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Abstract

We consider an age replacement problem with cost function based on the
renewal reward theorem. However, instead of assuming a known probability dis-
tribution for the lifetimes, we apply Hill’s assumption A(n) for predicting proba-
bilities for the lifetime of a future item. Lower and upper bounds for the survival
function of a future item are used, resulting in upper and lower cost functions.
Minimising these upper and lower cost functions to obtain the optimal age re-
placement times is simplified due to the special form of these functions.

To discuss some features of our approach, we first study the consequences
of using n equally spaced percentiles from a known distribution instead of n

observed data. Secondly, we report on a simulation study where the lifetimes
are simulated from known distributions, so that the optimal replacement times
corresponding to our approach can be compared with the theoretical optimal
replacement times.

1 Introduction

Nonparametric predictive inference (NPI) is a recently developed statistical approach,
using Hill’s assumption A(n) [8] for prediction in case of vague prior knowledge of a
probability distribution for real-valued random quantities. Let x(j), j = 1, . . . , n, be
ordered data. Let Xj be the corresponding unordered random quantities. Hill [10]
defines A(n) as follows:

(i) the observable random quantities X1, . . . , Xn are exchangeable;

(ii) ties have probability 0 (generalisation is easy but requires awkward notation);

(iii) given x(j), j = 1, . . . , n, the probability that the next observation falls in the
interval Ij = (x(j), x(j+1)) is 1/(n + 1), for each j = 0, . . . , n, where x(0) = −∞
(or x(0) = 0 if Xi ≥ 0) and x(n+1) = ∞ (or a known upper bound for Xj).
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For convenience, we drop the brackets in x(j) in the rest of the paper, and just assume
x1 < x2 < . . . < xn. A(n) is a post-data assumption related to exchangeability [7],
see [9] for discussion of A(n) and an overview of related work. Hill [10] showed that
A(n) leads to De Finetti-coherent inference from a Bayesian perspective. Clearly, A(n)-
based inference is predictive and nonparametric, and suitable if there is hardly any
knowledge about the random quantities of interest, other than the n observations, or
if one explicitly does not want to use such information, e.g. if one wants to study the
effects of assumptions underlying statistical models.

The assumption A(n) is not sufficient to derive precise probabilities for many events
of interest. However, it does provide bounds for such probabilities [2]. Applications
of NPI in reliability and operational research have been presented [3, 4, 5, 6]. In [4]
NPI is used to develop predictive probability results for the waiting time for customers
in a queue, including guidelines on which queue to join in case of multiple queues.
In [3, 6] NPI is applied to replacement problems. In [3] guidelines for preventive
replacement decisions are presented, under the assumption that a unit’s condition,
which is continuously monitored, is in one of k possible states, and transitions occur at
random times. If data are available in the form of n observed transition times for each
of the k states, NPI is used for prediction of the time in each state, and probabilistic
results for residual lifetime of the current unit, when entering a state, are derived via
convolutions. In [6] an NPI-based strategy was developed for corrective replacement
when observed failure times are available, addressing the question whether or not unit
n+1 should be installed, given the failure times of the first n units used consecutively in
a production process. In [5] a variety of NPI-based results are introduced to reliability,
including attention to survival functions.

In this paper, we consider an age replacement problem, as formulated for a stochas-
tic process with cost function following from application of the renewal reward theorem,
see e.g. Barlow and Proschan [1]. The classical setting is as follows. Let X1, X2, . . . be
independent identically distributed random quantities, representing lifetimes of units.
Assume that the distribution of these random quantities is known, and has survival
function S(x) = P (Xj > x). The age replacement rule prescribes replacement of an
item upon failure (‘corrective replacement’) or upon reaching the age T (‘preventive
replacement’), whichever occurs first. For each preventive replacement a fixed cost of
c1 > 0 is incurred, while each corrective replacement costs a fixed c2 > c1. Using the
renewal argument [1] the long-run average costs per unit time, C(T ), is given by

C(T ) =
c2 − S(T )(c2 − c1)

T
∫

0

S(x)dx

. (1.1)

Without loss of generality, we will choose c1 = 1 in all examples, as only the cost ratio
c2/c1 is relevant for the location of the minimum of C(·).

For a known probability distribution, this cost function C(·) can be minimised
in order to find the optimal replacement time T ∗. However, there has been growing
attention during the past decade to the estimation of the underlying distribution of the
Xj, which is of particular interest in applications with actual failure data. For example,
Mazzuchi and Soyer [11] considered a Bayesian approach, assuming that the underlying



distribution is a Weibull with unknown shape and scale parameter, and updating an
assumed prior distribution for these parameters when process data become available.
They correctly comment on the fact that the principle behind use of the above cost
function C(·) is such that it should only be used if the resulting strategy is going to be
used for a long period of time in the future, else, a cost function based on considering
only a single cycle might be more appropriate.

In this paper, we analyse what inferences we can derive by adding only few mathe-
matical assumptions to failure data, but we do assume that the resulting strategy will
be used for a period long enough to justify the use of a cost function of the form above.
Therefore, the results presented here provide a method that adapts fully to the avail-
able failure data at the time that an optimal strategy is determined, but it is assumed
that this strategy will be fixed from then on. In later research we will consider even
more adaptive strategies, which will explicitly adapt to each new piece of information
from the process, and using optimisation over one cycle. It should be remarked that
the cost function above is widely accepted for age replacement, with often not much
emphasis on whether or not the resulting strategy will actually be used forever on.

Let us denote by x1 < x2 < . . . < xn the ordered lifetimes of the first n units, and
write x0 = 0 and xn+1 = ∞. The assumption A(n) defines direct predictive probabilities
for the lifetime Xn+1 of a further item as P (Xn+1 ∈ (xj, xj+1)) = 1/(n+1), j = 0, . . . , n.
This leads to predictive survival function for Xn+1 equal to [5]

SXn+1
(xj) =

n + 1 − j

n + 1
, for j = 0, . . . , n + 1. (1.2)

As A(n) assigns probability mass to the open intervals (xj, xj+1), j = 0, . . . , n, but does
not put any further restrictions on the distribution of the probability mass within each
such interval, it is not possible to give a precise value for the survival function at times
other than previously observed event times without further assumptions. However,
we can derive lower and upper bounds for the survival function, consistent with the
probability assessment according to A(n). The maximum lower bound, S(x), can be
obtained by shifting the probability mass in the interval in which x lies to the left
end-point of the interval, leading to

SXn+1
(x) = SXn+1

(xj+1) =
n − j

n + 1
for x ∈ (xj, xj+1), j = 0, . . . , n. (1.3)

Similarly, the minimum upper bound, S(x), can be obtained by shifting the proba-
bility mass in the interval in which x lies to the right end-point of the interval, leading
to

SXn+1
(x) = SXn+1

(xj) =
n + 1 − j

n + 1
for x ∈ (xj, xj+1), j = 0, . . . , n. (1.4)

S(·) and S(·) are called the lower and upper survival function for Xn+1, respectively [5].
It should be emphasized that the actual positions of probability masses 1/(n + 1) per
interval, for these upper and lower survival functions, is such that they are very close to
the observed xj (or 0 or ∞), but not actually at these points. This is what De Finetti
[7] calls ‘adherent probability’ to a point, which implies that the probability mass is
not actually in the point, but inside each open interval that contains the point. For



our applications this is relevant with regard to the continuity properties of the lower
and upper survival functions and the related cost functions, where, at the xj, S(·) is
continuous from the left, and S(·) continuous from the right.

In the following sections we will study the use of these NPI-based lower and upper
survival functions in the age replacement problem with the renewal argument. Sections
2 and 3 present the main results, namely that the lower and upper survival functions for
Xn+1 lead to the optimal upper and lower bounds, respectively, for the cost function
for age replacement of the next unit. It is also shown that the minimisation of the
corresponding cost functions is fairly straightforward, as effectively only the values at
(or just before) observed failure times need to be considered. In Section 4 we discuss
our upper and lower cost functions if instead of n data values we would actually use the
100j/(n + 1)-percentiles, for j = 1, . . . , n, of a known probability distribution in our
NPI approach. In Section 5 we illustrate our approach via simulations, which enable us
to discuss its performance compared to theoretical optima. Finally, some concluding
remarks are given in Section 6.

2 Upper Cost function

In this section we use a renewal argument and the lower survival function (1.3) to
derive the optimal NPI upper bound for the long-run average costs per cycle for Xn+1.
We will show that the optimal time to replace is in one of the points xj, j = 1, . . . , n,
which significantly simplifies optimisation.

¿From (1.1) it is clear that the optimal NPI upper bound for the cost function for
Xn+1, denoted by CXn+1

(T ), is obtained by substituting the lower survival function
SXn+1

(x) for S(x), for x ∈ (0, T ].

Lemma 2.1

CXn+1
(xj) =

jc2 + (n + 1 − j)c1

(n − j + 1)xj +
j−1
∑

l=1

xl

, j = 1, . . . , n + 1, (2.1)

CXn+1
(T ) =

(j + 1)c2 + (n − j)c1

(n − j)T +
j

∑

l=1

xl

, for T ∈ (xj, xj+1), j = 0, . . . , n. (2.2)

Proof. First consider T = xj, j = 1, . . . , n + 1. Then

T
∫

0

SXn+1
(x)dx =

xj
∫

0

SXn+1
(x)dx =

j−1
∑

l=0

xl+1
∫

xl

SXn+1
(x)dx =

j−1
∑

l=0

(xl+1 − xl)

(

n − l

n + 1

)

=
1

n + 1

(

xj(n − j + 1) +
j−1
∑

l=0

xl

)

.

Substituting this into (1.1), we obtain the optimal upper bound for the cost function
for Xn+1 in xj, j = 1, . . . , n + 1, as given in (2.1).



For T ∈ (xj, xj+1), j = 0, . . . , n, we get

T
∫

0

SXn+1
(x)dx =

xj
∫

0

SXn+1
(x)dx +

T
∫

xj

SXn+1
(x)dx

=
1

n + 1

(

xj(n − j + 1) +
j−1
∑

l=0

xl

)

+ (T − xj)

(

n − j

n + 1

)

=
1

n + 1

(

(n − j)T +
j

∑

l=1

xl

)

.

Substituting this into (1.1), we obtain the optimal upper bound for the cost function
for Xn+1 in T ∈ (xj, xj+1), j = 0, . . . , n, as given in (2.2) 2

An NPI-based upper bound for the cost function for Xn+1 in the case that we do
not repair preventively, that is, T = ∞, is given by CXn+1

(xn+1) = c2/
(

1
n+1

∑n

l=1 xl

)

,
where the denominator is the lower expectation of Xn+1 corresponding to A(n) and
the data. Here the lower expectation of Xn+1, E(Xn+1), is obtained by shifting all
probability mass in each interval (xj, xj+1), j = 0, . . . , n, to the left end-point of the
interval, so E(Xn+1) = 1

n+1

∑n

l=1 xl.
The lower survival function has no probability mass beyond the largest observation,

so ∀T > xn we have SXn+1
(T ) = 0. As a consequence, the upper cost function is

constant for T > xn. From (2.1) and (2.2) it is clear that CXn+1
(T ) > CXn+1

(xn) for
T > xn, so we do not have to consider replacement times T > xn when determining
the optimal replacement time in the sense of minimising the upper cost function.

Lemma 2.2 CXn+1
(·) is a continuous and strictly decreasing function in T ∈(xj , xj+1),

j = 0, . . . , n − 1. Moreover, CXn+1
(·) is continuous from the left in xj, j = 1, . . . , n,

and every xj is a local minimum.

Proof. CXn+1
(·) is a continuous function in T ∈ (xj, xj+1), j = 0, . . . , n − 1, as

SXn+1
(·) is continuous in all such T , and CXn+1

(·) is clearly strictly decreasing in all
T ∈ (xj, xj+1), j = 0, . . . , n − 1. Finally, for j = 1, . . . , n,

lim
ε↓0

CXn+1
(xj + ε) =

(j + 1)c2 + (n − j)c1

(n − j + 1)xj +
j−1
∑

l=1

xl

> CXn+1
(xj)

and
lim
ε↓0

CXn+1
(xj − ε) = CXn+1

(xj),

so CXn+1
(·) is continuous from the left in xj, j = 1, . . . , n, and each xj, j = 1, . . . , n,

is a local minimum of CXn+1
(·). 2

The following theorem follows immediately from Lemma 2.2.

Theorem 2.1 The minimum of CXn+1
(·) is assumed in one of the points xj, j =

1, . . . , n.



This theorem tells us that, in order to determine the optimum T in the sense of
minimising CXn+1

(·), we only have to consider the points T = xj, j = 1, . . . , n, the
previously observed failure times.

Example 2.1 Suppose we have observed 5 lifetimes: 4, 6, 10, 11, 15. Each preventive
replacement costs c1 = 1, while each corrective replacement costs c2 = 10. We would
like to find the optimal replacement time for item 6 in the sense of minimising CX6

(·),
using the renewal argument, the assumption A(5), and the data.

By Theorem 2.1 we only have to calculate CX6
(xj) for j = 1, . . . , 5,

x1 x2 x3 x4 x5

4 6 10 11 15

CX6
(xi) 3/4 6/7 33/40 1 51/46

The optimal replacement time is T = 4, with corresponding upper costs CX6
(x1) = 3/4.

An upper bound for the cost function for X6 if we do not repair preventively is given by
CX6

(∞) = 30/23. Figure 1 is a plot of CX6
(·), together with CX6

(·), which we discuss
in the next section.

3 Lower Cost function

In this section we use a renewal argument and the upper survival function (1.4) to derive
the optimal NPI lower bound for the long-run average costs per cycle for Xn+1. We will
show that the optimal time to replace is in one of the points x−

j , j = 1, . . . , n, which
are to be interpreted as ‘just before xj’, and are such that the adherent probability
mass to xj is considered to be to the right of x−

j in the extreme situation related to

the location of the probability masses corresponding to SXn+1
(·). So, to determine the

optimal value of the control parameter T in the sense of minimising the lower cost
function, we again only have to check a finite number of values.

¿From (1.1) it is clear that the optimal NPI lower bound for the cost function
for Xn+1, denoted by CXn+1

, is obtained by substituting the upper survival function

SXn+1
(x) for S(x), for x ∈ (0, T ].

Lemma 3.1

CXn+1
(xj) =

jc2 + (n + 1 − j)c1

(n − j + 2)xj +
j−1
∑

l=1

xl

, j = 1, . . . , n + 1, (3.1)

CXn+1
(T ) =

jc2 + (n + 1 − j)c1

(n − j + 1)T +
j

∑

l=1

xl

, for T ∈ (xj, xj+1), j = 0, . . . , n. (3.2)

Proof. First consider T = xj, j = 1, . . . , n + 1. Then

T
∫

0

SXn+1
(x)dx =

xj
∫

0

SXn+1
(x)dx =

j−1
∑

l=0

xl+1
∫

xl

SXn+1
(x)dx =

j−1
∑

l=0

(xl+1 − xl)

(

n + 1 − l

n + 1

)

=
1

n + 1

(

(n − j + 2)xj +
j−1
∑

l=1

xl

)

.



Substituting this and (1.2) into (1.1), we obtain the lower bound (3.1) for the cost
function for Xn+1 in xj, j = 1, . . . , n + 1. For T ∈ (xj, xj+1), j = 0, . . . , n, we obtain

T
∫

0

SXn+1
(x)dx =

j−1
∑

l=0

xl+1
∫

xl

SXn+1
(x)dx +

T
∫

xj

SXn+1
(x)dx =

1

n + 1

(

(n + 1 − j)T +
j

∑

l=1

xl

)

.

Substituting this and (1.4) into (1.1), we obtain the lower bound (3.2) for the cost
function for Xn+1 in T ∈ (xj, xj+1), j = 0, . . . , n. 2

A lower bound for the cost function for Xn+1 in the case that we do not repair
preventively (T = ∞), is given by the expected cost c2 divided by the upper expectation
of Xn+1 according to A(n) and the data. This corresponds to CXn+1

(∞) as given in

(3.1), with xn+1 = ∞. The upper expectation E(Xn+1) is obtained by shifting all
probability mass in the interval in which x lies to the right end-point of the interval.
So, we have E(Xn+1) = 1

n+1

∑n+1
j=1 xj. But, as long as we do not assume a known

finite upper bound for xn+1, and thus use xn+1 = ∞, we have E(Xn+1) = ∞ and
consequently CXn+1

(xn+1) = 0. This is a minor complication that we avoid, in first
instance, by restricting attention to the interval (0, xn]. However, we return to this
issue after Theorem 3.1.

Lemma 3.2 CXn+1
(·) is a continuous and strictly decreasing function in T ∈ (xj, xj+1),

j = 0, . . . , n. Moreover, CXn+1
(·) is continuous from the right in xj, j = 1, . . . , n, and

every x−
j , j = 1, . . . , n, is a local minimum.

Proof. The proof that CXn+1
(·) is a continuous and strictly decreasing function in T ∈

(xj, xj+1), j = 0, . . . , n, is similar to the proof of Lemma 2.2. As, for j = 0, . . . , n − 1,

lim
ε↓0

CXn+1
(xj+1 − ε) =

jc2 + (n + 1 − j)c1

(n + 1 − j)xj+1 +
j

∑

l=1

xl

< CXn+1
(xj+1)

and
lim
ε↓0

CXn+1
(xj+1 + ε) = CXn+1

(xj+1),

it follows that CXn+1
(·) is continuous from the right in xj, j = 1, . . . , n, and that each

x−
j , j = 1, . . . , n, is a local minimum of CXn+1

(·). 2

The following theorem is an immediate result of Lemma 3.2.

Theorem 3.1 The minimum of CXn+1
(T ) over (0, xn] is assumed in one of the points

x−
j , j = 1, . . . , n.

If we assume a known finite right end-point r for the interval In+1, so that xn+1 = r
and In+1 = (xn, r), then A(n) places mass 1/(n + 1) in this interval and no probability
mass to the right of r. This gives E(Xn+1) = 1

n+1
(
∑n

j=1 xj +r) as the upper expectation
for Xn+1. Now we have to compare the minimal costs corresponding to the optimal T



obtained by Theorem 3.1 with CXn+1
(r−). If CXn+1

(r−) is smaller than the minimal
costs corresponding to the optimal T obtained by Theorem 3.1, then it is better not
to replace preventively at all. Alternatively, we can calculate a critical value r∗ such
that if you think that an upper bound r for the support of Xn+1 is less than or equal
to r∗, then it is optimal to replace at the optimal T obtained by Theorem 3.1, but if
you think that r > r∗, it is better not to replace preventively.

Example 2.1 (ctd) To find the optimal replacement time for X6 in the sense of
minimising CX6

(·), using the renewal argument, the assumption A(5), and the data, we
only have to calculate CX6

(x−
j ), j = 1, . . . , 5,

x−
1 x−

2 x−
3 x−

4 x−
5

4− 6− 10− 11− 15−

CX6
(x−

j ) 1/4 15/34 12/25 33/53 42/61

The optimal replacement time is T = 4−, with corresponding lower costs CX6
(4−) =

1/4. Figure 1 shows CX6
(·) and CX6

(·).
The critical value r∗ equals 158. Hence, if you think that an upper bound for

X6 is less than or equal to 158, then the optimal replacement time remains T = 4−,
otherwise it is better not to replace preventively. In this last case the minimal costs
are 51/(r + 46) with r the assumed upper bound for X6.

0 5 10 15

0
1

2
3

4
5

Replacement time

Av
er

ag
e 

co
sts

 p
er

 u
nit

 tim
e

Upper cost function
Lower cost function

Figure 1: Lower and upper cost functions for Example 2.1

4 Use of percentiles for data

To discuss some features of our approach, assume that instead of n observed data
we use the n equally spaced percentiles from a known distribution, so let xj be the



100j/(n + 1)-percentile, for j = 1, . . . , n. For a distribution with survival function
S(·), this implies S(xj) = n+1−j

n+1
, which agrees precisely, at these xj-values, with our

NPI-based predictive survival functions, as at these xj-values our lower and upper pre-
dictive survival functions are the same and equal to this value. Therefore, if we apply
our method to such percentiles of a known distribution, the actual underlying survival
function is indeed everywhere between our NPI-based predictive lower and upper sur-
vival functions, and hence the corresponding theoretical cost function is between the
NPI-based lower and upper cost functions. This is illustrated in Figure 2, where the
theoretical model is a Weibull distribution1, W (2, 1), and the costs are c1 = 1 and
c2 = 10, and we have used the percentiles corresponding to n = 10. We denote this
theoretical cost function by C(·). Notice that, although these three survival functions
are equal at these percentiles, the corresponding cost functions differ due to different
values of the denominator in (1.1), as these survival functions differ in value at other
points.
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Figure 2: Cost functions with percentiles for data.

¿From Figure 2 we can conclude some interesting aspects. First, and most impor-
tantly, the fact that C(·) lies between our upper and lower cost functions does not
imply a strong relation for their respective minima. In the situation in Figure 2, both
the upper and lower cost functions happen to have their minimum in (or just before)
the first included percentile, which is at 0.3087, whereas the theoretical cost function
has its minimum at 0.3365. Indeed, we cannot generally conclude where the minimum
of the underlying C(·) is on the basis of the minima of the upper and lower cost func-
tions, even if the data were ideal reflections of the underlying distribution function as
we assumed here.

1W (α, β) denotes a Weibull distribution with shape parameter α and scale parameter β.



If one would wish a strong general result on the location of the minimum of C(·) for
such a situation with the appropriate percentiles replacing actual data, then the only
achievable lower and upper bounds for the theoretical optimal replacement time T ∗

are those that follow logically from the fact that C(T ∗) must be between the minimum
values of the upper and lower cost functions. However, since this is of little value when
we work with actual data, we do not pursue this further. ¿From theoretical perspective
this would be of interest, as in this way an interval can be derived that would contain
the location of the minimum for the cost function (and similarly for the optimal value
of the cost function) corresponding to each survival function between our upper and
lower survival functions, so corresponding to the entire class of survival functions which
are consistent with the NPI-based specification.

Further study of the performance of our method, when n such percentiles of a
known distribution are used, revealed that, for increasing n, the optimal replacement
times corresponding to our upper and lower cost functions converge to the theoretical
optimum, which is a direct consequence of the fact that our upper and lower survival
functions converge to the underlying survival function.

We also performed this analysis with an Exponential distribution, which has con-
stant hazard rate, as underlying lifetime model, and with a W (0.7, 1), which has de-
creasing hazard rate. For this latter Weibull model, the minima for both the lower
and upper cost functions were assumed at the largest percentile, both for n = 10 and
n = 100, and with c2 = 10 and c2 = 50 (always keeping c1 = 1). For the Exponential
distribution, we got a similar result for the lower cost function, while the minimum
of the upper cost function (for these values for n and c2) was always in one of the
largest percentiles, but not the very largest. However, the cost functions related to
the Exponential distribution are extremely flat in the right tail, so the differences in
average costs per unit time between any large replacement times, or choosing not to
perform preventive replacements at all, are very small indeed.

Considering the cost functions with these percentiles instead of the data is of interest
as it illustrates some nice features of the approach, but it does not indicate how well our
method performs when we get random data from an unknown underlying distribution.
In the next section we report on simulation studies carried out to gain such insight.
Of course, in such studies one has the advantage of actually knowing the assumed
underlying distribution, and hence of being able to compare the theoretical optimal
replacement times with the suggested replacement times following from minimisation
of our NPI-based lower and upper cost functions, and also being able to compare the
corresponding costs.

5 Simulations

In this section we present some simulation results to illustrate our method and discuss
several of its features. All simulations are performed with the statistical package R
[12]. The lifetimes are simulated from a known distribution, where we have restricted
attention to Weibull distributions, so that we can compare the optimal replacement
times corresponding to our lower and upper cost functions with the theoretical optimal



replacement time, which is the result of minimising (1.1) for the distribution used in
the simulation. It is well known that the theoretical optimal replacement time T ∗ is
the unique solution to the equation [1]

h(T )

T
∫

0

S(x)dx − F (T ) =
c1

c2 − c1
, (5.1)

with the hazard rate h(T ) = f(T )/S(T ).
Let T−∗

low = argminCXn+1
(T ), where this specific notation is used to indicate that

the actual preventive replacement should take place just before the values T ∗
low given

in Table 3. Let T ∗
up = argminCXn+1

(T ), ∆low = C(T−∗
low)− C(T ∗), and ∆up = C(T ∗

up)−
C(T ∗). These ∆’s indicate how good our optimum replacement times are compared
to the theoretical optimum, for which the correct probability distribution needs to be
known, judged by comparing the loss in long-run average costs per unit of time that
would be incurred by using our optima instead of the theoretical optimum.

Table 1 gives the theoretical optimal replacement times T ∗ and the corresponding
minimal costs C(T ∗) for the situation that the lifetime distributions are W (2, 1) (which
has expected value 0.8862 and variance 0.1138), W (3, 1) (expected value 0.8930, vari-
ance 0.0098) and W (1.2, 1) (expected value 0.9407, variance 0.5639), and with c2 = 10
or c2 = 50. The row ’CASE’ refers to the simulations reported in Table 3. The theo-
retical cost functions corresponding to these three Weibull distributions (with c2 = 10)
are presented in Figure 3. The limiting values for these cost functions, which relate to
no preventive replacements being carried out (so T = ∞), are also given in Table 1, to
assist comparison of the performance of our method in the simulations.

W (2, 1) W (3, 1) W (1.2, 1)
c2 = 10 c2 = 50 c2 = 10 c2 = 50 c2 = 10 c2 = 50

CASE 1, 2 3 4, 5 6 7, 8 9
T ∗ 0.3365 0.1431 0.3825 0.2170 0.6861 0.1522
C(T ∗) 6.0561 14.0239 3.9494 6.9215 10.0161 40.3527
C(∞) 11.2838 56.4190 11.1985 55.9923 10.6309 53.1544

Table 1: Theoretical results

It is well known that these three Weibull distributions, all with shape parameter
greater than 1, model wearout, so indeed we expect finite optimal replacement strate-
gies. These three distributions have similar expected values, but their variances are
very different, implying e.g. that predicting when a unit fails for W (3, 1) would be
far more accurate than for W (1.2, 1). This shows in the cost function values at the
respective minima, and also when compared to the same cost functions if no preven-
tive replacement would be carried out. Let us consider these distributions for the case
c2 = 10. The optimal strategy for W (3, 1) leads only to expected costs 3.9494, whereas
for W (1.2, 1) the optimal expected costs are 10.0161, indicating that cases with little
variance allow much more effective use of preventive replacements. This effectiveness
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Figure 3: Theoretical cost functions for 3 Weibull distributions.

also shows when considering C(∞) − C(T ∗), which is 7.2491 for W (3, 1), but only
0.6148 for W (1.2, 1).

Before presenting simulation results for our method, let us consider what the effect
would be of wrongly assuming a fixed distribution which differs from the actual under-
lying distribution, where we again focus on the three Weibull distributions used above,
and consider the case c2 = 10. The results are presented in Table 2.

Actual distribution W (2, 1) W (3, 1) W (1.2, 1)
Assumed distribution W (3, 1) W (1.2, 1) W (2, 1) W (1.2, 1) W (2, 1) W (3, 1)
Assumed optimal T 0.3825 0.6861 0.3365 0.6861 0.3365 0.3825
C(T )−C(T ∗)|act.distr. 0.0458 1.3399 0.0601 1.5334 0.4828 0.3076

Table 2: Results when assuming a wrong underlying distribution

Suppose that the actual underlying distribution is W (2, 1), but we wrongly assumed
it to be W (3, 1). Then we would have used the optimal strategy corresponding to
W (3, 1), so T = 0.3825, which would have led to an increase of the average costs
per unit of time of 0.0458. Similarly, had we wrongly assumed W (1.2, 1), the increase
would be 1.3399, which is clearly a much worse mistake. If the underlying distribution is
W (3, 1), the corresponding increases in costs would be 0.0601 if W (2, 1) were assumed,
and 1.5334 if W (1.2, 1) were assumed. If the underlying distribution is W (1.2, 1), we
get increases of 0.4828 (W (2, 1) assumed) and 0.3076 (W (3, 1) assumed). These last
mistakes seem not too bad, but then again for this situation not applying any preventive



replacements only leads to an increase of 0.6148. The message seems to be that, if not
using a method that takes data into account, but straightforwardly determining an
optimal preventive replacement time based on an assumed distribution, overestimating
the variance might lead to rather large increases in expected costs. The simulation
studies below will show that our method, adapting the replacement time to the data,
in most cases leads to increases in costs that are reasonably small.

In Table 3 the simulation results of 9 different cases are given. In each case we have
simulated 10000 times. Each case differs in the number of observed lifetimes, or the
distribution the lifetimes are simulated from, or the costs for corrective replacement.

CASE 1: n = 10, c2 = 10, W (2, 1) CASE 2: n = 100, c2 = 10, W (2, 1)
T ∗

low ∆low T ∗
up ∆up T ∗

low ∆low T ∗
up ∆up

mean 0.4377 0.5845 0.5451 0.8207 0.3541 0.1864 0.3688 0.1855
median 0.4017 0.2917 0.5009 0.4828 0.3429 0.0894 0.3587 0.0912
sd 0.1993 0.7446 0.2312 0.9289 0.0920 0.2470 0.0933 0.2424

CASE 3: n = 100, c2 = 50, W (2, 1) CASE 4: n = 10, c2 = 10, W (3, 1)
T ∗

low ∆low T ∗
up ∆up T ∗

low ∆low T ∗
up ∆up

mean 0.1640 0.9944 0.1933 1.2395 0.4823 0.5593 0.5480 0.8020
median 0.1546 0.4747 0.1832 0.6221 0.4700 0.2929 0.5331 0.4769
sd 0.0609 1.3409 0.0665 1.5902 0.1454 0.6992 0.1503 0.9057

CASE 5: n = 100, c2 = 10, W (3, 1) CASE 6: n = 100, c2 = 50, W (3, 1)
T ∗

low ∆low T ∗
up ∆up T ∗

low ∆low T ∗
up ∆up

mean 0.4009 0.1267 0.4120 0.1348 0.2497 0.6572 0.2766 0.8703
median 0.3969 0.0592 0.4066 0.0630 0.2454 0.3208 0.2706 0.4390
sd 0.0708 0.1709 0.0715 0.1821 0.0662 0.8664 0.0666 1.1047

CASE 7: n = 10, c2 = 10, W (1.2, 1) CASE 8:n = 100, c2 = 10, W (1.2, 1)
T ∗

low ∆low T ∗
up ∆up T ∗

low ∆low T ∗
up ∆up

mean 0.9564 0.7136 1.1078 0.3472 0.8969 0.3182 0.8206 0.2622
median 0.5339 0.3748 0.7775 0.1993 0.6183 0.1436 0.6480 0.1185
sd 1.0228 1.0584 0.9579 0.5113 0.9450 0.4720 0.6355 0.4016

CASE 9: n = 100, c2 = 50, W (1.2, 1)
T ∗

low ∆low T ∗
up ∆up

mean 0.1747 2.9038 0.2367 1.8637
median 0.1174 1.2872 0.1706 0.9281
sd 0.2089 4.0133 0.2282 2.3655

Table 3: Simulation results

All our mean T ∗
low’s and T ∗

up’s are larger than the corresponding theoretical T ∗’s
(see Tables 1 and 3). However, for individual cases it regularly occurs that our optima
are a bit smaller than T ∗. Generally, T ∗ is pretty small, for example quite smaller
than the expected value of the corresponding distribution. In the simulation runs,
most optima for our method are close to the T ∗’s, but some are considerably larger,
whereas much smaller times are rarely suggested, and of course they cannot be negative,



leading to the mean values exceeding the theoretical ones. Given the skewness of the
distributions of our replacement times, the medians may be more natural indications of
the performance of our method. Indeed, the medians are fairly close to the theoretical
values. Of course, for n = 100 our method works better than for n = 10, when keeping
c2 = 10, the improvement is considerable as is shown in the median ∆ values. We also
studied (for n = 100) the effect of increasing c2 to 50. Naturally, this leads to more
cautious preventive replacement policies in the sense that such replacements take place
considerably earlier than for c2 = 10.

When considering the ∆ values, the distributions are also very skewed to the right.
Although large ∆ values can occur if T ∗

low or T ∗
up is quite a bit smaller than T ∗, the

really large ∆ values tend to appear for large T ∗
low or T ∗

up. In some simulation cases one
or both of our optima, T ∗

low and T ∗
up, is at the largest observation xn. This does not

often happen for simulated data from W (2, 1) and W (3, 1), if it happens then normally
only for small numbers of simulated data (n = 10 in this case), where it is possible
that a simulated data set does not reflect wearout, but it happens fairly frequently for
W (1.2, 1). Although this will have affected the reported mean values in the table, it
happens in fewer than half the cases, so did not affect the medians, which are best for
judging the overall performance of our methods via simulations.

When comparing the T ∗
low and T ∗

up for individual cases (not shown in a table),
these are often at the same xi (so ‘just before’ it for the lower cost function). When
this is not the case, T ∗

up tends to be larger than T ∗
low, but the reverse also occurs. It

may perhaps be a bit surprising that there is no strong general result on the relation
between T ∗

low and T ∗
up, but this is caused by the fact that the cost function is quite

complex, as the optimum does not just follow from the survival function but also the
hazard function plays a role, see (5.1). In our approach, the hazard function becomes
effectively infinite just before, or at, the xj, which leads to the fact that our upper
and lower cost functions have local minima at (or just before) each xj. In addition,
intuitively one might perhaps expect that an upper survival function reflects a ‘better
unit’ than a corresponding lower survival function, and that this would imply leaving
such a unit longer in service. This would not be correct, as it is really the variation
in the random lifetime that has most effect on the optimal replacement time. And, in
this chosen criterion based on the renewal argument, we implicitly assume that a unit
is replaced by a similar unit, so if a unit is ‘better’, the next one will also be good, so
at a time of increased risk of a unit failing, it may make sense to replace it early by
a new good unit. This just indicates that, when it comes to optimal age replacement
strategies, intuition cannot really be relied on.

6 Concluding remarks

In this paper we concentrated on the predictive survival and cost functions for Xn+1.
Future research will consider further adaptive aspects of NPI-based age replacement
strategies, in particular how such strategies adapt to new data becoming available
from the process, where a future observation, with strategy T ∗ in place as based on n
observations, will either be a failure time less than T ∗, or a right-censored observation



at T ∗ in case of preventive replacement. Besides using a renewal argument, we will also
consider a 1-cycle criterion [11] to determine the optimal value of the control parameter
T , which is appropriate if a different preventive replacement time is allowed for each
future cycle, to be based on all process information available at the start of each cycle.

In this paper, we have mostly considered two fairly extreme cases, namely either
using minimal modelling assumptions in our NPI-based methods, or assuming complete
knowledge of the underlying lifetime distributions. Naturally, there are several other
possibilities, including assumption of a parametric lifetime distribution, e.g. W (α, β),
with parameters α and β not assumed to be known, but to be estimated from the
data. For example, Mazzuchi and Soyer [11] take this approach, and learn about the
parameter values via Bayesian updating of assumed prior distributions. Such methods
are interesting, and successful as long as the assumed model is reasonably close to the
unknown underlying model. If that is the case, such methods will perform better than
our method, particularly for small data sets. On the other hand, if the underlying
distribution is quite different from the assumed class of distributions, such methods
offer less opportunity to adapt to the data available, and hence may lead to worse
decisions. Detailed comparison of our method with such adaptive methods that use
parametric models, e.g. via simulation studies, is an interesting topic for future research.

This paper has shown that our method tends to perform reasonably well in most
cases, which is particularly interesting when one keeps in mind that no knowledge about
underlying distributions has been included, so only the observed data were used. An
obvious disadvantage of our method is that it explicitly requires data, which may not
always be readily available. However, one could also use it to study, via simulations
as reported here, adaptive policies based on data sets simulated from an assumed
underlying distribution, for example if one would wish to conclude on robustness of a
theoretical optimum. Although we considered minimisation of both C(·) and C(·), one
could argue that, from a robust inference point of view, minimising C(·) would be the
more relevant procedure.

Finally, although the Weibull distributions used in the simulation studies have quite
different shapes, further simulation studies using other distributions, e.g. Lognormal or
Gamma distributions, could be useful to get a more complete picture of the performance
of our method.
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