= 140

coefficients. Not all interactions are possible; e.g.RHC:RHCV is not possible because
RHCV is only effective whenRHC is ‘Off’. The physical process ‘Dynamics’ has9
interactions becauseGWST is a three-level factor; likewise ‘Land Surface’ has17 inter-
actions becauseFRF is a four-level factor andNFSL is a three-level factor.

4b. Linking matched coefficients

When constructing our prior for the QUMP emulator coefficients we distinguish be-
tween matched coefficients and new coefficients. The matchedcoefficients have a di-
rect counterpart in the CPNET emulator. For example, the coefficients onENT and
ENT:ENT in the QUMP emulator match to corresponding coefficients in the CPNET
emulator, but the coefficient onIPS in the QUMP emulator is a new coefficient, be-
causeIPSwas not varied in the CPNET study, so that it does not feature in the CPNET
emulator, except through its contribution to the constant.

We can express the extent to which we think that CPNET sensitivity and QUMP
sensitivity are the same by specifying the degree to which the matched QUMP emu-
lator coefficients are likely to deviate from their counterparts in the CPNET emulator.
To quantify the relation between individual pairs of matched coefficients we use the
general framework

βi − ci = (1 + ωi) (β0
i − ci) + (ry/ri) νi (6)

whereβ0
i andβi are matched coefficients in the CPNET and QUMP emulators, re-

spectively. Our uncertainty aboutβi is induced by our uncertainty aboutβ0
i , and by

the choices we make for the various terms on the righthand side of (6). Two of these
terms are straightforward:ry is the typical scale of the transformed response, andri
the typical scale of the regressor. These are included so that we can treat bothωi andνi

as scale-free, remembering that the units ofβ0
i andβi are ‘response units per regressor

units’. This makes it reasonable to use the same choices to link-up all the matched coef-
ficients, if we so choose. The third term,ci is a centring term for the two coefficients;
for this application we will chooseci = 0 for all coefficients, but in other applications
a non-zero value might be preferred (see, e.g. Goldstein andRougier 2006).

The two Greek terms,ωi andνi, are the most important in (6). They represent
independent mean-zero uncertain quantities, for which we must specify standard devi-
ations. We will want to set Sd(νi) small, so just for the moment we treatνi as zero.
In that case Sd(ωi) controls the probability thatβi − ci has a different sign toβ0

i − ci.
Setting Sd(ωi) small relative to1 would be akin to stating thatβi andβ0

i were very
similar. For example, setting Sd(ωi) = 1/4 would state that a change of sign in go-
ing fromβ0

i − ci to βi − ci was judged to be a four-standard-deviation event; crudely,
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to have a probability of less than 3% ifωi is unimodal (Pukelsheim 1994), we term
this ‘very unlikely’. This is the value that we will choose for all matched coefficients.
The second Greek term,νi, is included to ensure thatβi can be uncertain even when
β0

i equalsci with probability one. A small value is appropriate here, andwe choose
Sd(νi) = 1/20 for all matched coefficients. With this value is is very unlikely that re-
gressori will explain more than one-fifth of the range of the QUMP emulator response
in the case whereβ0

i = ci.

4c. The rest of the prior emulator

The choices we make formi, Sd(ωi) and Sd(νi) in section 4b allow us to infer the
mean vector and the variance matrix of the matched coefficients in the QUMP prior
emulator from the mean vector and variance matrix of the corresponding coefficients in
the CPNET emulator. Before we can translate those into values for the hyperparameters
m andΣ we must think about the residual process in the QUMP emulator.

We believe that the residual variance for the QUMP prior emulator will be less than
that of the CPNET emulator, because the recorded value of sensitivity in the CPNET
study includes an extra source of uncertainty, namely the asymptotic approximation
to the equilibrium value. Therefore, forσ2 in the QUMP prior emulator we choose a
mean value half of that from the CPNET emulator, and choose a standard deviation
equal to the mean, to preserve a large amount of uncertainty.To translate these choices
into values for{a, d} we need to know that the marginal distribution ofσ2 in the
NIG distribution isIG

(
a, d

)
, and that the mean and variance of this distribution are

given bya/(d − 2) and2a2/{(d − 2)2 (d − 4)}, respectively. Denoting the CPNET
hyperparameters with a subscript ‘0’, we can compute the mean value ofσ2 from the
CPNET emulator ass20 , a0/(d0 − 2). Then we can solvea/(d − 2) = s20/2 and
2a2/{(d− 2)2 (d − 4)} = (s20/2)2 simultaneously for{a, d}. This givess20 = 0.023,
a = 0.035 andd = 5.

Once we have computed{a, d}, we can use these two values along with the values
{a0, d0,m0, V0} to compute the mean and variance of the matched coefficients in the
QUMP emulator. We need to know that the marginal distribution of β in the NIG
distribution is multivariate Student-t, and that the mean and variance of this distribution
are given bym and{a/(d− 2)}V , respectively. Then it is a simple matter to compute
the mean and variance ofβ0, the CPNET emulator coefficients, use (6) to map these
into a mean and variance forβ, the QUMP prior emulator matched coefficients, and
then infer{m,V } from the values of{a, d} that we computed above.

The only thing left to specify is a prior mean and variance forthe unmatched coef-
ficients in the QUMP emulator. These are the coefficients on regressors that do not
appear in the CPNET emulator. For these coefficients we use a framework similar to
(6), namely

βi = (ry/ri) νi . (7)

This is just a way of assigning an uncertainty to each unmatchedβi in terms of the
scale-free quantity Sd(νi). We have to decide how much of the response range we
believe these additional regressor terms can explain. Our choice is Sd(νi) = 1/16 for
all the new coefficients, so that it is very unlikely that a single regressor can explain
more than a quarter of the range of the response.
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4d. Prior diagnostics

We have used the CPNET ensemble in two ways in constructing our prior emulator
for the QUMP experiment. We have used itindirectly, to select the transformation of
the response and to identify important third-order interactions in the Large-scale cloud
parameters and the entrainment rate coefficient. We have also used itdirectly, to choose
the prior hyperparameters of the matched coefficients. In the latter we have assigned
specific values to quite imprecisely defined quantities. In an ideal world we would
arrive at such values through introspection, but in practice it is impossible in a detailed
analysis not to incorporate some trial-and-error. For example: originally, we had larger
values for Sd(ωi) and Sd(νi), because at that stage we were screening out fewer of the
drifters from the CPNET experiment. These choices were broadly satisfactory in terms
of the diagnostics described below. Now we have decided to screen out more of the
drifters (see section 2b), we modify our choices, but we cannot escape the knowledge
of how our previous choices performed. Statistical puristswould regard this as a form
of double-counting (the data influencing the prior), but a more pragmatic view is that
simple revisions of this kind, taking care to avoid ‘over-fitting’, tend to approximate an
informal type of higher-order learning that we have chosen not to include in the formal
analysis.

Our main diagnostic is to use our QUMP prior emulator to predict the evaluations
in the QUMP ensemble. Each individual prediction, taken marginally, has a Student-t
distribution, as given in (5). In Figure 3 we show all297 predictions, in terms of their
median and 95% CI, and we also show the actual value in each case. The predictions
are ordered by the median, which allows us to confirm that our assessment of the hyper-
parameters has some predictive power; i.e. that our predictions are not insensitive to the
values forx. We can also confirm that there is no apparent systematic mis-prediction,
with respect to the response. This diagnostic suggests thatwe have over-stated un-
certainty, as all297 values are well within the 95% CI that we predict. We could if
we so chose, impose constraints on Var

(
g(x)

)
, and use these to modify our statistical

modelling of NIG hyperparameters such asV . However, we are comfortable with the
general principles we have adopted in setting the prior for the QUMP emulator, and we
prefer to leave things as they are, rather than to risk the suspicion that we have in any
way over-tuned our prior.

Note that the cluster of low-dispersion points on the lefthand side of the bottom
panel of Figure 3 correspond to the fifty or so single-parameter perturbations in the
QUMP ensemble. We interpret the low dispersion of these points as evidence for the
importance of interactions among the variables in determining QUMP sensitivity.

4e. Updating the QUMP emulator

Updating the QUMP emulator is a very simple process, following the rules given in (4).
This updated emulator will be used in in an application in section 5; it is not detailed
here because it has a large number of coefficients. It is also informative to investigate
the ways in which the coefficients change following the update: we have done this but
do not presented our results here for reasons of space.

We now have access to a second set of diagnostics, that investigate the posterior
predictive properties of the QUMP emulator. One such diagnostic is broadly compara-
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Figure 3: Prior prediction diagnostic showing, for each evaluation in the QUMP ensem-
ble, the prior median and 95% CI, along with the actual value of the response (dot).
The evaluations are ordered by the median.
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Figure 4: Posterior prediction ‘leave-one-out’ diagnostic showing, for each evaluation
in the QUMP ensemble, the posterior median and 95% CI after updating with the other
296 evaluations. The evaluations are ordered by the median.Note that the vertical
scale differs from that in Figure 3.

ble with the univariate prior prediction given in Figure 3: the leave-one-out diagnostic.
In this case we update the emulator with all but one evaluation from the QUMP ensem-
ble, and then predict that evaluation. We can do this with all297 evaluations; the result
is shown in Figure 4. In all,15 of the297 actual values forlog(sensitivity) lie outside
the 95% CI of the posterior prediction. In terms of the binomial model, the probability
of observing15 or fewer successes out of297 independenttrials withp = 0.05 is 0.58,
i.e. not unusual and therefore supportive of our statistical modelling choices; this is
only suggestive, however, as our trials are not independent, because the predictions are
correlated across the ensemble members.

A sterner diagnostic is to consider the multivariate behaviour of a collection of
predictions, taking this correlation into account. For this purpose we select150 evalua-
tions, and update using the other147 (‘leave-150-out’). The joint distribution of all150
predictions after updating should be multivariate Student-t, sayy150 ∼ td

(
µ,Σ

)
. It fol-

lows thaty′150 , Q−T (y150 − µ) should have distributiontd
(
0, I

)
, whereQTQ ≡ Σ;

i.e., should have uncorrelated standardised components. Figure 5 show the result of
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one such random sample as a Quantile-Quantile plot (QQ-plot), and a histogram with
the standard Student-t density overlaid: this is a fairly typical pattern across different
possible random samples. Here it is clear from the QQ-plot inparticular that there is
some mis-fitting, but the differences appear to be relatively minor. These diagnostics
appear to be broadly supportive of our statistical modelling choices.

5. The predictive distribution of sensitivity

We present here one application of our QUMP emulator: predicting sensitivity tak-
ing account of uncertainty in the correct parametrisation of the HadSM3 simulator.
The notion of correct parameter values in this context, although widely used, is not
straightforward, and has received some attention in the statistics literature on computer
experiments (see, e.g., Kennedy and O’Hagan 2001; Craig et al. 2001; Goldstein and
Rougier 2004, 2006); Rougier (2006) discusses the more general approach in the con-
text of ensemble-based climate prediction. For simplicity, we proceed on the basis that
such values exist. We definex∗ as the vector of correct values, and we use the distribu-
tion functionFx∗ to describe our uncertainty aboutx∗. Our purpose in this section is
not to come up with a ‘better’ prediction for climate sensitivity than the model-based
predictions currently in the literature, but simply to clarify that such a notion would
require a consensus aboutFx∗ : something that does not currently exist.

5a. Estimating the predictive distribution

Our objective is to compute the (cumulative) distribution function for δ , g(x∗),
namely

Fδ(v) , Pr(δ ≤ v) =

∫

x

1
(
g(x) ≤ v

)
dFx∗(x) (8)

where1(·) is the indicator function. The notation
∫
· · ·dFx∗(x) denotes aLebesgue-

Stieltjesintegral, which generalises the idea of expectation to include random quantities
such asx∗ which include both discrete and continuous components (see, e.g., Ross
1988, sec. 7.9). For any given value forv, (8) simply sums the probability content
of the region of the input space for whichδ ≤ v; i.e. our uncertainty aboutδ is a
consequence of our uncertainty aboutx∗. This is referred to as theprior predictive
distribution for δ, the “prior” in this case indicating “prior to the inclusionof actual
system data (possibly measured with error) for calibrationpurposes”. In this paper we
will not be considering the effect of calibration, and so we may refer without ambiguity
to (8) as thepredictive distribution.

One way to calculate (8)—in principle—is by simple Monte Carlo integration, i.e.
to compute

F
(n)
δ (v) , n−1

n∑

i=1

1
(
yi ≤ v

)
(9)

whereX , {x1, . . . , xn} are sampled independently from the distributionFx∗ , the
climate simulator is evaluated at eachxi, andyi is the result in each case. By the
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Strong Law of Large Numbers (see, e.g., Grimmett and Stirzaker 2001, sec. 7.4),

lim
n→∞

F
(n)
δ (v) = Fδ(v).

This is the ‘standard’ approach to ensemble experiments in climate; the ensemble is
used directly in the resulting inference. In many problems,however,F (n)

δ (·) will be
a very uncertain approximation because of limitations in the size ofn, the number of
evaluations in the ensemble. For example, a back-of-the-envelope calculation suggests
that withn = 297, Monte Carlo probability estimates will be accurate to about ±6%.
It is also a very restrictive approach, because it requires the ensemble to have been sam-
pled according to a specific distribution. An alternative approach is to use the ensemble
to construct an emulator forg(·). Then we replaceg(·) in (8) with our emulator, which
gives

Fδ(v) =

∫

x

Fg(x)(v) dFx∗(x) (10)

(without getting into technicalities). This is a simple generalisation of (8) in which
the indicator function1

(
g(x) ≤ v

)
is replaced with the appropriate probability. In the

limit as the number of evaluations in our ensemble becomes large we haveFg(x)(v) →

1
(
g(x) ≤ v

)
because it becomes more and more likely that somewhere in ourensemble

we have actually evaluated that particular choice ofx, and so our emulator becomes
more and more like a simple look-up table. But the important feature of (10) is that
it allows us to incorporate our uncertainty aboutg(·) in the more usual case where
we have only a small collection of evaluations in our ensemble. Now our uncertainty
aboutδ is a consequence of our uncertainty aboutx∗ and our uncertainty aboutg(·);
this latter source of uncertainty only tends to zero if the number of evaluations in our
ensemble becomes very large.

We can compute (10) using the same Monte Carlo approach givenabove, giving an
estimate

F
(m)
δ (v) , m−1

m∑

i=1

Fg(x′

i
)(v), (11)

wherex′1, . . . , x
′

m are sampled fromFx∗ as before. The primes indicate that these are
not the samex values as we have evaluated in our ensembleX . In this case we can
havem ≫ n, wheren is the number of evaluations in the ensemble. We can makem
as large as necessary to achieve a good estimate ofFδ, because each evaluation of the
integrand is the calculation of a distribution function, rather than an evaluation of the
simulator. But it is important to bear in mind that this advantage has been purchased
with the choices that we must make in order to construct the emulator and derive the
distribution functionFg(x). Hence the importance of the emulator diagnostics.

By the same token, we do not select our ensemble on the basis ofthe distribution
functionFx∗ , but rather in order to build as accurate an emulator as possible. This
might mean, for example, over-sampling components ofx which are thought to be
important for determining sensitivity. These types of choice are discussed in the ex-
tensive literature on Bayesian experimental design (see, e.g., Chaloner and Verdinelli
1995), and there is also a literature on the particular features of design for computer
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experiments (see, e.g., McKay et al. 1979; Sacks et al. 1992;Morris and Mitchell 1995;
Koehler and Owen 1996).

Note that simple Monte Carlo integration is a very crude approach to determining
the value ofFδ(v). More sophisticated statistical approaches, such as Importance Sam-
pling with variance reduction techniques or Markov chain Monte Carlo (MCMC), will
be necessary in more complicated problems; these are discussed in, e.g., Evans and
Swartz (2000) or Robert and Casella (1999). We will use simple Monte Carlo integra-
tion because our application is straightforward, and we findthatm = 103 is sufficient,
and only takes a few seconds.

5b. Investigating the choice of prior forx∗

Our predictive distribution forδ will depend on our prior forx∗, namelyFx∗ , and on
our emulator forg(·), which in turn will depend on our choice forX , our resulting
evaluationsy, and the choices we make in the construction of our emulator.In our
particular application these latter choices have been described in sections 3 and 4. One
of the advantages of using an emulator is that we can investigate different choices for
Fx∗ , to establish to what extent our predictive distribution for δ is affected by aspects
of our distribution function for the correct parametersx∗. Here we present a simple
experiment to investigate the shape of the distribution. Westress that this is a sensitivity
analysis. Our candidates forFx∗ below do not represent our judgements about the
correct parametrisation of HadSM3. O’Hagan and Oakley (2004) discuss the problem
of eliciting distributions for model parameters.

For our base-line choice forFx∗ we adopt the QUMP prior, namely that all compo-
nents ofx∗ are independent; all continuous components are uniform within the limits
given in Table 1, and all factors have equal probability on each level (also given in Ta-
ble 1). We will consider some alternative specifications forthe marginal distributions
of the continuous components ofx∗. Our resulting predictive distributions forδ are
shown in Figure 6; the base-line is shown as distributionA.

First, the actual definition of the variables in a simulator is to some extent arbitrary.
Often, for example, the choice of whether some variable should be represented asϕ or
asψ , 1/ϕ may come down to what is more efficiently represented in the computer
code. Naturally this makes a difference to the choices we make forFx∗ , since ifϕ∗

has a uniform distribution thenψ∗ does not. In a superficial analysis this can cause
some debate, along the lines of “Should our distribution be uniform in ϕ∗ or in ψ∗?”,
but only because the uniform distribution is presumed to represent some form of ‘prior
ignorance’. A deeper analysis reveals that it is the conceptof ‘prior ignorance’ which
is at fault, not the choice of the uniform distribution. We are not ignorant about the
parameters in our simulators; for example it is possible to elicit ranges for them, and
also information about symmetry, as shown in Table 1. It mustbe understood that
selecting a uniform distribution is a choice made not of ignorance, but of judgement.
Thus if a uniform distribution is chosen forϕ∗ then the distribution ofψ∗, and indeed
of every well-behaved function ofϕ∗, is also chosen at the same instant. There is no
‘default’ distribution forFx∗ , uniform or otherwise: every choice must be defensible
as a description of someone’s uncertainty. One thing we can do, however, is a simple
experiment to see whether uniform inϕ∗ or in ψ∗ makes any practical difference. The

22



P
ro

ba
bi

lit
y 

de
ns

ity

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

A, Uniform

B, Uniform, 1/{ENT, VF1, RHCRIT}

C, Triangular

D, Triangular 15% wider

E, Triangular, 1/{ENT, VF1, RHCRIT}

A

B

C,D

E

Sensitivity, K

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A B

C,D

E
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marginal priors for the components ofx∗ corresponding toENT,VF1 andRHCRIT can
be treated as uniform in the reciprocal; shown as distributionB in Figure 6.

Second, as has frequently been noted, the uniform is actually a very poor choice
of shape for a distribution on the correct value of a continuous variable; see, e.g.,
Garthwaite et al. (2005). The uniform asserts, for the correct value of a continuous
variable, that all values within some range are equally likely, and all values outside
that range are impossible. Thus forCW, which we believe is an important determinant
of HadSM3’s sensitivity, all values between1 and10 are deemed equally likely, even
though the standard value is2, and a value such as0.9 is deemed impossible. This does
not seem a very defensible position. A more natural choice inthis situation would be to
favour a prior which had a continuous density function, rather than a step at either end,
so that, for example, an impossible value like0.9 is only a little less probable than the
nearby possible value of1.1. The simplest such distribution is symmetric triangular,
which has the same number of parameters as the uniform distribution. We investigate
using this distribution for the correct values of all of the continuous variables; shown
as distributionC in Figure 6.

Third, we investigated increasing the width of the triangular prior for each of the
continuous variables by 15% (subject to a non-negativity constraint, andCFS > 0.5
andANVS > 1), to account for the possibility that the experts who set thewidths might
have underestimated their parametric uncertainty (see, e.g., Soll and Klayman 2004).
This is shown as distributionD in Figure 6.

Finally, we combined the triangular prior with the reciprocal expression ofENT,
VF1 andRHCRIT, shown as distributionE in Figure 6.

Comparing the predictive distribution forδ derived under our different specification
for Fx∗ we can see immediately that the shape of the priordoesmatter, particularly in
determining the length of the upper tail, where the most risks lie from a decision-
making point of view. The biggest difference comes from switching to the reciprocal
for the components ofx∗ corresponding toENT, VF1 andRHCRIT. In both cases the
triangular distribution gives a smaller uncertainty forδ than the uniform, with a ma-
terially lower probability of extremely high values. This reflects the fact that extreme
values for HadSM3’s sensitivity are found in the corners of the parameter-space, and
the triangular distribution downweights these relative tothe uniform. Similarly, the
uniform and reciprocal-uniform are more different than thetriangular and reciprocal-
triangular. It is also interesting to note that the predictive distribution forδ is relatively
insensitive to the width of the marginal distributions, at least for our experiment of
increasing that width by15%.

All of these findings are conditional upon our emulator for HadSM3, and con-
sequently on the CPNET and QUMP ensembles. They are also prior to calibrating
HadSM3 with climate data: the necessary steps for this are described in Rougier
(2006).

6. Summary

An emulator allows us to separate the process of choosing theevaluations in the en-
semble from the inference that we intend to do. Consequentlywe can choose our
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evaluations wisely, rather than ‘randomly’, and we can perform a variety of inferences,
including a detailed sensitivity analysis, such that that suggested forFx∗ . This is im-
portant because there can be no ‘right’ choice forFx∗ , although we might hope that a
broad consensus might emerge.

But the main part of this paper has addressed another featureof emulators; they
provide us with an opportunity to exercise our judgement when using a simulator such
as HadSM3 in a CO2-doubling experiment. We can, if we so choose,and if we have
sufficient evaluations, delegate all such judgements to standard statistical tools. To a
large extent, this is what we did in section 3b, when we built an emulator for CPNET
sensitivity, using the CPNET ensemble. We used the Box-Cox approach to select an
appropriate transformation of the response; we used stepwise selection to help choose
the regressors; and we did this within an emulator frameworkconsistent with a non-
informative prior. Our judgements were exercised much morein section 4, where we
had to make explicit quantitative choices that described the extent to which we believed
that the CPNET and QUMP sensitivities were related. We did not make these judge-
ments in isolation, however, but with the support of detailed diagnostic information.

We see this feature as the crucial advantage of emulators, either in providing the
opportunity to augment a small ensemble with prior information, or in allowing us to
combine information from different but related studies.
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