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I trust we all agree that—subject to the usual caveats about the sociology

of science—we build models to understand complex systems. So let our

starting point be the question “How can I reduce my uncertainty about the

physical system by evaluations of my simulator?” (see the comment below,

“A little terminology”, for my preference for ‘simulator’ rather than ‘model’

in this context).

In conferences and seminars we often we hear statements of the form “The

simulator predicts . . . ”. Likewise, in respectable journals we often observe

the phrase “. . . conditional on the simulator being correct” (actually, the
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statement is more usually “. . . conditional on the model being correct”, but

on my interpretation of ‘model’ this is not right). This is not acceptable

in cases where the behaviour of the system, if unchecked, has the potential

to impose huge costs, and if the policies required to ameliorate the impact

of the system are themselves hugely costly. This is certainly the case in

climate change, the area in which I work, and it is also the case in flood

risk assessment. No expert should be allowed to get away with statements

about the simulator when in fact the stakeholders require statements about

the system.

The degree to which we expect our simulators to be informative about

the system depends on our own prior assessment of simulator quality. In

particular, when we have a sequence of simulators with the same underlying

simulator structure but different resolutions of solver, we must have some

mechanism for ensuring that the higher-resolution simulators are more in-

formative in our inference about the system than the lower-resolution ones.

But even where we only have one simulator, we should still be aware that our

treatment of the information from that simulator must be coherent with the

possibility that we could build a better simulator if we so chose. Therefore

every time we use a simulator to understand a system we must ask the ques-

tion “Where is the slot which allows me to quantify how good a simulator I

believe this to be?”

Recent developments in statistics have tackled the problem of how we

quantify the information about the system available in evaluations of a given

simulator, an area where UK research groups can reasonably claim to be

world-leaders. From a statistical point of view we identify two sources of
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uncertainty. First, the simulator contains parameters about which we are

uncertain. Sometimes these are measurable quantities that we have not been

able to measure, like the initial value of the state vector in a dynamic system.

More often, however, they are non-measurable in the context in which they

enter the simulator. Hydraulic resistivity, for example, is difficult to measure

at a point, and also difficult to generalise to a region treated as homogeneous.

In ocean simulators it is necessary to distinguish between molecular viscosity,

the measurable quantity in the model and the system, and eddy viscosity,

the number that goes into the simulator, which is typically several orders of

magnitude bigger.

Second, even if we were able to identify, perhaps through some super-

natural agency, the best value for these unknown parameters, then we do

not believe that the simulator evaluated at those parameters will exactly

match the system. Note that this is a much stronger requirement than ex-

actly matching the data, or, indeed, exactly matching the system values that

correspond to the data (i.e. without measurement errors). This gives us two

uncertain quantities to specify: the ‘best’ parameter value x∗, and the sim-

ulator discrepancy ε. The simplest possible way in which we can combine

these together with the simulator f and the system y is in the form

y = f(x∗) + ε x∗ ⊥⊥ ε

where ‘⊥⊥’ denotes probabilistically independent in the mind of the expert

performing the analysis. This requires us to specify a distribution function

for x∗ and a distribution function for ε. This approach has been adopted by
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our group at Durham in a series of papers (see, e.g., Craig et al., 2001), in

broad collaboration with groups at Sheffield (Kennedy and O’Hagan, 2001)

and Los Alamos (Higdon et al., 2005).

This simple statistical framework is easy to interpret. It states that were

x∗ revealed to us, then for the purposes of making a prediction about y, we

would be satisfied with a single evaluation of the simulator at x∗. Because

x∗ is not revealed to us in practice, we have to perform many evaluations of

our simulator at candidate values for x∗, and we have to weight the outcome

of these evaluations according to our prior beliefs about x∗. If we are lucky

enough to have observations, z say, on y (albeit incomplete and made with

error), then we weight by the conditional distribution of x∗ | z. It is important

to realise, however, that to compute this conditional distribution we must first

specify the distribution of the discrepancy ε. It is not the case that having

data for calibration can excuse us from thinking about the quality of our

simulator. The point is, the better is our simulator, the more informative

about x∗ we expect the data z to be.

The simple approach with ε additive and independent of x∗ is very attrac-

tive from a computational point of view, which is important given the general

complexity of the inferential calculations. I would also say that it is quite

intuitive. Certainly, it is possible to ‘re-interpret’ a common and ostensibly

non-probabilistic approach in these terms; see, for example, the experiment

outlined in Murphy et al. (2004), which I re-interpret in Rougier (2004). It

also leads to quite simple measures of simulator inadequacy, based on sum-

mary statistics such as Var(ε). If you want to make probabilistic statements

about the system, and you do not have a slot for simulator quality in your
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current set-up, then you would be well-advised to start with this approach.

Even so, the specification of Var(ε) is not straightforward, particularly when

accounting for spatial and temporal indexing in y; Craig et al. (2001, sec-

tion 6.1) provide an example of how we might proceed in this case. But what

is the best thing to do? Make an honest attempt at appraising a difficult

quantity, or simply ignore it (effectively set E(ε) = 0 and Var(ε) = 0). Prac-

tically speaking, the answer to this question depends on the requirements

of the stakeholders. I believe that we should educate stakeholders to the

point where they will demand quantifications of simulator inadequacy as a

necessary prerequisite for simulator-based inference about systems.

Finally, a brief look-ahead. Although it may be considered the cur-

rent state-of-the-art, the simple additive discrepancy term is too highly con-

strained to be an adequate reflection on the very complicated issue of sim-

ulator quality across a range of simulators for the same underlying system,

which might vary in the ways described in the Note on Terminology. The

‘next big thing’ in this area will be more general formulations that allow us

to link simulators together into a joint inference about the system. In cli-

mate prediction, for example, we need a way of making sense of seemingly

inconsistent simulator-based assessments of quantities such as climate sensi-

tivity (Stainforth et al., 2005, is the latest such estimate). In a recent paper

(Goldstein and Rougier, 2005) we have outlined an approach for this, and we

are currently involved in a case-study to examine practical implementation

issues. It’s a difficult job, but we should take as a guiding principle that

we allocate effort according to the importance of the task. In climate, and

perhaps in flood risk assessment as well, the simulators are rather poor and
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the consequences of unchecked system behaviour are potentially catastrophic,

and so we should expect to devote a large amount of effort to quantifying the

inferential content of simulator evaluations, including notions of simulator

quality, as a necessarly prequel to making simulator-based predictions for

system behaviour.

A note on terminology. I make a careful distinction between a model, its

treatment and its simulator. Broadly, we may think of the simulator, which

is the code we actually evaluate, as arising from

Simulator = Model + Treatment + Solver.

The model tends to be the underlying mathematical equations, often written

as a collection of differential equations and equations of state. The treat-

ment typically concerns the initial and boundary conditions (including forc-

ing functions) that make the model applicable to a particular time and place.

The treatment can also concern which properties of the model are taken as

outputs: e.g., steady state, ‘ergodic’ averaging, or dynamic evolution subject

to specified forcing. Finally, the solver requires decisions about discretisa-

tion, in particular the order of the approximation and spatial and temporal

resolution.

None of these distinctions would be necessary if there was a one-to-one

correspondence between models and systems. But when formulating a co-

herent framework linking models and systems it is essential to acknowledge

that there are many simulators for a given system, and that these simulators
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share common features due to having similar models, treatments and solvers.

We cannot think about how our simulator is informative about the system

without also being prepared to think about how our simulator links to other

simulators of the same system. For example, this is how we will be able to

use palæo-climate data to calibrate future climate predictions. The palæo-

climate-simulator and the future-climate-simulator share the same underly-

ing climate model, and are linked up through uncertainty about the model

parameters.
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